1) обломочные породы - продукты преимущественно физического выветривания материнских пород и минералов с последующим переносом материала и его отложением в других участках;

2) коллоидно-осадочные породы - результат преимущественно химического разложения с переходом вещества в коллоидальное состояние (коллоидные растворы); сюда же включаются и самые тонкие классы обломочных пород и остаточные породы кор выветривания;

3) хемогенные породы - осадки, выпадающие из водных, преимущественно истинных, растворов - вод морей, океанов, озер и других бассейнов химическим путем, т.е. в результате химических реакций или пересыщения растворов, вызванного различными причинами;

4) биохимические породы, включающие породы, образовавшиеся в ходе химических реакций при участии микроорганизмов, и породы, которые могут иметь двоякое происхождение: химическое и биогенное;

5) органогенные породы, образовавшиеся при участии живых организмов; отчасти эти породы являются непосредственными продуктами жизнедеятельности организмов и всегда содержат значительное количество остатков отмерших животных и растений или же целиком построены из вещества органического происхождения.

Под структурой осадочной породы понимается строение пород, обусловленное формой, размерами и взаимоотношением компонентов, слагающих породу. Классификация структур осадочных пород основана на генетической основе, поэтому выделяются обломочные, хемогенные и биогенные структуры. Поэтому, структуры осадочных пород мы рассмотрим при изучении этих трех генетических типов.

Текстура осадочных пород - особенность пространственного расположения компонентов породы. Выделяют два главных типа текстур - внутрипластовые и поверхностные. Рассмотрим некоторые характерные для осадочных пород текстуры. По мере описания отдельных осадочных пород будут рассмотрены так же и другие текстуры. В осадочных породах встречаются и массивные и пористые текстуры.

Осадочные горные породы образуются в результате процесса осадконакопления на земной поверхности. Исходным материалом осадочных пород служат продукты разрушения ранее сформировавшихся пород, жизнедеятельности организмов и некоторые химические соединения. К наиболее распространенным типам осадочных пород относятся песчаники, известняки и глины. Их классификация основана на химическом составе и размерах слагающих частиц. Минералы, наиболее часто встречающиеся в этих породах , - кварц, кальцит и гипс. Самые тонкозернистые разновидности осадочных пород называются глинистыми или аргиллитовыми, среднезернистые - песчанистыми; наиболее грубозернистые разновидности - крупнообломочными или рудитовыми. Осадочные породы залегают в виде слоев или пластов.

10. Понятие грунт. Классификация грунтов по ГОСТ 25100-95.

Грунт - любые горные породы, почвы, осадки, техногенные (антропогенные) образования, представляющие собой многокомпонентные, динамичные системы, являющиеся компонентами геологической среды и объектом инженерно-хозяйственной деятельности человека.

Классификация

· Класс природных скальных грунтов - грунты с жесткими структурными связями (кристаллизационными и цементационными) подразделяют на группы, подгруппы, типы, виды и разновидности согласно таблице 1.

· Класс природных дисперсных грунтов - грунты с водноколлоидными и механическими структурными связями подразделяют на группы, подгруппы, типы, виды и разновидности согласно таблице 2.

· Класс природных мерзлых грунтов* - грунты с криогенными структурными связями подразделяют на группы, подгруппы, типы, виды и разновидности согласно таблице 3.

· Класс техногенных (скальных, дисперсных и мерзлых) грунтов - грунты с различными структурными связями, образованными в результате деятельности человека, подразделяют на группы, подгруппы, типы и виды согласно таблице 4.

· Частные классификации по вещественному составу, свойствам и структуре скальных, дисперсных и мерзлых грунтов (разновидности) представлены в приложении Б.

11. Обломочные горные породы, их наименования, размер и форма слагающих их частиц, характер связей между зернами. Главнейшие инженерно-геологические особенности обломочных горных пород.

Обломочные горные породы -кластические горные породы, осадочные горные породы, состоящие целиком или преимущественно из обломков различных горных пород (магматических, метаморфических или осадочных) и минералов (кварц, полевые шпаты, слюды, иногда глауконит, вулканическое стекло и др.).

Различают О. г. п. сцементированные и несцементированные, рыхлые. В сцементированных О. г. п. связующим веществом служат карбонаты (кальцит, доломит), окислы кремния (опал, халцедон, кварц), окислы железа (лимонит, гётит и др.), глинистые минералы и ряд др. О. г. п. часто содержат органические остатки: раковины моллюсков и др., стволы и ветви деревьев и т.п.

В основу классификации О. г. п. положен структурный признак - размер обломков. Выделяются грубообломочные породы, с размером обломков более 1 мм (несцементированные - глыбы, валуны, галька, щебень, дресва, гравий; сцементированные - Конгломераты, Гравелиты и др.); песчаные породы, или псаммиты, с размером частиц 1-0,05 мм (пески и песчаники); пылеватые породы, или Алевриты, с размером частиц 0,05-0,005 мм (алевриты и Алевролиты); глинистые породы, или Пелиты, с размером частиц менее 0,005 мм (глины, аргиллиты и др.). Иногда граница между алевритами и пелитами проводится по размеру частиц 0,001 мм . Глинистые породы могут быть как химического, так и обломочного происхождения. Выделяются также О. г. п. смешанного состава, сложенные обломками различной размерности - песчаными, алевритовыми и глинистыми. К ним относятся широко распространённые, особенно среди современных континентальных отложений, различные суглинки и супеси. Дальнейшее подразделение О. г. п. в пределах структурных подтипов производится по минеральному составу обломков и др. признакам. К О. г. п. принадлежат также продукты вулканических извержений: вулканический щебень, пепел - рыхлые породы и их сцементированные разновидности - туфы, туфобрекчии и породы переходные между обломочными и вулканогенными - туффиты и туфогенные породы.

При расчленённом рельефе и высокой динамике среды образуются грубообломочные породы, в условиях равнинного рельефа и небольшой скорости водных и воздушных потоков - песчаные, алевритовые и глинистые породы. Глинистые частицы осаждаются главным образом в спокойной воде. В прибрежной части морей и океанов на пляже и мелководье отлагаются галька и гравий, по мере движения в глубь бассейна они сменяются песками, алевритами и, наконец, глинистыми илами на глубине ниже уровня действия волн и течений. Однако встречаются галечники и пески на больших глубинах - результат действия различных донных течений и мутьевых потоков.

О. г. п. используют в качестве строительного материала, пески - в стекольной и металлургической промышленности. В речных и морских песках встречаются россыпи золота, платины, драгоценных камней, минералов титана, олова, вольфрама, редких и радиоактивных элементов.

12. Осадочные горные хемогенные и органогенные: классификация по происхождению, особенности состава, структуры, текстуры. Главнейшие инженерно-геологические особенности хемогенных и органогенных горных пород.

ОРГАНОГЕННЫЕ ГОРНЫЕ ПОРОДЫ – осадочные горные породы, состоящие из остатков животных и растений и продуктов их жизнедеятельности. Организмы обладают способностью концентрировать определённые вещества, не достигающие насыщения в природных водах, образуя скелеты или ткани, которые сохраняются в ископаемом состоянии.

По вещественному составу среди органогенных горных пород можно выделить карбонатные, кремнистые, некоторые фосфатные породы, а также, Горючие сланцы, нефть, твёрдые битумы. Органогенные горные породы карбонатные (Известняки) состоят из раковин фораминифер, кораллов, мшанок, брахиопод, моллюсков, водорослей и других организмов.

Своеобразными их представителями являются рифовые известняки, слагающие атоллы, барьерные рифы и другие, а также писчий мел. К органогенным горным породам кремнистым относятся: диатомит, спонголит, радиолярит и др. Диатомиты состоят из опаловых скелетов диатомовых водорослей, а также спикул кремнёвых губок и радиолярий. Спонголиты - породы, содержащие обычно более 50% спикул кремнёвых губок. Цемент у них кремнистый, из опаловых округлых телец, или глинистый, слегка известковистый, нередко включает вторичный халцедон. Радиоляриты - кремнистые породы, более чем на 50% состоящие из скелетов радиолярий, которые в современных океанах образуют радиоляриевый ил. Помимо радиолярий в них входят спикулы губок, редкие скорлупки диатомовых водорослей, кокколитофориды, опаловые и глинистые частицы. Многие яшмы имеют основу из радиолярий.

По условиям образования (главным образом применительно к карбонатным породам) можно различать биогермы - скопление остатков организмов в прижизненном положении, танато- и тафроценозы - совместное захоронение мёртвых организмов, живших здесь же или перенесённых волнами и течениями; породы, возникшие из планктонных организмов, называются планктоногенными (например, диатомит, мел, фораминиферовый известняк).

Если органические остатки подвергаются раздроблению в результате действия волн и прибоя, образуются органогенно-обломочные породы, состоящие из обломков (детрита) раковин и скелетов, скреплённых каким-либо минеральным веществом (например, кальцитом).

ХЕМОГЕННЫЕ ГОРНЫЕ ПОРОДЫ - группа пород, образовавшихся непосредственно путём химического осаждения из вод или растворов без участия биологических процессов.

В зависимости от способа и места осаждения, а также происхождения вод и растворов хемогенные горные породы могут быть осадочными, гидротермально-осадочными и гидротермальными. Способы осаждения: постепенное концентрирование вод и растворов в результате солнечного испарения, смешивание растворов 2 или более растворимых солей и понижение температуры растворов. По происхождению минералообразующие воды и растворы могут быть морскими, континентальными гидротермальными (слабо- минерализованными и рассольными).

Место осаждения; поверхность (морские и континентальные водоёмы) или недра Земли. В первом случае образуются протяжённые пластовые тела, во втором - трещинно-жильные линзовидные тела.

Преобладающая часть хемогенных горных пород является гибридной - гидротермально-осадочной, в меньшей степени - осадочной и гидротермальной.

Состав минералообразующих вод и растворов, а также тектонические и климатические условия определяют минералогический состав хемогенных горных пород и ценность их использования в качестве полезного ископаемого.

К хемогенным горным породам относятся все минеральные соли, калийные соли, эвапориты, сода, кремни и кремневидные опоки в ассоциации с трепелами, фосфориты, железомарганцевые руды, бокситы, хемогенные известняки, травертины, большая часть свинцово-цинковых, серных, бороносных и литиеносных руд, которые являются ценным сырьём для развития различных отраслей промышленности.

13. Метаморфические горные породы, их происхождение, формы залегания, минеральный состав, структура, текстура и свойства в образце и массиве.

Метаморф ические г орные пор оды -горные породы, ранее образованные как осадочные или как магматические, но претерпевшие изменение (метаморфизм) в недрах Земли под действием глубинных флюидов, температуры и давления или близ земной поверхности под действием тепла внедрившихся интрузивных масс.

Наиболее распространены метаморфические горные породы сланцеватой или полосчатой текстуры -сланцы, гнейсы, хотя нередки и массивные породы, например мраморы, кварциты, роговики. Кроме того, широко развиты породы с катакластическими текстурами, возникшими при дислокационном или динамическом метаморфизме, - разнообразные катаклазиты и милониты.

Состав метаморфических горных пород, как и их физико-механические свойства, варьирует в широких пределах. Различают метапелиты - производные кислых осадочных и изверженных пород (аргиллитов, алевролитов, песчаников, гранитоидных вулканитов и интрузивных пород) и метабазиты - производные основных осадочных и магматических пород. Особняком стоят карбонатные метаморфические горные породы - мраморы, кальцифиры, карбонатные катаклазиты.

По характеру температурного воздействия различают регионально-метаморфизованные (низкий температурный градиент, огромные региональные объёмы метаморфические горные породы, возникших в сходных интервалах температуры и давления) и контактово-метаморфизованные горные породы (локально высокие температурные градиенты возле магматических тел, малые глубины, небольшие объёмы метаморфических горных пород, возникших в сходных интервалах температуры и давления, концентрическая зональность около интрузивных тел). Контактово-метаморфизованные горные породы, образованные за счёт глинистых и других алюмосиликатных горных пород, - роговики, за счёт известняков - мраморы,бокситов - наждаки.

Среди регионально-метаморфизованных пород выделяют различные типы метаморфических горных пород, характерные для определённых фаций метаморфизма. Это разнообразные сланцы от низкотемпературных хлоритовых и серицитовых до кристаллических сланцев различного состава, образованных в высокотемпературных условиях. Существенно роговообманково-плагиоклазового состава метабазиты называются амфиболитами. Гнейсы - метапелитовые полосчатые породы высоких ступеней метаморфизма, близкие к гранитоидам по химическому составу. К метаморфическим горным породам высоких давлений (1500 МПа) многие исследователи относят эклогиты - массивные существенно гранато-пироксеновые породы со значительным содержанием пиропа в гранате и жадеита в пироксене.

14. Абсолютный и относительный возраст горных пород. Метод определения возраста горных пород. Шкала геологического времени.

Геологический возраст – возраст горных пород. Геологический возраст – это время, прошедшее от определенного события в геологической истории Земли: отложения слоя горных пород, образования гор, оледенения и пр. Различают относительный и абсолютный геологический возраст.

· Абсолютный геологический возраст – возраст горных пород, выраженный в абсолютных единицах времени; устанавливается на основании изучения распада радиоактивных элементов (уран, торий, калий, рубидий и др.), содержащихся в минералах. Оценивается обычно в млн. лет. Термин применяется условно, так как каждая из полученных цифр не «абсолютна» и нередко даётся в первом приближении (с минимальной ошибкой ± 5%).

· Относительный геологический возраст – возраст горных пород, устанавливаемый на основании взаимного положения слоев в разрезе. При пологом залегании слоев нижние являются более древними, а верхние - более молодыми (закон последовательности напластования). Сравнение осадочных толщ удалённых друг от друга районов позволило создать общую стратиграфическую шкалу, подразделённую на ряд отрезков (систем), характеризующихся специфическим комплексом растительных и животных остатков. Путём анализа найденных в пластах окаменелостей производится привязка отложений к общей шкале, т. е. определение относительного геологического возраста.

· тратиграфический метод основан на том, что возраст слоя при нормальном залегании определяется – нижележащие их слои являются более древними, а вышележащие-более молодыми. Этот метод может быть использован и при складчатом залегании слоев. Не может быть использован при опрокинутых складках.

· Литологический метод основан на изучении и сравнении состава пород в разных обнажениях (естественных – в склонах рек, озер, морей, искусственных – карьерах, котлованах и т.д.). На ограниченной по площади территории, отложения одинакового вещественного состава (т.е. состоят из одинаковых минералов и горных пород), могут быть одновозрастными. При сопоставлении разрезов различных обнажений используют маркирующие горизонты, которые отчетливо выделяются среди других пород и стратиграфически выдержаны на большой площади.

· Тектонический метод основан на том, что мощные процессы деформации горных пород проявляются (как правило) одновременно на больших территориях, поэтому одновозрастные толщи имеют примерно одинаковую степень дислоцированности (смещения). В истории Земли осадконакопления периодически сменялись складчатостью и горообразованием.

· Биостратиграфические или палеонтологические методы состоят в определении возраста горных пород с помощью изучения ископаемых организмов.

· Определение относительного возраста магматических и метаморфических горных пород (все выше охарактеризованные методы – для определения возраста осадочных пород) осложнено отсутствием палеонтологических остатков. Возраст эффузивных пород, залегающих совместно с осадочными устанавливается по соотношению к осадочным породам.

· Относительный возраст интрузивных пород определяется по соотношению магматических пород и вмещающих осадочных пород, возраст которых установлен.

· Определение относительного возраста метармофических пород аналогично определению относительного возраста магматических пород.

15. Геологические карты и разрезы.

Геологическая карта – изображение геологического строения определенной территории земной коры. Она дает представление не только о геологическом строении поверхности земли, но в определенной мере и о внутреннем строении земной коры.

Инженерно-геологические карты бывают трех видов: 1) инженерно-геологических условий, 2) инженерно-геологического районирования и 3) инженерно-геологические карты специального назначения. Каждая такая карта включает условные обозначения (рис. 91), геологические разрезы и пояснительную записку.Карта инженерно-геологических условий содержит информацию для всех видов наземного строительства.

Карта инженерно-геологического районирования отражает разделение территории на части (регионы, области-районы и т. д.) в зависимости от общности их инженерно-геологических условий.

Карты специального назначения составляют применительно к конкретным видам строительства. Они содержат оценку инженерно-геологических условий территории строительства и прогноз инженерно-геологических явлений.

В основу составления геологической карты положены след. принципы: на карте условными знаками (цветом-краской, штриховкой, буквенными индексами и др. знаками) показывается распространение осадочных, изверженных и метаморфических горных пород различного возраста. Состав и возраст пород отображается цветом и особыми спец знаками. Линиями разной толщины обозначаются геологические границы горных пород, слагающие геологические тела и тектонические нарушения – разломы. Форма границ позволяет судить об условиях залегания, соотношении горных пород, геологических структурах и поведении горных пород на определенных глубинах.

Геологические разрезы представляют проекцию геологических структур на вертикальную плоскость и позволяют выявить геологическое строение по глубине. Их строят по геологической карте или по данным разведоч­ных выработок (шурфов, буровых скважин). Вертикальный масштаб разрезов обычно принимается в 10 и более раз крупнее горизонтального.

На геологическом разрезе показывают возраст, состав, мощность, условия залегания грунтов, гидрогеологические условия.

16. Тектонические движения земной коры. Складки, трещины и разрывы в земной коре.

Тектонические движения и их значение в формировании кристаллического фундамента.

Процессы внутренней динамики (эндогенные процессы) можно подразделить на:

1 – магматизма;

2 – метаморфизма (большие давления и температура);

3 – тектонические.

Все они тесно связаны друг с другом и взаимно влияют.

Движения земной коры с её деформациями и изменением залегания пород называются тектоническими процессами. Их можно разделить на три основных типа:

Колебательные - медленные поднятия и опускания участков земной коры с образованием крупных выпуклостей и прогибов;

Складчатые - смятие горизонтальных слоев земной коры в складки без их разрыва;

Разрывные - с разрывом слоев и массивов горных пород.

Колебательные движения. Отдельные участки земной коры на протяжении многих столетий поднимаются, другие в это же время опускаются с их изменением наоборот со временем. Различают виды таких движений земной коры: 1 – прошедших геологических периодов; 2 – новейшие четвертичного периода; 3 – современные с изменением высот поверхности земли в данном районе.

Кристаллический фундамент платформы неровный. В нем впадины – синклинали, поднятия – антиклинали. Амплитуда колебаний на платформе достигает 2-3 км.

17. Сейсмические явления: землетрясения и цунами. Магнитуда и бальность землетрясения.

Землетрясение , геол., заметные колебания земной коры, происходящие от действия внутренних сил. Различают медленные, слабо заметные колебания и быстрые разрушительные перемещения пластов земной коры. Последние известны под землёй в тесном смысле, причины землетрясения: смещение, оседание пластов земной коры, провалы вследствие размывов и вообще действия воды и вулканические явления. Последние сопровождаются выделением водяных паров, газов, шлака, грязи. Для изучения Земли устроены особые станции (сейсмические) с приборами (сейсмометрами), отмечающими быстроту распространения колебаний земной коры.

Причины: Существуют две основные причины землетрясений:
Одной из них являются процессы поверхностного характера, которые вызывают незначительные землетрясения. Эти процессы заключаются в том, что плиты, дрейфующие вдоль таких великих разломов, как, например, разлом Сан-Андреас в Калифорнии или Альпийский разлом в Новой Зеландии, действуют подобно ножницам, круша края друг друга.

Вторая причина отражает более глубокие процессы, происходящие в зонах вдоль краёв смещающихся плит, где рёбра этих масс земной коры погружаются в земную мантию и на глубине около 500 км повторно всасываются, поглощаются. По этой причине происходят уже более крупные землетрясения.

БАЛЛЬНОСТЬ ЗЕМЛЕТРЯСЕНИЯ - интенсивность землетрясения, выраженная в баллах. В СССР с 1952 г. принята 12-балльная шкала С. В. Медведева. При определении Б. з. по этой шкале учитывается совокупность многих признаков: показания "сейсмологических станций, характер повреждений зданий и сооружений (с раздельным учетом типов зданий, степени повреждений и количества поврежденных зданий), остаточные явления в грунтах и изменения режима грунтовых и наземных вод, субъективные ощущения толчков и колебаний. Упрощенная характеристика землетрясений разной балльности: 1-4 - слабые, не вызывают разрушений; 5-7 - сильные, разрушают ветхие постройки; 8 - разрушительные, падают фабричные трубы, частично разрушаются прочные здания; 9 - опустошительные, разрушается большинство зданий, появляются значительные трещины на поверхности Земли; 10 - уничтожающие, разрушаются мосты, разрываются трубопроводы, происходят оползни; 11 - катастрофы, разрушение всех сооружений, изменения ландшафта; 12 - сильные катастрофы, большие изменения рельефа местности на обширном пространстве.

Магнит уда землетряс ения - условная величина, характеризующая общую энергию упругих колебаний, вызываемых землетрясениями или взрывами; пропорциональна логарифму энергии колебаний. Обычно определяется максимумом отношения амплитуды к периоду колебаний, регистрируемых сейсмографами. М. з. позволяет сравнивать источники колебаний по их энергии. Увеличение М. з. на единицу соответствует увеличению энергии колебаний в 100 раз. Самые сильные известные землетрясения имеют М. з. не более 9 (приблизительно соответствует 1019дж или 1026эргов ). Сила землетрясения в баллах оценивается сотрясениями и разрушениями на земной поверхности и зависит, помимо М. з., от глубины очага и геологических условий эпицентральной зоны. При неглубоком очаге разрушения могут в эпицентре начинаться при М. з около 5, а при очаге на глубине в сотни км при М. з., равной 7, разрушения почти не происходят.

Цунами -океанские волны большой длины (до 1500 км), возникающие в результате сдвига вверх или вниз протяженных участков дна при сильных подводных и прибрежных землетрясениях и, реже, вследствие вулканических извержений и других тектонических процессов. Период от 15 до 60 минут, скорость от 50 до 1000 км/ч, высота в области возникновения от 0,01 до 5 м, а у побережья 10 м и более (иногда до 50 м). Могут приводить к катастрофическим последствиям.

18. Сейсмическое районирование и микрорайонирование.

Сейсмическое районирование -оценка потенциальной сейсмической опасности в сейсмоактивном районе. Выделение сейсмоопасных районов основывается на результатах совместного анализа инструментальных и макросейсмических данных о землетрясениях прошлых лет (интенсивность колебаний на поверхности Земли, пространственное распределение очагов землетрясений, их размеры, магнитуда и энергия землетрясений, повторяемость и т. п.) и геологических особенностях района (история геологического развития, интенсивность и контрастность новейших и современных тектонических движений, возраст и характер тектонических нарушений, их активность и т. п.).

Уточнение величины сейсмических воздействий на сооружения в зависимости от местных условий конкретного участка территории сейсмоопасного района (физические и динамические свойства грунтов и подстилающих пород, мощность верхних слоев земной коры, наличие многолетнемёрзлых горных пород, тектонические условия, особенности рельефа, спектральные свойства приходящих сейсмических волн и т. п.) составляет предмет сейсмического микрорайонирования. Графическим выражением С. р. являются карты, содержащие сведения об интенсивности сотрясений (в баллах) для любого географического пункта при средних грунтовых условиях. Согласно Строительным нормам и правилам, к средним грунтовым условиям относятся глины, суглинки, пески, супеси при положении уровня грунтовых вод глубже 8м от поверхности Земли, а также крупнообломочные грунты при положении уровня грунтовых вод от 6 до 10 м от поверхности Земли. В СССР общая площадь сейсмоопасных районов составляет 28,6% территории страны (в т. ч. на 9-балльные районы приходится 2,4%, на 8-балльные - 3,2%). районы возможных 9-балльных землетрясений находятся в Средней Азии, Прибайкалье, Камчатке, Курильских островах и др.; 8-балльные районы - в Молдавии, Крыму, на Кавказе, в Южной Сибири и др.

Сейсмическое микрорайонирование выполняется с целью уточнения характеристик сейсмической опасности на основании данных инженерно-сейсмологическихисследований об очагах землетрясений с эпицентрами, удаленными на расстояние до 100 км от участка строительства, о сейсмическом режиме строительных площадок, о сейсмических свойствах изучаемой толщи грунта, о геоморфологических условиях участка строительства и влиянии погребенных разрывных тектонических структур на сейсмическое воздействие.

Основной геологической задачей является проведение полевых сейсмических исследований для количественной оценки относительных изменений (приращений) сейсмической интенсивности.

Сейсмическое микрорайонирование включает следующие виды работ :

· изучение материалов ранее выполненных исследований по инженерной геологии, сейсмотектонике и сейсмичности региона, а также данных общихинженерно-геологических изысканий и аэрокосмического зондирования участка строительства;

· визуальные сейсмотектонические и макросейсмические обследования на участке строительства и прилегающей территории;

· геологические, геодезические, геофизические и геохимические работы;

· комплексный анализ всей совокупности полученных данных, оформленный в виде сводного отчета, включающего карту (схему) сейсмического микрорайонирования участка строительства.

В результате выполнения работ по сейсмическому микрорайонированию определяются коэффициенты к параметрам колебаний грунта (ускорению, скорости, перемещению), соответствующим исходной сейсмичности района строительства. Эти коэффициенты учитывают сейсмотектоническую обстановку в районе строительства (Kс.т), сейсмический режим (Kс.р), местные инженерно-геологические условия (Кгр) и рельеф местности (Кр.м).

19. Рельеф поверхности Земли и его связь с тектоническими движениями.

Высота поверхности в пределах материков меняется от нескольких десятков метров над уровнем моря, до нескольких километров – уходящих далеко в небо снежных пиков Гималаев. Самое характерное для строения поверхности – это резкое сочленение разновысотных областей. Океаны и материки. Горные системы – Гималаи, Кордильеры, Альпы, Кавказ, Тянь-Шань и другие – четко обособленными глыбами возвышаются над окружающими их плоскогорьями или низменностями. Не менее резко разграничиваются между собой плоскогорья и низменности, например, области пустынь Восточной Австралии с высотами до 1500м и прилегающая к ней с востока низменность с отметками, редко превышающими 100м, граничит вдоль линии проходящей почти через весь континент в северо-восточном направлении.

Сочетание разновысотных областей настолько яркая черта, что если взглянуть на физическую карты мира, то материки представятся в виде мозаики, состоящей из участков различных форм и размеров, различных оттенков зелёного и коричневого цвета. В глобальном плане выделяются самые крупные единицы, такие как Гималаи, Кордильеры, Урал, Тянь-Шань, Западно-Сибирская низменность. Каждая из этих единиц в свою очередь состоит из обособленных разновысотных участков – отдельных хребтов, межгорных впадин, плоскогорий и пр.

И так, рельеф. Слово это произошло от французского relief – выпуклость. Оно весьма точно отражает вложенное в него содержание. В самом деле, несмотря на множество различных типов рельефа поверхности, главной, определяющей его чертой будет общий гипсометрический уровень (т. е. абсолютная высота, высота над уровнем моря) области в целом и относительная разница высот её отдельных участков. Важны также форма и размеры этих участков, характер их перехода, иными словами, то или иное их сочетание.

Первой научной гипотезой, трактующей образование рельефа взаимосвязано с развитием земной коры, была контракционная. Исходя из предпосылок этой гипотезы, затвердевшая земная кора подверглась различным механическим дислокациям в связи с уменьшением объёма внутренних частей планеты по мере их охлаждения. Возникли складки (горы), разрывы и пр.

В настоящее время мировой популярностью пользуется гипотеза тектоники плит. Согласно этой гипотезе, движение материков и отдельных плит земной коры приводит к нагромождению масс земной коры в определённых зонах – в краевых частях плит или при их сопряжении. Так, например, возникновение Гималаев трактуется как результат сближения Азии и Индостанского полуострова.

Рельеф поверхности, который мы наблюдаем, формировался в течение чрезвычайно длительного времени. При этом он обязан взаимодействию двух разнонаправленных сил: внутренних – эндогенных и внешних – экзогенных. Первые реализуются посредствам тектонических процессов, приводящих, какова бы ни была их природа, к возникновению первичных контрастных форм поверхности. Эндогенное рельефообразование в равной степени мажет характеризоваться и воздыманиями, и опусканиями.

Экзогенные силы направлены уже на сглаживание контрастных форм поверхности возвышенности под воздействием атмосферных процессов и водных потоков разрушаются, впадины заполняются сносимым материалом. Экзогенные силы действуют непрерывно как во время формирования тектонического рельефа, так и позднее. Экзогенные факторы начинают преобладать над эндогенными лишь только, когда тектонические процессы становятся менее активными или совершенно затухают.

Итак, разновысотная мозаика поверхности планеты обязана формам тектонического рельефа.

20. Виды воды в горных породах (грунтах) и их влияние на состояние и свойства горных пород.

Подземные воды подразделяют: по характеру их использования - хозяйственно-питьевые воды, технические, промышленные, минеральные, термальные; по условиям залегания в земной коре

21. Понятие подземные воды. Происхождение подземных вод.

Подземные воды образуются преимущественно путем инфиль-трации. Атмосферные осадки, речные и другие воды за счет гравитации просачиваются по крупным порам и трещинам пород. На глубине они задерживаются на водоупоре, возникают горизонты подземных вод. Количество воды зависит от многих факторов: характера рельефа, состава и водопроницаемости грунтов, климата, растительного покрова, деятельности человека.

Воды земной коры постоянно пополняются ювенильными водами, возникшими в глубине земли с выходом на поверхность Земли в виде паров и горячих источников при вулканической деятельности. В зонах замедленного водообмена образуются минерализованные (соленые) воды так называемого седиментационного происхождения из древних морских осадков в начале геологической истории земной коры.

. Подземные воды подразделяют: по характеру их использования - хозяйственно-питьевые воды, технические, промышленные, минеральные, термальные; по условиям залегания в земной коре (рис. 52) - верховодки, грунтовые, межпластовые, трещинные, карстовые, вечной мерзлоты. В инженерно-геологических целях подземные воды классифицируют по гидравлическому признаку – безнапорные и напорные.

22. Физические и химические свойства подземных вод, их жесткость, агрессивность.

При гидрогеологических исследованиях определяются следующие главнейшие физические свойства подземных вод: температура, цвет, прозрачность, вкус, запах и удельный вес.
Температура подземных вод изменяется в широких пределах. В высокогорных районах и в области распространения многолетней мерзлоты она низкая; высокоминерализованные воды местами имеют даже отрицательную температуру (-5° С и ниже). В районах молодой вулканической деятельности, а также в местах выходов гейзеров (Камчатка, Исландия и др.) температура воды иногда превышает 100° С. Температура неглубоко залегающих подземных вод. В средних широтах обычно изменяется в пределах 5-12° С и обусловливается местными климатическими (в основном) и гидрогеологическими условиями.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

Осадочные горные породы (ОГП) образуются при механическом и химическом разрушении магматических пород под действием воды, воздуха и органического вещества.

Осадочные горные породы – породы, существующие в термодинамических условиях, характерных для поверхностной части земной коры, и образующиеся в результате переотложения продуктов выветривания и разрушения различных горных пород, химического и механического выпадения осадка из воды, жизнедеятельности организмов или всех трёх процессов одновременно.

Под воздействием ветра, солнца, воды и из-за перепада температур магматические породы разрушаются. Сыпучие обломки магматических пород образуют рыхлые отложения и из них образуются слои осадочных пород обломочного происхождения. Со временем эти породы уплотняются и образуются сравнительно твёрдые плотные осадочные породы.

Более трёх четвертей площади материков покрыто ОГП, поэтому с ними наиболее часто приходится иметь дело при геологических работах. Кроме того, с ОГП генетически или пространственно связана подавляющая часть месторождений полезных ископаемых. В ОГП хорошо сохранились остатки вымерших организмов, по которым можно проследить историю развития различных уголков Земли. В осадочных породах содержатся окаменелости (фоссилии). Изучая их, можно узнать, какие виды населяли Землю миллионы лет назад. Фоссилии (лат. fossilis - ископаемый) - ископаемые остатки организмов или следы их жизнедеятельности, принадлежащих прежним геологическим эпохам.

Рис. Фоссилии: а) трилобиты (морские членистоногие найденные в кембрийском, ордовикском, силурийском и девонском периодах) и б) окаменевшие растения.

Исходным материалом при формировании ОГП являются минеральные вещества, образовавшиеся за счёт разрушения существовавших ранее минералов и горных пород магматического, метаморфического или осадочного происхождения и перенесённые в виде твёрдых частиц или растворенного вещества. Изучением осадочных горных пород занимается наука «Литология».

В формировании осадочных горных пород участвуют различные геологические факторы: разрушение и переотложение продуктов разрушения ранее существовавших пород, механическое и химическое выпадение осадка из воды, жизнедеятельность организмов. Случается, что в образовании той или иной породы принимает участие сразу несколько факторов. При этом некоторые породы могут формироваться различным путём. Так, известняки, могут быть химического, биогенного или обломочного происхождения.

Примеры осадочных горных пород: гравий, песок, галька, глина, известняк, соль, торф, горючий сланец, каменный и бурый уголь, песчаник, фосфорит и др.

Горные породы не вечны и они изменяются со временем. На схеме показан процесс круговорота горных пород.

Рис. Процесс круговорота горных пород.

По признаку происхождения осадочные породы делят на три группы: обломочные, химические и органические.

Обломочные горные породы образуются в процессах разрушения, переноса и отложения обломков горных пород. Это чаще всего каменистые осыпи, галечники, пески, суглинки, глины и лёссы. Обломочные породы разделяют по крупности:

· грубообломочные (> 2 мм); остроугольные обломки – дресва, щебень, сцементированные глинистыми сланцами, образуют брекчии, а окатанные – гравий, галька – конгломераты);

· среднеобломочные (от 2 до 0,5 мм) – образуют пески;

· мелкообломочные, или пылеватые – образуют лёссы;

· тонкообломочные, или глинистые (< 0,001 мм) – при уплотнении превращаются в глинистые сланцы.

Осадочные породы химического происхождения – соли и отложения, образующиеся из насыщенных водных растворов. Они имеют слоистое строение, состоят из галоидных, сернокислых и карбонатных минералов. К ним относятся каменная соль, гипс, карналлит, опоки, мергель, фосфориты, железо-марганцевые конкреции и т.д. (табл. 2.4). Они могут образовываться в смеси с обломочными и органическими отложениями.

Мергель образуется при вымывании из известняков карбоната кальция, содержит глинистые частицы, плотный, светлый.

Железо-марганцевые конкреции образуются из коллоидных растворов и под действием микроорганизмов и создают шариковидные залежи железных руд. Фосфориты образуются в форме шишковидных конкреций неправильной формы, при слиянии которых возникают фосфоритные плиты – залежи фосфоритовых руд серого и буроватого цветов.

Горные породы органического происхождения широко распространены в природе – это останки животных и растений: кораллы, известняки, ракушечники, радиоляриевые, диатомовые и различные черные органические илы, торф, каменные и бурые угли, нефть.

Осадочная толща земной коры формируется под воздействием климата, ледников, стока, почвообразования, жизнедеятельности организмов, и ей присуща зональность: зональные донные илы в Мировом океане и континентальные отложения на суше (ледниковые и водно-ледниковые в полярных областях, торф в тайге, соли в пустыне и т. д.). Осадочные толщи накапливались в течение многих миллионов лет. За это время картина зональности многократно менялась в связи с переменами в положении оси вращения Земли и другими астрономическими причинами. Для каждой конкретной геологической эпохи можно восстановить систему зон с соответствующей ей дифференциацией процессов осадконакопления. Строение современной осадочной оболочки – это результаты перекрытия множества разновременных зональных систем.

На большей части территории земного шара почвообразование идет на осадочных горных породах. В северной части Азии, Европы и Америки обширные пространства заняты породами, отложенными ледниками четвертичного периода (мореной) и продуктами размывания их талыми ледниковыми водами.

Моренные суглинки и супеси. Эти породы отличаются неоднородностью состава: они представляют сочетание глины, песка и валунов различного размера. Супесчаные почвы содержат больше Si02 и меньше других окислов. Окраска большей частью красно-бурая, иногда палевая или светло-бурая; сложение плотное. Более благоприятную среду для растений представляют моренные отложения, содержащие валуны известковых пород.

Покровные глины и суглинки - безвалунные, мелкоземистые породы. Состоят преимущественно из частиц меньше 0,05 мм в диаметре. Окраска буровато-желтая, большей частью обладают мелкой пористостью. Содержат больше элементов питания, чем описанные выше пески.

Лессовидные суглинки и лессы – безвалунные, мелкоземистые, карбонатные, палевые и желто-палевые, мелкопористые породы. Для типичных лессов характерно преобладание частиц диаметром 0,05-0,01 мм. Встречаются также разновидности с преобладанием частиц диаметром меньше 0,01 мм. Содержание углекислого кальция колеблется от 10 до 50%. Верхние слои лессовидных суглинков нередко бывают освобождены от углекислого кальция. В бескарбонатной части преобладают кварц, полевые шпаты, глинистые минералы.

Красноцветная кора выветривания. В странах с тропическим и субтропическим климатом широко распространены мелкоземистые отложения третичного возраста. Они отличаются красноватой окраской, сильно обогащены алюминием и железом и обеднены другими элементами.

Типичный пример: латериты, красноцветная порода богатая железом и алюминием в жарких и влажных тропических областях, образованная в результате выветривания горных пород.

Рис. Латеритные коры выветривания

Коренные породы. На значительных территориях на поверхность выходят морские и континентальные породы дочетвертичного возраста, объединяемые под названием «коренные породы». Названные породы особенно распространены в Поволжье, а также в предгорьях и горных странах. Среди коренных пород широко распространены карбонатные и мергелистые суглинки и глины, известняки, а также песчаные отложения. Следует отметить обогащенность многих песчаных коренных пород элементами питания. Кроме кварца эти пески содержат значительные количества других минералов: слюд, полевых шпатов, некоторых силикатов и т. д. В качестве материнской горной породы они резко отличаются от древнеаллювиальных кварцевых песков. Состав коренных пород очень разнообразен и недостаточно изучен.

Терригениые (обломочные) горные породы (г.п.) образуются путем накопления после некоторого переноса механических частиц - обломков ранее существовавших минералов и г.п., распавшихся па обломки в результате выветривания (главным образом физического) или при разрушительной деятельности воды, ветра, льда, морского прибоя.

Классификация терригенных г.п. строится исходя из: а - величины обломков; б - степени их окатанности; в - рыхлости или сцементированности и приведена в таб. 3.

При рассмотрении таблицы обратите внимание на следующее.

Для сцементированных обломочных г.п.; в отличии от рыхлых, т.е. сыпящихся в сухом состоянии (кроме глин), важно наличие какого-либо вещества, заполняющего промежутки между обломками и играющего роль природного цемента. По составу этот цементирующий материал может быть карбонатным, глинистым, железистым. Часто в качестве цемента выступает более тонкий обломочный же материал, например, конгломерат на песчаном (обязательно, конечно, с участием глины) цементе.

Окатанность обломков влияет на название породы в интервале от глыб-валунов до дресвы-гравия, т.e. в пределах, доступных для визуального (на глаз) определения степени окатанности обломков. В песках и песчаниках степень окатанности зерен устанавливается уже только под микроскопом, поэтому нет различий в названиях этих пород с окатанными или неокатанными песчинками. Тем более это различие теряет смысл для алевритов-алевролитов, частички которых при переносе в силу мизерных размеров окатывания вообще не испытывают.

В таблицу не внесены породы смешанного состава - супеси - смесь песчаных и алевритовых частиц с глинистыми (10-20%) при преобладании первых и суглинки - то же при содержании глинистых частиц до 20-40%. Пo сути эти породы рыхлые, по в силу как бы склеивающего действия гли­нистых частиц, они не сыпятся, как песок или алеврит.

Уплотненные и сцементированные супеси и суглинки специальных названий не имеют и относятся визуально или тонкозернистым песчаникам, или к алевролитам, или аргиллитам.



- Глины примечательны своими свойствами, отличающим их от всех остальных пород, - способностью неоднократно при размокании давать пластичную массу, а при высыхании твердеть. Связанность глин обусловлена тем, чем силы слипания глинистых частиц гораздо сильнее, чем их тяжесть. Отнесение глин к обломочным породам в известной степени условно, т.к. глинистые частицы обломками в полном смысле этого слова не являются. В общем случае они - результат химического выветривания, хотя есть дан­ные, что морозное выветривание в состоянии чисто механически раздробить г.п. до частиц, но размерам сравнимых с глинистыми.

- Аргиллиты - уплотненные, потерявшие пластичность глины. Это темно-серые, серые, плотные, с раковистым изломом, очень тонкозернистые или без видимого зернистого строения породы.

У начинающих вызывает затруднение определение обломочных г.п. с размерами частиц 0,2-0,3 мм - мелкозернистых песчаников, алевролитов, супесей, суглинков, аргиллитов. Отличие супесей и суглинков от песков и алевролитов указано выше, oт глин же они отличаются на ощупь - при растирании между пальцами или разжевывании комочка породы чувствуется присутствие твердых песчано-алевритовых частиц. Глины же разминаются в пластичную массу без ощущения присутствия твердых частиц.

Для отличия мелкозернистых песчаников, алевролитов и аргиллитов можно рекомендовать следующее простое, хотя и не очень строгое правило: если на глаз (или под лупой) можно определить размеры зерен, то это песчаник, если видно, что порода зернистая, но размер зерен определить нельзя, то это, скорее всего, алевролит; если же зернистости и на сколе не видно, то это аргиллит.

Органогенные горные породы образуются в результате накопления остатков раковин, колониальных построек (типа коралловых рифов), минерализованных скелетов ранее существовавших организмов. К органогенным горным породам относятся также скопления самих организмов, образующих группу каустобиолитов .

Таким образом, отличительной чертой органогенных пород является явное присутствие в породе большого количества самих организмов или остатков их жизнедеятельности (рис. 22,24).

Наиболее распространенным являются органогенные известняки, со­стоящие из скоплений целых раковин или колониальных построек известьвыделящих морских организмов - моллюсков, пелеципод, брахиопод, кораллов, морских лилий и других (рис.24). Не менее часто встречаются органогенно-обломочные (детритусовые) известняки, состоящие из облом­ков (результат действия волноприбоя) тех же раковин и колониальных построек. Смешанное хемогенно-органогенное происхождение имеет обыкно­венный писчий мел, хотя видно это только под микроскопом.

Некоторые организмы в процессе своей жизнедеятельности выделяют не известь, а кремнезем. Наиболее распространенной г.п. в этой группе является диатомит, состоящий из скопления микроскопических раковинок водоросли диатомея, а также трепел и опока. Опоки и трепелы - светлые микро- и тонко-зернистые, иногда землистые, породы состоящие из опала, часто микропористые, а потому легкие.

Из каустобиолитов торф, бурый и каменный уголь хорошо известны и пояснений не требуют. Горючие сланцы, углистые сланцы, представляющие собой результат накопления алеврито-глинистого материала вместе с растительными и животными остатками, внешне напоминают аргиллиты и глинистые сланцы, но отличаются черным цветом и явной примесью углистого вещества или запахом нефтепродуктов, сероводорода.

Хемогенные горные породы. Эти породы образуются путем выпадения вещества из истинных - соли (карбонаты, сульфаты, хлориты) и коллоидных - глины, кремнистые, железистые и марганцевые соединения - растворов. Отличительными признаками хемогенных г.п. являются отсутствие обломочной структуры, органических остатков, часто - кристаллическое или оолитовое строение.

Основные виды хемогенных г.п. даны в табл.

При рассмотрении таблицы, определении и описании хемогенных г.п. обратить внимание на следующее.

ОСАДОЧНЫЕ ГОРНЫЕ ПОРОДЫ

Происхождение Хим. состав Хемогенные Органогенные
1. Карбонатные:CaCO 3 CaMg(CO 3) CaCO 3 + 30% глины Известняк Доломит Мергель
2. Галоидные и сернокислые NaCl CaSO4 ´2H2O CaSO4 Каменная соль Гипс Ангидрит
3. Железистые Fe 2 O 3 ´ nH 2 O Бурые железняки Fe-Mn конкреции
4. Алюминий содержащие,Al 2 O 3 ´ nH 2 O Каолиновые глины Бокситы, Латериты
5. Кремнистые (SiO 2); (SiO 2 ´ nH 2 O) Лидит Фтанит Яшма Трепел) Опока Диатомит
6. Фосфорсодержащие Фосфориты)
7. Каустобиолиты (горючие) Торф Бурый уголь Каменный уголь Горючие сланцы

Для карбонатов, галоидов и сульфатов характерно кристаллическое строение. Даже очень тонкозернистые известняки узнаются по многочисленным точечным блесткам граней кристалликов кальцита на свежем сколе породы. Цвет известняков преимущественно светло-серый, но и темно-серый и красно-бурый в зависимости от примесей глины, органического вещества, окислов железа.

Доломиты очень похожи на известняки. Иногда их можно отличить (если не прибегать к реакции HCl, с которой доломиты, в отличие от известняков реагируют только в порошке) по более зернистому, «сахаровидному» свежему сколу и слабо желтовато-белесой мучнистой (напоминает ссохшуюся муку) корочке на выветрелой поверхности.

Отнесение глин и аргиллитов к хемогенным породам столь же относительно, как и выше к обломочным.

Явных, видимых на глаз, отличий меж­ду «обломочными» и «хемогенными» глинами нет. Белые каолиновые глины и красные латериты легко узнаются.

Бокситы - переотложенные в прибрежно-морских условиях латериты. Для них характерен буро-красный цвет и оолитовое строение.

Мергель - порода промежуточная по составу между известняками и глинами. Внешне она походит на аргиллит, но обычно светлее и вскипает с HCl.

Силицилиты - лидиты, фтаниты и яшмы - отличаются ясным кремнистым (отдаленно напоминающим опал) плотным афанитовым или очень тонкозернистым строением, раковистым изломом, острыми ребрами ско­лов, заметной крепостью. Яшмы - разноцветные, лидиты - черные, похо­жие на аргиллиты, но крепче их, фтаниты – серые.

Оолитовые железные руды - почти всегда в той или иной степени лимонитизированы, а потому легко узнаются по бурой окраске и оолитовому строению. Сидериты - также от светло- до темно-бурых, часто мелкоолитовые, но могут быть и сплошными, однородными.

Методические указания

Определение и описание осадочных горных пород (о.г.п.)

Сначала по указанным выше признакам нужно отнести образец к обломочным, органогенным или хемогенным o.г.п.

Для обломочных горных пород определить средний размер обломков в миллиметрах и окатанные они или нет и на этом основании отнести породу к одному из видов согласно табл. 3. Определение пород от песчаников и крупнее затруднений обычно не вызывает. Об отличии тонкозернистых песчаников, алевролитов и аргиллитов - см. выше. Кроме того, изредка начинающие делают еще одну ошибку - путают обломочную текстуру гравелитов и песчаников с оолитовой структурой хемогенных горных пород или пугают гальки с конкрециями. Нужно помнить, что оолиты все­гда, а конкреции очень часто состоят из одного и того же вещества, что и основная масса породы.

При определении органогенных горных пород следует помнить, что присутствие органических остатков в породе еще не является бесспорным доказательством ее органогенного происхождения. Например, в угленосных толщах широко распространены песчаники, т.е. чисто обломочные породы, но переполненные обрывками углефицированных растений. При простом подходе органогенной может быть названа осадочная горная по­рода, если органические остатки составляют в ней более половины ее объема. В остальных случаях лучше просто указывать наличие пусть даже и большого количества органических остатков в обломочной или хемогенной породе.

При определении хемогенных о.г.п. нужно ориентироваться на их физико-химические особенности, в частности, кристаллическое строение, цвет, твердость и др.

Порядок описания о.г.п. в принципе тот же, что и при описании любых других г.п. по общей схеме: указывается цвет, текстура, структура, состав, название. Обязательно указание на присутствие органических остатков. При описании обломочных пород, если это видно простым глазом, нужно кроме того, указать степень окатанности обломков - неокатанные остроугольные, угловатоокатанные, полуокатанные, окатанные, состав и характер цемента.

Примеры описания осадочных г.п.

1. красноватый (цвет), среднекосослоистый (текстура), крупнозернистый (структура), кварцевый песчаник (состав, название) на карбонатном цементе со следами размыва на кровлях слоев (дополнительные текстурные особенности).

2. темно-серый (цвет), массивный, участками брекчиевидный (текстура), тонкозернистый (структура), органогенно-детритовый известняк (происхождение, название).

3. черный (цвет), тонкослоистый (текстура), грубый (структура), углистый алевролит (особенности состава, название) с опечатками флоры и плоскостях напластования (дополнительные текстурные особенности).

Горные породы являются природной совокупностью минералов постоянного минералогического состава, непрерывно образующей в земной коре самостоятельное тело.

Все они делятся на 3 группы по происхождению: магматические (интрузивные и эффузивные), метаморфические и осадочные. Метаморфические и магматические слагают примерно 90% от объёма земной коры, но они не слишком распространены на поверхности материков. Остальные 10% занимают осадочные горные породы (ОГП), покрывающие 75% площади поверхности земли.

Осадочные горные породы

Этот вид горных пород на земной поверхности, а также вблизи нее образуется в условиях низких давлений и температур вследствие преобразований континентальных и морских осадков. Осадочные горные породы по способу образования подразделяются на 3 генетические группы:

  • обломочные (конгломераты, пески, алевриты, брекчии) – это грубые продукты, образовавшиеся в результате механического разрушения материнских пород;
  • глинистые – дисперсные продукты химического глубокого преобразования алюмосиликатных и силикатных минералов материнских пород, которые со временем перешли в новые минеральные виды;
  • биохемогенные, органогенные и хемогенные породы – продукты осаждения из растворов, при участии различных организмов, накоплений органических веществ либо продуктов жизнедеятельности различных организмов.

Промежуточное положение между вулканическими и осадочными породами занимает целая группа эффузивно-осадочных пород, а между основными группами ОГП наблюдаются переходы, возникающие при смешивании материалов разного генезиса. Характерной особенностью ОГП, связанной с их образованием, является их слоистость, а также залегание в виде правильных геометрических пластов.

Состав осадочных горных пород

ОГП состоят из разных по происхождению и минеральному составу компонентов, что отражает множественность источников происхождения осадконакопления и полистадийность породообразования. Порода – это сложнейшее единство образовавшихся в разное время разнородных составных частей. К ним относятся реликтовые или обломочные минералы, обломки материнской породы, различные продукты разложения первичных минералов, экзогенные новообразования, которые возникли в результате осаждения соединений из коллоидных и истинных растворов, продукты диагенеза, катагенеза и метагенеза.

В составе ОГП выделяются хемогенные, терригенные, космогенные, вулканогенные и биогенные вещественно-генетические составляющие, которые объединяются в две большие группы: аутигенные и аллотигенные компоненты.

Аутигенные – возникают на месте в породе либо в осадках на разных стадиях изменения, образования или разрушения пород. Они отражают физические и химические условия осадконакопления. В образованиях осадочного типа свыше 200 аутигенных минералов: хлориты, соли, сульфаты, глауконит, оксиды и гидроксиды железа, алюминия, марганца и др.; минералы кремнезема, железа, глин, фосфаты, сульфиды, карбонаты и многие другие.

Аллотигенные – это компоненты, к которым относится материал, привнесенный из любых других областей и помещенный в бассейн осадконакопления в качестве источника питания. В основном это терригенный или обломочный материал, а также пирокластические, космогенные или вулканические компоненты. Известно более 240 аллотигенных минералов и огромное число обломков различных пород.

Свойства основных осадочных горных пород

К основным осадочным горным породам относятся: известняк и его разновидности, песчаник и доломит.

Известняк – главным образом состоит из углекислого кальция с примесью углекислого магния, глинистых, железистых и других включений. Свойства известняков разнообразны и зависят от их текстуры, структуры и состава. Обладают высокой прочностью на сжатие (от 900 до 1500 кгс/см 2).

Песчаник – состоит из зерен минералов, сцементированных природными веществами. Прочность в пределах 600-2600 кгс/см 2 , в зависимости от наличия примесей и цементирующего вещества.

Доломит – состоит из минерала доломита, близок по свойствам плотным известнякам.

Осадочные породы определяются как геологические тела, образовавшиеся и существуюшие в термодинамических условиях верхней части литосферы путем преобразования скоплений продуктов выветривания, жизнедеятельности организмов, материала вулканических извержений, заимствованного из атмосферы, биосферы, космоса.

В определении понятия «осадочная порода» вкладывается представление об источнике осадочного материала, способах его происхождения, условиях накопления и ьытия.

Как правило, осадки, из которых образуются осадочные породы, представляют собой рыхлый материал, накапливающийся на поверхности Земли и водных бассейнах (океаны, озера, моря) зона осадкообразования включает в себя гидросферу Земли, нижнюю часть атмосферы и верхнюю часть литосферы. Но осадки это лишь исходный материал для образования осадочных толщ.

Породообразование процесс длительный состоящий из нескольких этапов. Общая упрощенная схема образования осадочных пород приведена ниже.

Исходные продукты возникают в процессе выветривания кристаллических и других пород, поступают в сферу осадконакопления при вулканических извержениях, в результате техногенеза. Продукты выветривания под действием биологических, атмосферных агентов и водные компоненты образуют грубодисперсные (обломочные) системы, взвеси, суспензии, коллоидные, истинные растворы и вовлекаются в перемещение – транспортировку. Перемещение исходного вещества по поверхности Земли происходит под действием воды, ветра, льда, гравитации, живых организмов, а в последнее время и человека. Транспортировка завершается осаждением переносимого материала с образованием осадка. Стадия переноса и осаждения вещества называется стадией седиментогенеза, или просто седиментогенезом.

Седиментогенез это сложное явление. Оно включает механическую, химическую дифференциацию и интеграцию продуктов выветривания в процессе переноса и осаждения, образование и разрушение коллоидных и ионных систем. Источником вещества при образовании осадка могут быть продукты эксплозивной и экструзивной вулканической деятельности, подводного и надводного вулканизма, соединения, элементы, попадающие на поверхность и в приповерхностную зону при хозяйственной деятельности человека (техногенез), а также из космоса.

Накопившиеся осадки обычно еще не являются горной породой. Рыхлый иногда полужидкий осадок в стадию диагенеза превращается в уплотненную структурированную осадочную породу. Диагенез включает значительную группу процессов преобразования осадочного материала, сочетание и содержание которых зависит от условий осадконакопления, параметров и типа обстановки седиментации. Основные процессы диагенеза: уплотнение породы, удаление воды, старение коллоидов, разложение неустойчивых минералов, синтезирование новых, перераспределение вещества в процессе породообразования.

Седиментогенез и диагенез по Н. М. Страхову составляют содержание литогенез. Литогенез определяется совместным действием таких факторов, как климат, рельеф, геотектонический режим территории, космический, техногенный факторы, и протеканием в разнообразных природных обстановках. Действие этих факторов определяет тип литогенеза.

Н. М. Страхов на 1-ое место ставит климатический фактор и выделяет нивальный, аридный, гумидный типы литогенеза. Четвертый тип литогенеза, эффузивно-осадочный, выделен Н. М. Страховым по источнику вещества для образования породы. Им же в 1976 г. обосновано обособление океанического типа литогенеза.

По завершению стадии литогенеза сформированная осадочная порода подвергается последующим преобразованиям, составляющим содержание стадий катагенеза и метагенеза.

Относительно наименований и содержания этих стадий в литературе нет однозначного мнения. Катагенез большинством литологов понимается как стадия существования сформированной горной породы после завершения диагенеза, но до начала метаморфизма. Это совокупность физико-химических процессов, протекающих в условиях низких температур и давлений обычно при участии водной составляющей покрова. В стадии катагенеза в цементе пристутствуют глины, отмечается высокая пористость, сохраняются первичные структуры и текстуры.

Метагенез по Н. М. Страхову, Н. Б. Вассоевичу объединяет совокупность процессов начального метаморфизма в нижней части стратисферы с перекристаллизацией минеральных составляющих и со значительным увеличением степени литификации пород. Стадия характеризуется массовым растворением обломочных зерен , полевых шпатов, обломков горных пород, гидрослюдизацией и хлоритизацией глинистого вещества, перекристаллизацией пелитоморфных и зернистых карбонатов и т.п. Заметно уменьшается пористость до 3-5%. Появляются конформные, регенерационные структуры в перекристаллизованных известняках.

Вещественно-генетические составляющие осадочных пород

Осадочные породы состоят из разных по минеральному составу и происхождению составных частей – компонентов. Это отражает множественность источников осадконакопления и полистадийность породообразования. По М. С. Швецову порода – это сложное единство разнородных и образовавшихся в разное время составных частей. К ним относятся реликтовые (обломочные) минералы, неизменные обломки материнской породы, продукты разложения первичных минералов (из группы глин, слюд и др.), экзогенные новообразования, возникшие за счет осаждения соединений из истинных и коллоидных растворов, продукты диагенеза (фосфориты, сульфиды металлов, карбонатные стяжения и пр.), катагенеза (окислы, самородные элементы, сульфиды), метагенеза (кварц, гидрослюда и пр.). В составе осадочных пород выделяются терригенные, хемогенные, вулканогенные, космогенные, и биогенные вещественно-генетические составляющие. Они главным образом объединяются в 2 большие группы – аллотигенные и аутигенные компоненты.

К аллотигенным компонентам относятся материал, привнесенный из других областей, поставляемый в бассейн осадконакопления источником питания. После переноса путем волочения или в виде механической взвеси в результате осаждения переходит в осадок. Это, в основном, обломочный или терригенный материал, а также вулканогенные, или пирокластические, космогенные компоненты. Аллотигенный материал поступает с суши и частично – за счет продуктов перемыва осадков дна бассейна. Известно более 200 аллотигенных минералов и значительное число обломков разных пород. Аллотигенными обычно являются наиболее устойчивые к гипергенному воздействию минералы: кварц, ставролит, полевые шпаты, дистен, силлиманит, циркон, а также обломки горных пород и др. В зависимости от степени механической обработки аллотигенные минералы присутствуют в породе в виде окатанных до почти сферических, угловато-окатанных (со сглаженными углами) и неокатанных обломков. Форма и степень окатанности, а также размеры и состав зерен, их сортированность по размерам и составу – важный источник информации об области сноса, ее близости, удаленности, ландшафтно-климатических особенностях, вещественном составе материнских пород. К группе аллотигенных компонентов относится вулканогенный, или пирокластический, материал: частицы пепла, обломки лавы и другие продукты вулканических извержений, а также частицы космической пыли, в частности глобули никелистого железа, присутствующие в глубоководных океанических осадках.

Аутигенные компоненты возникают на месте в осадках или в породе на разных стадиях образования, изменения, или разрушения осадочных пород. Отражают физико-химические условия осадконакопления. В осадочных образованиях описано свыше 200 аутигенных минералов: сульфаты, соли, хлориты, глауконит, гидроксиды и оксиды железа, марганца, алюминия и др.; минералы кремнезема, глин, фосфаты, карбонаты, сульфиды железа, свинца, цинка, меди, самородные элементы и др.

Аутигенная природа минералов определяется по ряду признаков:

  • -идиоморфности кристаллов в порах и пустотах;
  • гипидоморфной структуре зерен и малым размерам в случае их присутствия в основной массе хемогенных и в цементе обломочных пород;
  • сферолитовому, оолитовому строению;
  • наличию коллоидных и метаколлоидных структур;
  • выполнению и выстиланию пор и пустот;
  • перемежаемости с другими аутигенными минералами;
  • замещению обломочных зерен.

В зависимости от того, с какой стадией образования, либо изменения породы, связаны аутигенные минералы, они подразделяются на ряд групп: седиментационные, элювиальные, диагенетические, катагенетические и метагенетические.

Седиментационные аутигенные минералы слагают кальцитовые, фосфатные раковинки и другие скелетные части различных организмов образуют пласты гипса, ангидрита, солей, кремнистых, карбонатных пород, фосфоритов, оксидов и гидроксидов железа, марганца.

Наиболее значим в отношении аутигенного минералообразования формированием рудных скоплений химический элювий, включающий новообразования кор выветривания, в частности латеритных, с гидратами окислов марганца, железа, алюминия, карбонатов, кремневого вещества, глинистых минералов – смектитов, гидрослюд, хлоритов, солей. Аутигенная минерализация представляет собой результат физико-химических процессов, лежащих в основе взаимодействия выветривающей породы с газами атмосферы, просачивающимися дождевыми водами, капиллярного поднятия жидкости (инсоляция).

В эту же группу В. Т. Фролов относит продукты гальмиролиза – шамозиты, цеолиты, смектиты, фосфориты и др. и биоэллювий почв – гидрослюд, каолина, окислов железа, сидериты, карбонаты.

Диагенетические минералы образуются в стадии диагенеза, т.е. в период уплотнения осадка и превращения его в породу. Это разнообразные карбонаты, сульфиды, дисульфиды, фосфаты, хлориты, углефицированная растительная органика. Образуют конкреции, стяжения различной формы и размеров, цемент осадочных пород.

Катагенетические и метагенетические аутигенные минералы образуются в течение всего времени существования и изменения осадочных пород в литосфере, до превращения их в породы метаморфические. Неоднозначность трактовки терминов катагенез и метагенез не позволяет рассмотреть эти группы аутигенных минеральных новообразований более подробно. Тем не менее, у них есть существенные отличия.

Минералы катагенетической группы возникают в условиях более интенсивной динамики вод, нежели это характерно для области преобразований стадии метагенеза. Поэтому к катагенетическим можно отнести большую группу минералов, связанных с действием гидрогенного фактора, с различными видами движения вод. Это оксиды, гидрооксиды железа, марганца, ванадия, карбонаты разного состава, силикаты, в первую очередь сам кремнезем, сульфиды и дисульфиды железа, свинца, цинка, меди и других металлов, силикаты группы глин.

Для метагенетической группы наиболее характерны барит, силикаты, слюды, хлориты, кварц, смешаннослойные и другие минералы, испытавшие обезвоживание и некоторую перестройку кристаллической структуры.

Аутигенные минералы служат индикатором физико-химических условий среды минералообразования. Известно, что эти условия определяются такими показателями как окислительно-восстановительный потенциал Eh, величина кислотности-щелочности pH, соленость, температура, давление. Так гидраты окислов железа устойчивы при pH < 2,3-3. Опал SiO 2 , выпадает из кислых, слабокислых и нейтральных растворов, в щелочной среде он растворим. Карбонаты кальция и магния (кальцит, доломит) осаждаются из щелочных растворов при pH > 7,4. Сидерит образуется при pH = 7-7,2. Минералы группы каолинита образуются в кислой среде, монтмориллонит – в щелочной. Гидрослюдистые компоненты глин возникают и устойчивы в слабощелочной и щелочной средах.

Минералы элементов с переменной валентностью – железа, марганца, такие как оксиды, гидроксиды, карбонаты, силикаты, сульфиды: гётит, гидрогётит, манганит, псиломелан, анкерит и др., являются показателями окислительно-восстановительных условиях при положительных значениях Eh. Сидерит указывает на слабо восстановительные условия, а сульфиды различных металлов, в первую очередь наиболее распространенные в осадочных породах пирит и марказит, характеризуют резко восстановительную обстановку и отрицательные значения Eh.

Показателями солености воды, вернее концентрации растворов, являются карбонаты, сульфаты, хлориды. В интервале солености 4-15% осаждаются карбонаты кальция и магния с последующим образованием известняка и доломита. Вода с соленостью более 12-15% является источником сульфатов – гипса, ангидрита. Из рассолов с соленостью 25-27% высаживается галит, а при концентрации 30-32% — калийно-магнезиальные соли.

Относительно аутигенных минералов применимо понятие парагенетические ассоциации, объединяющие минералы, образованные генетически единым процессом. Примером такой ассоциации может служить ряд последовательного осаждения минеральных образований в соленосных лагунах: гипс, затем совместное осаждение каменой соли, гипса, полигалита.

К числу аутигенных образований осадочных пород часто органические остатки, в том числе растительные, скопления которых могут сформировать осадочную породу. К породообразующим организмам принадлежат:

  1. организмы с кремневой раковиной, или скелетом (радиолярии, губки, диатомеи). Например: радиолярии слагают породы, состоящие из морских одноклеточных микроорганизмов с опаловым скелетом;
  2. организмы с известковой раковиной или скелетом (фораминиферы, губки, кораллы, мшанки и др.), сине-зеленые, зеленые, багряные водоросли.

Первичный и вторичный минеральный состав осадочных пород

Комплекс минералов, образованных при конкретных условиях литогенеза, характерный для осадочной породы определенного происхождения, является первичным . Вещества, участвующие в формировании первичного состава породы, поступают в осадок при седиментации с перераспределением в составе осадка в стадию диагенеза.

Преобразования горной породы по завершению литогенеза (стадии катагенеза, метагенеза, гипергенеза) с изменением ее минерального, химического состава, текстуры, структуры называются наложенными или вторичными . Они происходят в результате смены давления, температуры, кислотности-щелочности, окислительно-восстановительного потенциала, условий залегания, соотношения с водной составляющей и идут с привносом, выносом, либо перераспределением вещества, проявленными в различной степени. Возникшие при этом минералы и минеральные ассоциации называются вторичными. Эти вопросы рассмотрены на примере отложений различного возраста, различных климатических зон, тектонических структур. Процессы вторичного изменения осадочных пород (образования минералов), идущие с привносом-выносом вещества, называются эпигенетическими или эпигенезом . Термин в такой трактовке применяется в учении о полезных ископаемых. Его использование в литологии для обозначения стадии литогенеза не рекомендуется.

Структуры и текстуры осадочных пород

Характерными признаками любой породы, в том числе осадочной, являются не только вещественный минеральный состав, но и особенности строения, обусловленные формой, размером слагающих ее частиц, их взаимоотношениями в объеме породы.

Текстуры и структуры – важнейшие характеристики осадочных пород. Дословный перевод с латинского: структура (structura) – строение, устройство, расположение; текстура (textura) – ткань, соединение, связь.

Под структурой понимают особенности строения осадочной породы, определяемые формой, размерами и взаимоотношением слагающих ее частиц. Структура породы зависит от морфологических особенностей отдельных составных частей и характера их сочетания.

Текстура – это сложение, обуславливаемой ориентировкой, относительным расположением компонентов породы, а также способом выполнения пространства. По Л. Б. Рухину текстура отражает размещение составных частей и их взаимное расположение. Наиболее характерные текстурные признаки – слоистость, ориентировка частиц и органических остатков, либо хаотичность, беспорядочность, изотропность.

Структуры и текстуры изучаются на макроуровне (штуф, обнажение, слой, пласт, пачка, толща) и микроуровне (в шлифах с помощью микроскопа). Результаты этих наблюдений дополняют друг друга.

Структура наиболее отчетливо устанавливается по размеру зерен, слагающих породу, и является характерным признаком для пород конкретного состава и происхождения. Их подразделение, номенклатура не являются однозначными.

Структуры пород обломочных делятся на:

  • грубообломочную (крупнообломочная или псефитовая), с диаметром зерен более 2 мм;
  • песчаную (псаммитовая), с диамтером зерен 2-0,1 мм;
  • алевритовую (структура мелкообломочных пород), с диаметром зерен меньше 0,1 мм;
  • пелитовую;
  • смешанные.

Среди пород химического происхождения, хемогенных, по основному структурному признаку – величине зерен, выделяют:

  • грубокристаллическую, более 1 мм;
  • крупнокристаллическую, 1-0,5 мм;
  • среднекристаллическую (0,5-0,25 мм);
  • мелкокристаллическую (0,25-0,1 мм);
  • тонкокристаллическую (0,1-0,01 мм);
  • микрокристаллическую (<0,01 мм).

Иногда выделяют структуру пелитоморфную, размер зерен менее 0,05 мм.

Структура биогенных пород, сложенных хорошо сохранившими свою форму органическими остатками (состоят из целых раковин и скелетов организмов), называют биоморфными (цельнораковинными). Если же остатки организмов находятся в породе в виде окатанных, полуокатаных обломоков, то их структура будет именоваться детриусовой (органогенно-детритовой), или биокластовой . Среди органогенно-детритовых структур по размеру обломков выделяют:

  • грубообломочные (ракушечниковые), диаметр обломков > 1 мм;
  • крупнообломочные, 1-0,5 мм;
  • среднеобломочные, 0,5-0,25 мм;
  • мелкообломочные, 0,25-0,05 мм;
  • тонкообломочные (шламовые), < 0,05 мм.

При изучении в шлифах, в породах, образованных при отложении вещества из растворов, можно наблюдать колломорфные структуры, обязанные наличию в их составе минеральных агрегатов криволинейных, прихотливо изогнутых, большей частью сферических очертаний. Выделяется оолитовая структура, обусловленная сложением породы округлыми, почти сферическими образованиями с центральным ядром концентрически-зонального строения небольших размеров, порядка 0,5 мм в диаметре. Более крупные разновидности оолитов (до 2-10 мм) называются пизолитами. Слои – концентры отражают периодичность отложения вещества. В результате роста кристаллов при раскристаллизации и перекристаллизации может возникнуть вторичное радиально-лучистое строение, оолит превратится в прозрачный сферолит. В сферолитах игольчатые, волокнистые кристаллы радиально расходятся от центра. Не исключается первичность, изначальность радиально-лучистой структуры сферолитов. Взаимоотношения радиально-лучистого и концентрически-зонального скорлуповатого строения сферолитов могут быть различными. Часто отмечается раскристаллизация зонального концентра с радиально ориентированными кристаллами при отсутствии таковой в других слойках оолита.

Разновидностью колломорфной структуры является ооидная (бобовая), отличающаяся присутствием в тонкодисперсной массе округлых, похожих на оолиты, но менее правильной формы, большей частью без центрального ядра минеральных агрегатов с волнистыми «размытыми» границами концентрических слоев.

Учитывая особенности строения, размеры зерен, агрегатов, помимо оолитовой, сферолитовой, ооидной структур выделяются различные виды обломочных структур, например пелитовая, пластинчатая, радиально-лучистая и др.

При изучении структурных особенностей обычно определяется структура породы в целом и структура цемента, если он присутствует в породе. Характеристика структуры по размеру, форме зерен дополняется выявленными при изучении шлифов особенностями строения цемента. При этом учитывается его состав, количество, способ цементации, соотношение с обломочной частью породы, степень кристалличности, характер распределения в породе, сортировка и взаимоотношение с обломками.

Породы, прошедшие стадию метагенеза, приобретают конформно-регенерационную, мозаичную, шиповидную и зубчатую структуры. Конформно-регенерационная структура выражается во взаимной приспособленности зерен друг к другу одновременно с их регенерацией.

Мозаичная или гранобластовая структура возникает в результате уплотнения породы, соприкосновения зерен с одновременной частичной перекристаллизацией их краевых частей. Шиповидные и зубчатые структуры образуются при перекристаллизации и частичном растворении зерна под действием стресса (тектонического сжатия).

Элементы структуры и текстуры связаны между собой и зачастую затруднительно провести границу между структурными и текстурными признаками. Так форма и размер песчаных зерен – элемент структуры, а их взаимное определенным образом расположение в породе – признак текстуры.

Текстуры формируются одновременно с накоплением осадка, либо в процессе литификации и последующих преобразований породы. Поэтому правомочно разделение текстур на 2 большие группы – первичных и вторичных текстур. Вторичные текстуры возникают позднее в результате взаимодействия различных процессов, действующих при диагенезе, метагенезе и выветривании.

Сложение осадочной породы (текстура) фиксируется в особенностях внутреннего строения пласта – внутрипластовые текстуры и на поверхности напластования – текстуры поверхности наслоения .

Существенное значение в формировании текстурного облика породы могут играть живые организмы. В связи с этим текстуры подразделяются на биогенные и абиогенные .

Абиогенные текстуры в группе внутрипластовых текстур включают массивную (неслоистую) и слоистые текстуры.

Слоистость – это неоднородность осадочных пород в разрезе по вертикали при однородном сложении по горизонтали. Она может выражаться сменой минерального состава, сменой структуры (песок – гравий), или его текстуры. В последнем случае массивный песчаник сменяется слоистым.

Причины возникновения слоистости – изменение параметров процесса осадконакопления. Эти параметры зависят:

  1. от механизма образования осадка: в условиях течения, волнения, неподвижной среды, за счет осаждения, выпадения в осадок из растворов, в результате роста живых организмов, например, образование рифа и др.;
  2. от тектонических условий: поднятия и опускания вызывают изменения в характере сноса осадочного материала;
  3. от периодических изменений климата – количества осадков, наличия растительного покрова, наличия временных потоков, усиления, либо ослабления деятельности микроорганизмов;
  4. от уплотнения осадков под давлением вышележащих толщ.

При характеристике слоистости используют понятие об элементах слоистости осадочных толщ. Слоистые текстуры по характеру взаимоотношения слойков и слоев, по форме и по их отношению к горизонту или серийным границам делятся на 3 основных типа.

Таблица 1 — Элементы слоистости толщ осадочных пород

Элемент слоистости

Его характеристика

Признаки, определяющие его выделение

Слойки Элементарная единица слоистой текстуры. Группируясь, образуют слои, пачки, серии. гранулометрический, вещественный состав, изменение окраски, появление примеси.
Серия слойков Группа слойков, имеющих одинаковое залегание. Группируются в серии Сходны по составу, строению. Отделены от смежных серий плоскостями раздела.
Пачка слойков Группа слойков с отчетливо выраженным изменением от слойка к слойку. Могут повторяться неоднократно. Резкое изменение особенностей состава и строения на границе пачки. Для всех пачек характерна одна и та же закономерность изменения слойков. Пачки слойков являются ритмами.
Слой Пачки объединяются в слой. Иногда это может быть одна пачка или серия слойков. Границы, разделяющие слои, резкие, отчетливые. Соответствуют изменению условий осадкообразования. Иногда границы постепенные.
Пласт Слой или несколько слоев образуют пласт. Признаки, характерные для слоев и их групп. Заметные изменения внутри пласта от подошвы к кровле. Включает серии, пачки слойков. Характерно изменение внутренней текстуры.
Толща Совокупность пластов, слоев, зачастую чередующихся. Макроритм осадконакопления. Характеризуется некоторой общностью слагающих ее горных пород. Часто имеет единый крупный стратиграфический объем.

Горизонтальная слоистость – чередование слойков и слоев, параллельных плоскости наслоения. Характерна для морских, флишевых толщ, озерных накоплений, но встречается и в горном аллювии.

Волнистая слоистость – чередование серии слойков, имеющих криволинейную выпукло-вогнутую форму. Типичны для осадков прибрежной зоны моря, эоловых, речных отложений.

Косая слоистость – серии косых слойков расположены внутри одного пласта или слоя косо, под определенным углом. Виды косой слоистости многообразны и зависят от типа осадков, способов образования и условий отложения.

Различают косую слоистость с параллельными и перекрестными сериями, однонаправленную и разнонаправленную. Своеобразную слоистость имеют эоловые осадки, представляющие собой сочетание косой и волнистой слоистости. Разновидностью косой слоистости является диагональная косоволнистая слоистость прибрежно-морского типа.

Текстурно-структурные признаки пород, и в первую очередь, слоистость, используют для выявления характерных черт обстановки осадконакопления в совокупности со множеством других прямых и косвенных показателей. Тем, не менее, целенаправленное изучение текстур осадочных образований в последние десятилетия значительно расширило возможности их генетической интерпретации. В частности, накоплен материал по сравнительной характеристике однотипных видов слоистости в породах разного происхождения. Так эоловая косая слойчастость по сравнению с речной отмечается меньшим постоянством углов падения из-за изменчивости направлений и силы ветра.

Закономерности изменения слоистости русловых отложений выявлены и показаны многими исследователями. Гравийно-песчаные осадки, накопившиеся в стрежневой зоне русел равнинных рек, могут быть неслоистыми, с неправильной горизонтальной слоистостью, иметь крупную косую однонаправленную слоистость. Правильная однонаправленная косая слоистость с однообразным наклонением косых слойков вниз по течению характерная для основной части руслового аллювия. Четкую горизонтальную слоистость имеют осадки озер в пустынях и в прибрежных зонах моря аридных областей. Учитывая факторы зависимости текстурно-структурного облика породы от способа отложения осадочного материала и обстановки осадконакопления, тем не менее, можно наметить доминирование конкретных видов слоистости для осадков определенного типа: косая слоистость типична для потоковых, русловых накоплений; для гравийно-песчаных осадков полосы активного морского прибоя характерна перекрестная косая слойчатость разносторонне наклоненная под разными углами; разновидности горизонтальной и волнистой – для озерных, пойменных, подводнодельтовых, удаленных от берега морских осадков. Более подробная характеристика текстур и структур дана при описании осадочных пород.

К категории внутрипластовых текстур и поверхностей напластования относятся сланцеватая, комковатая, чешуйчатая, ячеистая, сгустковатая и другие текстуры, текстуры оползания, ориентированных обломков, сутуростилолитовая, конус в конус или фунтиковая. Сланцеватая текстура, как правило, образуется при метагенезе осадочных пород и является вторичной. Сутуростилолитовая текстура типична для катагенеза и метагенеза. Текстуры оползания – следствие подводно-оползневой деформации. Подводно-оползневые процессы в настоящее время рассматриваются как породообразующие, приводящие к образованию песчано-илистых отложений с четкой градационной дифференциацией материала по размеру зерен.

Поверхности напластования элементов осадочной толщи осложняются наличием знаков ряби, образованных действием волн, течений, ветра, струй стекания. На плоскостях напластования могут наблюдаться следы трещин усыхания, капель, жизнедеятельности позвоночных животных, ракообразных, ползающих, роющих, сверлящих организмов, отпечатки и различные остатки растений и животных.

Формы отдельности различны: плитчатая, столбчатая, кубовидная, ромбовидная, оскольчатая. Шаровая и др.

По природе напряжений, разрядка которых вызывает раскалывание, отдельность бывает экзогенной и эндогенной.