· .

максимизируется средний выигрыш статистика

· Показатель оптимальности стратегии - величина среднего риска.

За оптимальную стратегию принимается чистая стратегия , при которой минимизируется средний риск

Байесовское решение является оптимальным не в каждом отдельном случае, а в среднем. Такого рода оптимальность реально может проявить себя лишь при многократном проведении операции , когда среднее значение постепенно стабилизируется.

Применение критерия Байеса оправданно, если ситуация, в которой принимается решение, характеризуется признаками :

известны и не зависят от времени;

§ решение реализуется большое (теоретически бесконечное) число раз.

Пример 2 . Фирма купила станок за 100 ден. ед. Для его ремонта можно купить специальное оборудование за 50 ед. или обойтись старым оборудованием. Если станок выходит из строя, его ремонт с помощью спецоборудования обходится в 10 ед., без спецоборудования - в 40 ед.

Известно, что в течение срока эксплуатации станок выходит из строя не более трех раз: вероятность того, что станок не сломается - 0,3; сломается 1 раз - 0,4; сломается 2 раза - 0,2; сломается 3 раза - 0,1.

Требуется определить целесообразность приобретения специализированного ремонтного оборудования.

Формализация . Первый игрок имеет две чистые стратегии: покупать и не покупать специализированное ремонтное оборудование. У природы - второго игрока - четыре состояния: станок не выйдет из строя, выйдет один раз, сломается два раза и три раза. Функция выигрыша - затраты фирмы на покупку и ремонт станка, задается платежной матрицей:

Выход станка из строя
Ремонтное оборудование ни разу 1 раз 2 раза 3 раза
не купить -100 -140 -180 -220
купить -150 -160 -170 -180

Решение.

Рассмотрим сначала эту задачу как антагонистическую игру .

В матрице методом минимакса находим седловую точку: (2,4), таким образом, x* = (0, 1), y* = (0, 0, 0, 1), цена игры v* = - 180 ден. ед.

Ответ : нужно купить специализированное оборудование.

Однако в играх с природой положение коренным образом меняется: уже в условии заложена устойчивая смешанная стратегия природы: у = (0,3; 0,4; 0,2; 0,1) и мы знаем, что именно этой стратегии придерживается природа. Запишем эти вероятности внизу платежной матрицы.

Выход станка из строя
Ремонтное оборудование ни разу 1 раз 2 раза 3 раза
не купить -100 -140 -180 -220
купить -150 -160 -170 -180

Вероятности 0,3 0,4 0,2 0,1

Если же человек - первый игрок - будет продолжать играть оптимально (применит вторую стратегию «купить»), то его выигрыш составит

v(x*) = - 150 0,3 - 160 0,4 - 170 0,2 - 180 0,1 = - 161;

а если применит первую, неоптимальную стратегию, то математическое ожидание его выигрыша составит

v(x") = - 100 0,3 - 140 0,4 - 180 0,2 - 220 0,1 = - 144 .

Таким образом, первому игроку выгодно играть неоптимально!

Ответ : не покупать специализированное оборудование.

Существенное различие между значениями v(x*) и v(x") объясняется тем, что смешанная стратегия природы неоптимальна и она, "отклоняясь" от своей оптимальной стратегии, «недополучает» 36 ден. единиц выигрыша.

3.2. Критерий Лапласа недостаточного основания – «ориентируйся на среднее»

Если состояния природы в равной мере правдоподобны, то их полагают равновероятными, т.е. .

· Показатель оптимальности стратегии - величина среднего выигрыша .

Оптимальной считается чистая стратегия , обеспечивающая максимум среднего выигрыша при одинаковых априорных вероятностях:

. (6)

Применение критерия Лапласа оправданно, если ситуация, в которой принимается решение, характеризуется признаками :

§ вероятности состояний природы неизвестны, не зависят от времени и равны;

§ решение реализуется большое (теоретически бесконечное) число раз;

§ для небольшого числа реализаций допускается некоторый неоцениваемый риск .

Пример 3. Найти оптимальное решение статистической игры, заданной платежной матрицей , применяя критерий Лапласа, считая, что состояния природы равновозможны, т.е. .

Решение

Найдем средние выигрыши статистика :

Найдем наибольший средний выигрыш : .

Значит, по критерию Лапласа оптимальной стратегией статистика, который считает состояния природы равновозможными, будет чистая стратегия .

Гипотеза о равновероятности состояний природы является довольно искусственной, поэтому принципом Лапласа можно пользоваться лишь в ограниченных случаях. В более общем случае следует считать, что состояния природы не равновероятны и использовать для решения критерий Байеса-Лапласа.

Контрольные вопросы

1. Перечислите источники неопределенности и риска.

2. Дайте классификацию решений, принимаемых в различных условиях.

3. Назовите несколько определений риска.

4. По каким признакам классифицируются риски?

5. Что значит «управлять риском»?

6. Перечислите правила, с помощью которых проводится выбор способа управления риском и варианта решения.

7. Что понимается под качественной и количественной оценками риска?

8. Что понимается под играми с природой?

9. Какие критерии применяются для выбора оптимальной стратегии в условиях риска?

10. Как найти средний выигрыш игрока при известных вероятностях стратегий и при неизвестных вероятностях?

11. Поясните принципы использования моделей теории игр в экономических задачах в условиях неопределенности (игры с природой).

12. Что понимается под риском игрока?

13. Как найти элементы матрицы рисков? Что показывают эти величины?

14. Когда пользуются критериями Байеса и Лапласа? Опишите правила выбора оптимальной стратегии статистика с применением этих критериев. Что показывают вероятности в этих критериях?

Краткая теория

Любую хозяйственную деятельность человека можно рассматривать как игру с природой. В широком смысле под природой будем понимать совокупность неопределенных факторов, влияющих на эффективность принимаемых решений.

Управление любым объектом осуществляется путем принятия последовательности управленческих решений. Для принятия решения необходима информация (совокупность сведений о состоянии объекта управления и условиях его работы). В тех случаях когда отсутствует достаточно полная информация, возникает неопределенность в принятии решения. Причины этого могут быть различны: требующаяся для полного обоснования решения информация принципиально не может быть получена (неустранимая неопределенность); информация не может быть получена своевременно, к моменту принятия решения; затраты, связанные с получением информации, слишком высоки. По мере совершенствования средств сбора, передачи и обработки информации неопределенность управленческих решении будет уменьшаться. К этому нужно стремиться. Существование неустранимой неопределенности связано со случайным характером многих явлений. Например, в торговле, случайный характер изменения спроса делает невозможным его точное прогнозирование, a, следовательно, и формирование идеально точного заказа на поставку товара. Принятие решения в этом случае связано с риском. Приемка партии товара на основании выборочного контроля также связана с риском принятия решения в условиях неопределенности. Неопределенность может быть снята путем полного контроля всей партии, однако это может оказаться слишком дорогостоящим мероприятием. В сельском хозяйстве, например, с целью получения урожая человек предпринимает ряд действии (пашет землю, вносит удобрения, борется с сорняками и т. п.). Окончательный результат (урожай) зависит от действий не только человека, но и природы (дождь, засуха, вечер и т. п.). Из приведенных примеров видно, что полностью исключить неопределенность в управлении экономической системой нельзя, хотя, повторим, к этому нужно стремиться. В каждом конкретном случае следует принимать во внимание степень риска при принятии управленческих решений, по возможности максимально учитывать имеющуюся информацию с целью уменьшения неблагоприятных последствий, которые могут возникнуть из-за ошибочных решений.

Две стороны, участвующие в игре, будем называть игрок I и игрок II. Каждый из игроков располагает конечным набором действий (чистых стратегий), которые он может применять в процессе игры. Игра имеет повторяющийся, циклический характер. о каждом цикле игроки выбирают одну из своих стратегии, что однозначно определяет платеж . Интересы игроков противоположны. Игрок I старается вести игру так, чтобы платежи были как можно большими. Для игрока II желательны как можно меньшие значения платежей (с учетом знака). Причем в каждом цикле выигрыш одного из игроков в точности совпадает с проигрышем другого. Игры такого типа называются играми с нулевой суммой.

Решить игру - значит определить оптимальное поведение игроков. Решение игр является предметом теории игр. Оптимальное поведение игрока инвариантно относительно изменения всех элементов платежной матрицы на некоторую величину.

В общем случае определение оптимального поведения игроков связано с решением двойственной пары задач линейного программирования. В отдельных случаях могут быть использованы более простые методы. Часто платежную матрицу удается упростить путем удаления из нее строк и столбцов, соответствующих доминируемым стратегиям игроков, доминируемой называется стратегия, все платежи которой не лучше соответствующих платежей некоторой другой стратегии и хотя бы один из платежей хуже соответствующего платежа этой другой стратегии, называемой доминирующей.

В обычной стратегической игре принимают участие «разумные и антагонистические» противники (противоборствующие стороны). В таких играх каждая из сторон предпринимает именно те действия, которые наиболее выгодны ей и менее выгодны противнику. Однако очень часто неопределенность, сопровождающая некоторую операцию, не связана с сознательным противодействием противника, а зависит от некой, не известной игроку I объективной действительности (природы). Такого рода ситуации принято называть играми с природой. Игрок II - природа - в теории статистических игр не является разумным игроком, так как рассматривается как некая незаинтересованная инстанция, которая не выбирает для себя оптимальных стратегий. Возможные состояния природы (ее стратегии) реализуются случайным образом. В исследовании операций оперирующую сторону (игрока I) часто называют статистиком, а сами операции - играми статистика с природой или статистическими играми.

Рассмотрим игровую постановку задачи принятия решения в условиях неопределенности. Пусть оперирующей стороне необходимо выполнить операцию в недостаточно известной обстановке относительно состояний которой можно сделать предположений. Эти предположения будем рассматривать как стратегии природы. Оперирующая сторона в своем распоряжении имеет возможных стратегий - . Выигрыши игрока I при каждой паре стратегий и - предполагаются известными и заданы платежной матрицей .

Задача заключается в определении такой стратегии (чистой или смешанной), которая лри ее применении обеспечила бы оперирующей стороне наибольший выигрыш.

Выше уже говорилось, что хозяйственная деятельность человека может рассматриваться как игра с природой. Основной особенностью природы как игрока является ее не заинтересованность в выигрыше.

Анализ матрицы выигрышей игры с природой начинается с выявления и отбрасывания дублирующих и заведомо невыгодных стратегий лица, играющего с природой. Что касается стратегий природы, то ни одну из них отбросить нельзя, так как каждое из состояний природы может наступить случайным образом, независимо от действий игрока I. Ввиду того что природа не противодействует игроку I, может показаться, что игра с природой проще стратегической игры. На самом деле это не так. Противоположность интересов игроков в стратегической игре в некотором смысле как бы снимает неопределенность, чего нельзя сказать о статистической игре. Оперирующей стороне в игре с природой легче в том отношении, что она скорее.всего выиграет больше, чем в игре против сознательного противника. Однако ей труднее принять обоснованное решение, так как в игре с природой неопределенность ситуации сказывается в гораздо более сильной степени.

После упрощения платежной матрицы игры с природой целесообразно не только оценить выигрыш при той или иной игровой ситуации, но и определить разность между максимально возможным выигрышем при данном состоянии природы и выигрышем, который будет получен при применении стратегии в тех же условиях. Эта разность в теории игр называется риском.

Природа меняет состояние стихийно, совершенно не заботясь о результате игры. В антагонистической игре мы предполагали, что игроки пользуются оптимальными (в определенном выше смысле) смешанными стратегиями. Можно предположить, что природа применяет наверняка не оптимальную стратегию. Тогда какую? Если бы существовал ответ на этот вопрос, то принятие решения лицом, принимающим решения (ЛПР) сводилось бы к детерминированной задаче.

Если вероятности состояний природы известны, то пользуются критерием Байеса, в соответствии с которым оптимальной считается чистая стратегия , при которой максимизируется средний выигрыш:

Критерий Байеса предполагает, что нам хотя и неизвестны условиях выполнения операций (состояния природы) , но известны их вероятности .

С помощью такого приема задача о выборе решения в условиях неопределенности превращается в задачу о выборе решения в условиях определенности, только принятое решение является оптимальным не в каждом отдельном случае, а в среднем.

Если игроку представляются в равной мере правдоподобными все состояния природы, то иногда полагают и, учитывая, «принцип недостаточного основания» Лапласа, оптимальной считают чистую стратегию , обеспечивающую:

Если же смешанная стратегия природы неизвестна, то в зависимости от гипотезы о поведении природы можно предложить ряд подходов для обоснования выбора решения ЛПР. Свою оценку характера поведения природы будем характеризовать числом , которое можно связывать со степенью активного «противодействия» природы как игрока Значение соответствует наиболее пессимистичному отношению ЛПР в смысле «содействия» природы в достижении им наилучших хозяйственных результатов. Значение соответствует наибольшему оптимизму ЛПР. Как известно, в хозяйственной деятельности указанные крайности опасны. Скорее всего, целесообразно исходить из некоторого промежуточного значения . В этом случае используется критерий Гурвица, согласно которому наилучшим решением ЛПР является чистая стратегия , соответствующая условию:

Критерий Гурвица (критерий «оптимизма-пессимизма») позволяет руководствоваться при выборе рискового решения в условиях неопределенности некоторым средним результатом эффективности, находящимся в поле между значениями по критериям «максимакса» и «максимина» (поле между этими значениями связано посредством выпуклой линейной функции).

В случае крайнего пессимизма ЛПР указанный критерий называется критерием Вальда. Согласно этому критерию, наилучшей считается максиминная стратегия. Это критерий крайнего пессимизма. По этому критерию ЛПР выбирает ту стратегию, которая гарантирует в наихудших условиях максимальный выигрыш:

Такой выбор соответствует наиболее робкому поведению ЛПР, когда он предполагает наиболее, неблагоприятное поведение природы, боится больших потерь. Можно предположить, что он не получит больших выигрышей. Согласно критерию Сэвиджа, следует выбирать чистую стратегию соответствующую условию:

где риск .

Критерий Сэвиджа (критерий потерь от «минимакса») предполагает, что из всех возможных вариантов «матрицы решений» выбирается та альтернатива, которая минимизирует размеры максимальных потерь по каждому из возможных решений. При использовании этого критерия «матрица решения» преобразуется в «матрицу риска», в которой вместо значений эффективности проставляются размеры потерь при различных вариантах развития событий.

Недостатком критериев Вальда, Сэвиджа и Гурвица является субъективная оценка поведения природы. Хотя указанные критерии и дают некоторую логическую схему принятия решений, резонно все же задать вопрос: «А почему сразу не выбрать субъективное решение, вместо того чтобы иметь дело с разными критериями?» Несомненно, определение решения по различным критериям помогает ЛПР оценить принимаемое решение с различных позиций и избежать грубых ошибок в хозяйственной деятельности.

Пример решения задачи

Условие задачи

После нескольких лет эксплуатации оборудование может оказаться в одном из трех состояний:

  1. требуется профилактический ремонт;
  2. требуется замена отдельных деталей и узлов;
  3. требуется капитальный ремонт.

В зависимости от ситуации руководство предприятия может принять следующие решения:

Требуется найти оптимальное решение данной проблемы по критерию минимизации затрат с учетом следующих предположений:

a 4 6 9 b 5 3 7 c 20 15 6 q 0.4 0.45 0.15

Решение задачи

Если возникли сложности с решением задач, то сайт сайт оказывает онлайн помощь студентам по методам оптимальных решений с контрольными или экзаменами.

Игра парная, статистическая. В игре участвуют 2 игрока: руководство предприятия и природа.

Под природой в данном случае понимаем совокупность внешних факторов, которые определяют состояние оборудования.

Стратегия руководства:

Отремонтировать оборудование своими силами

Вызвать бригаду специалистов

Заменить оборудование новым

Стратегия природы - 3 возможных состояния оборудования.

Требуется профилактический ремонт;

Следует заменить отдельные детали и узлы;

Требуется капитальный ремонт.

Расчет платежной матрицы и матрицы рисков

Поскольку элементы матрицы - затраты, то будем считать их выигрышными но со знаком минус. Платежная матрица:

-4 -6 -9 -9 -5 -3 -7 -7 -20 -15 -6 -20 0.4 0.45 0.15

Составляем матрицу рисков:

-4-(-20)=16 -6-(-15)=9 -9-(-9)=0 16 -5-(-20)=15 -3-(-15)=12 -7-(-9)=2 15 -20-(-20)=0 -15-(-15)=0 -6-(-9)=3 3

Критерий Байеса

Определяем средние выигрыши:

По критерию Байеса оптимальной является стратегия - вызвать бригаду специалистов

Критерий Лапласа

Определим средние выигрыши:

По критерию Лапласа оптимальной является стратегия - вызвать бригаду специалистов

Критерий Вальда

По критерию Вальда оптимальной является стратегия - вызвать бригаду специалистов

Критерий Сэвиджа

По критерию Сэвиджа оптимальной является стратегия - заменить оборудование новым

Критерий Гурвица

По критерию Гурвица оптимальной является стратегия - вызвать бригаду специалистов

Ответ

По всем критериям, за исключением критерия Сэвиджа, оптимальной является стратегия «Вызвать бригаду специалистов». По критерию Сэвиджа, который минимизирует риски, оптимальной является стратегия «Заменить оборудование новым».


Содержит изложенные в краткой и доступной форме теоретические сведения о матричной игре без седловой точки и способе сведения такой задачи к задаче линейного программирования, для отыскания ее решения в смешанных стратегиях. Приведен пример решения задачи.

Многоканальная СМО с неограниченной очередью
Приведены необходимые теоретические сведения и образец решения задачи по теме "Многоканальная система массового обслуживания с неограниченной очередью", подробно рассмотрены показатели многоканальной системы массового обслуживания (СМО) с ожиданием обслуживания - среднее число каналов, занятых обслуживанием заявки, длина очереди, вероятность образования очереди, вероятность свободного состояния системы, среднее время ожидания в очереди.

Критический путь, критическое время и другие параметры сетевого графика работ
На примере решения задачи рассмотрены вопросы построения сетевого графика работ, нахождение критического пути и критического времени. Также показано вычисление параметров и резервов событий и работ - ранних и поздних сроков, общих (полных) и частных резервов.

Если при принятии решения ОПР известны вероятности Рj состояний Пj, то будем считать, что рассматривается ситуация в условиях частичной неопределенности.

Игрок принимает i-то решение (использовать стратегию Аi) в условиях частичной неопределенности. Он ожидает получить доход aij при реализации состояния Пj, который является случайной величиной Qi с рядом распределения, представленных в табл. 3.9.

Таблица 3.9. Ряд распределения случайной величины Qi

В этом случае для принятия решения можно использовать один из следующих критериев.

Критерий Байеса

Это критерий максимизации среднего ожидаемого дохода. Критерий Байеса называется также критерию максимума среднего выигрыша.

Как известно, математическое ожидание М (Qi) случайной величины Qi представляет собой средний ожидаемый доход, который сказывается также Qi можно найти по формуле (3.21):

Для каждой стратегии Аi (i-го варианта решения) следует рассчитать средний ожидаемый доход (математическое ожидание) по формуле (3.21), и в соответствии с критерием Байеса следует выбирать вариант (стратегию Аi), для которого достигается наибольшее значение:

Критерий Байеса используют в ситуации, в которой принимается решение, задовальняе следующим условиям:

вероятность появления состояния Пj известна и не зависит от времени; принято решение теоретически допускает бесконечную большое количество реализаций;

допускается некоторый риск при малых числах реализаций.

варианте решения достигается наибольший средний доход и какова величина этого дохода.

Решение. Запишем матрицу выигрышей с дополнительным строкой с вероятностями состояний Пj в виде таблицы 3.10.

Таблица 3.10. Матрица выигрышей игры

Найдем для каждой стратегии Аi средний ожидаемый доход по формуле (3.21):

При применении стратегии Аи ОПР может получить доход, который отличается от максимального, что и принимается за величину риска. Риск случайной величиной Ri с рядом распределения, который приведен в табл. 3.11.

Таблица 3.11. Ряд распределения случайной величины Ri

Для каждой стратегии Аi (i-го варианта решения) следует рассчитать средний ожидаемый риск (математическое ожидание) по формуле (3.23), и в соответствии с критерием Байеса следует выбирать вариант, для которого достигается наименьшее значение:

В этом случае критерий Байеса выступает как критерий минимизации среднего ожидаемого риска. Критерий Байеса можно назвать как критерий минимума среднего проигрыша.

Пример 3.9. Для выходных данных примера 3.8 на основе матрицы рисков по критерию Байеса выяснить, при каком варианте решения достигается наименьший средний риск и какова величина этого риска.

Разгрузка Обязательства. Запишем матрицу рисков игры с дополнительным строкой с вероятностями состояний Пи в виде таблицы 3.12.

Таблица 3.12. Матрица рисков игры

Найдем для каждой стратегии Аi средний ожидаемый риск по формуле (3.23):

Критерий Бернулли-Лапласа

Критерий Бернулли-Лапласа используют в случае, когда можно предположить, что любой из вариантов среды не более вероятен, чем другой. Здесь предполагается, что все состояния среды (все варианты реальной ситуации) равновероятны.

Для каждой стратегии Аи (и го варианта решения) следует рассчитать средний ожидаемый доход (математическое ожидание) по формуле (3.25), и в соответствии с критерием Бернулли-Лапласа следует выбирать вариант (стратегию Аi), для которого достигается наибольшее значение:

Пример 3.10. Пусть для игры, которую задано матрицей выигрышей в примере 3.2, ОПР считает ровно вероятными все состояние природы

выяснить при каком варианте решения достигается наибольший средний доход и какова величина этого дохода.

Решение. Запишем матрицу выигрышей с дополнительным строкой с вероятностями состояний Пj в виде таблицы 3.13.

Таблица 3.13

Найдем для каждой стратегии Аi средний ожидаемый доход по формуле (3.25):

Рассмотрим риск как случайную величину Ri с рядом распределения, который приведен в табл. 3.14.

Таблица 3.14. Ряд распределения случайной величины Ri

Математическое ожидание М (Ri) случайной величины Ri представляет собой средний ожидаемый риск, что вычисляется по формуле (3.27)

Для каждой стратегии Аi (i-го варианта решения) следует рассчитать средний ожидаемый риск (математическое ожидание) по формуле (3.27), и в соответствии с критерием Бернулли-Лапласа следует выбирать стратегию (вариант), для которой достигается наименьшее значение:

Пример 3.11. Для выходных данных примера 3.10 на основе матрицы рисков по критерию Бернулли-Лапласа выяснить, при каком варианте решения достигается наименьший средний риск и какова величина этого риска.

Решение. Запишем матрицу рисков игры с дополнительным строкой с вероятностями состояний Пj в виде таблицы 3.15.

Таблица 3.15. Матрица рисков игры

Найдем для каждой стратегии Аi средний ожидаемый риск по формуле (3.27):

Следует отметить, что критерий Бернулли-Лапласа непосредственно не относится к случаю частичной неопределенности, и его применяют в условиях полной неопределенности.

Выигрыш-критерий Байеса является основным критерием оптимальности стратегий, который используется при принятии решений в условиях риска (см. §2.1).

Рассмотрим игру с природой, задаваемой платежной матрицей А (см. (2.1.2)). Пусть q = - вектор вероятностей состояний природы, удовлетворяющих условиям (2.1.1), которые удобно расположить в добавленной строке матрицы (2.1.2):


Референд Томас Байес

(1702 - 17.04.1761)

Выигрыш-критерием Байеса оптимальности чистых стратегий с вектором ч вероятностей состояний природы (В 1 ’ (q) -критерием 2 ) называется критерий, по которому:

- показателем (В’’ (q) -показателем) эффективности чистой стратегии

A-(i = 1,2.....т) называется величина

- ценой (В 1 ’(q)-ценой) игры в чистых стратегиях (множества S c ), называется наибольший из показателей эффективности Bj’{q), /" = 1,2..., т, чистых стратегий:

- оптимальной (В 1 ’ (q) -оптимальной) во множестве S c чистых стратегий называется стратегия A k е S 1 с максимальным показателем эффективности

Оптимальную стратегию также называют байесовской стратегией. Так как показатель эффективности Bj’(q) стратегии А к есть взвешенная средняя выигрышей при этой стратегии, то оптимальная стратегия является по этому критерию оптимальной не в каждом отдельном случае, а во взвешенно среднем.

Равенство (2.5.2) можно записать в векторной форме:

где « г » - значок транспонирования.

Как видно из (2.5.3) и (2.5.4) во множестве чистых стратегий показатель эффективности оптимальной стратегии совпадает с ценой игры.

Интерпретируя чистую стратегию А- как дискретную случайную величину со значениями a n ,a i2 ,...,a irl , которые она принимает с вероятностями соответственно q u q 2 ,...,q n , получаем, что B"‘(q) - показатель эффективности стратегии А- сеть ее математическое ожидание. Именно поэтому выигрыш-критерий Байеса называют также «критерием математического ожидания».

Из (2.5.2) и (2.5.3) следуют оценки: где а™" = min а, я"“ = шах а п, а а " ттт = max min а, и max max л, -соот-

ISjSn 1 1 Klfimisy&i 1 j 1

встственно максимин и максияшкс игры в чистых стратегиях. Подчеркнем, что левые и правые части неравенств (2.5.5) и (2.5.6) нс зависят от вектора q.

Чистая стратегия, наименьший выигрыш при которой совпадает с максими- ном, называется максиминной стратегией. Если игрок А придерживается макси- минной стратегии А к, то при любом состоянии природы Я имеет место неравенство а к1 >а"” т =а" юхтт, у = 1,2,..., и, означающее, что максимин экономически

представляет собой гарантированный наименьший выигрыш игрока А при любых вероятностях состояний природы, если только игрок А придерживается максиминной стратегии.

Множество чистых стратегий, оптимальных во множестве S c чистых стратегий по B p (q) -критерию, обозначим через (? с) 0(а "’»_ общее решение игры с природой в чистых стратегиях можно интерпретировать как двухэлементное множество {(S c) 0 , ?"(()}.

Под частным решением игры с природой в чистых стратегиях можно понимать двухэлементное множество, одним из элементов которого является непустая неполная совокупность чистых стратегий, оптимальных во множестве чистых стратегий, а другим - цена игры в чистых стратегиях.

Перейдем в область смешанных стратегий 5.

По В 1 ’(q) -критерию оптимальности смешанных стратегий:

- показателем (В 1 ’ (q) -показателем) эффективности смешанной стратегии Р = (р 1 ,р 2 ,...,р т) назовем взвешенно среднее значение выигрышей (2.2.3) с весами q l ,q 2 ,...,q ll:

- ценой (B p (q) -ценой) игры в смешанных стратегиях назовем наибольший из показателей эффективности (2.5.7):

- оптимальной (В’’(q) -оптимальной) во множестве S смешанных стратегий назовем стратегию Р° =(р", с наибольшим показателем эффективности:

Легко видеть, что если, в частности, смешанная стратегия Р является чистой, например, А к, к е {1,2,...,от}, то её показатель эффективности B p (P;q) как смешанной стратегии, выражаемый формулой (2.5.7), превращается в ее показатель эффективности B p (A t ;q) = Bj’(q) как чистой стратегии, вычисляемый по формуле (2.5.2).

Нетрудно убедиться в том, что показатель эффективности B p (Pq) можно представить в матричной форме:

где А - матрица игры.

В связи с бесконечностью множества 5 смешанных стратегий встает вопрос о существовании оптимальной стратегии в этом множестве. Положительный ответ дает следующая теорема.

Теорема 2.5.1. В любой игре с природой с любым вектором вероятностей ее состояний существует стратегия, оптимальная во множестве смешанных стратегий по выигрыш-критерию Байеса.

Доказательство. Из (2.2.3) и (2.5.7) заключаем, что показатель эффективности В 1 ’ (P,q) как функция смешанной стратегии Р линейна и, следовательно, непрерывна на множестве 5, которое, будучи симплексом, ограничено и замкнуто в от-мерном евклидовом пространстве R"". Следовательно, по теореме Вейерштрасса (, с. 298) функция B p (P;q) достигает на симплексе 5 своей верхней грани, т.е. найдется стратегия Р° = (/>,",р") е 5, удовлетворяющая равенству (2.5.9) ?

Множество S""(су)-оптимальных стратегий во множестве S смешанных стратегий обозначим через s 0(B (ч)) .

В следующей теореме устанавливается связь между показателями эффективности чистых и смешанных стратегий.

Теорема 2.5.2. Показатель эффективности B"Pq) смешанной стратегии Р = (Pi’PiP m) 1,0 В р (q)-критерию представляет собой взвешенное среднее показателей эффективности Bj’(q) чистых стратегий Д, / = 1,2,...,от, по тому же критерию с весами р (, / = 1,2,...,от:

Доказательство. Применяя последовательно равенства (2.5.7), (2.2.3) и (2.5.2), получим:

Пусть Р = (/; | ,р 2 ,...,р т) - произвольная смешанная стратегия. Умножая все части двойного неравенства (2.5.5) на р , и суммируя полученные неравенства по номеру /" от 1 до от, получим на основании (2.5.11) диапазон изменения показателя эффективности B p (Pq) при любых векторах вероятностей состояний природы:

Следующая теорема устанавливает связь между ценами игры в чистых и смешанных стратегиях.

Теорема 2.5.3. По выигрыш-критерию Байеса цены игры в чистых и в смешанных стратегиях равны.

Доказательство. Пусть P = (p l ,p 2 ,...,p m) е S. Используя (2.5.11), (2.5.3) и нормировочное условие вероятностей /?, i = 1,2,...,от, получим:

Так как это неравенство справедливо для любой смешанной стратегии Р, то оно справедливо, в том числе и для стратегии Р°, оптимальной во множестве смешанных стратегий 5: В р Р°q Но левая часть последнего неравенства,

по определению (2.5.9) оптимальной смешанной стратегии, равна цене игры в смешанных стратегиях. Таким образом,

С другой стороны, поскольку с5, то max Bf (q) max В 1 ’ (P:q) или, что то же

Неравенства (2.5.13) и (2.5.14) доказывают требуемое равенство B p c (q) = B p (q) ,

В силу этой теоремы можно нс говорить поотдельности о ценах в чистых и в смешанных стратегиях, а их общее значение назвать просто ценой игры по выигрыш-критерию Байеса и обозначить через B p }