Запрос «Трансатлантический кабель» перенаправляется сюда; о телефонном кабеле см. Трансатлантический телефонный кабель. Карта прокладки телеграфного кабеля через Атлантику … Википедия

    Современный кабель в разрезе. 1. Полиэтилен. 2. «Майларовая» лента. 3. Скрученная стальная проволока. 4. Алюминиевая водоизолирующая перегородка. 5. Поликарбонат. 6. Медная или алюминиевая труба. 7. Гидрофобный заполнитель. 8 … Википедия

    Аббревиатура TAT, в зависимости от контекста, может означать: Трансатлантический телефонный кабель (впервые проложен в 1956 г.) TAT 8 трансатлантический телефонный кабель 8 го поколения TAT 14 трансатлантическая линией 14 го поколения… … Википедия

    Clarenville Город Пожалуйста, загрузите изображение … Википедия

    - (англ. Internet, МФА: [ˈɪn.tə.net]) всемирная система объединённых компьютерных сетей, построенная на базе IP и маршрутизации IP пакетов. Интернет образует глобальное информационное пространство, служит физической основой для… … Википедия

    Примерное графическое изображение связей между сетями Интернета. Изображены только связи между серверами. Содержание 1 Написание 2 История 3 … Википедия

    TAT 8 трансатлантический телефонный кабель 8 го поколения, содержащий 40 000 телефонных цепей (одновременных звонков) между США, Францией и Великобританией. Линия была спроектирована в 1988 году консорциумом компаний во главе с AT T, France … Википедия

    проект продвижения пропаганды (ппп) - Новости это волны и рябь, порожденные глубинными подводными течениями в глубоком море бессознательных договоров, возвращающихся мифов и условных рефлексов. Как и полагается мифам, в историях содержится доля правды. Социальные мифы необходимы,… … Словарь технической реальности: Культурная интеллигенция социальный контроль

    Телеграф - (Telegraph) Определение телеграфа, виды телеграфа Определение телеграфа, виды телеграфа, телеграф в наше время Содержание Содержание Определение Примитивные виды связи: огонь, дым и отражённый свет Оптический Первые шаги Гелиограф Телеграф Гука… … Энциклопедия инвестора

Оптоволоконный кабель под названием Marea через Атлантический океан: из американской Вирджинии в испанский Бильбао. Пропускная способность Marea - 160 Тбит/с. Это самый высокопроизводительный трансатлантический кабель на сегодняшний день.

Длина кабеля равняется 6600 километрам, а средняя глубина пролегания составляет 3,35 километра. Marea проложили меньше чем за два года, тогда как стандартный срок для подобных проектов составляет около пяти лет.

Первый провод, который люди проложили через океан, - трансатлантический телеграфный кабель . Первую попытку предприняли в 1857 году, но кабель порвался.

5 августа 1858 года был проложен кабель между островами Валентия и Ньюфаундленд, но уже в сентябре он вышел из строя. Долговременную связь между Европой и Америкой обеспечил лишь кабель, проложенный в 1866 году.

В 2016 году группа компаний, среди которых была Google, закончила прокладывать кабель FASTER из США в Японию. По нему можно передавать до 60 Тбит данных в секунду - на момент запуска он был самым быстрым .

Формально FASTER остается самым быстрым кабелем и сейчас - использовать Marea начнут только в начале 2018 года. Полностью свой потенциал он раскроет в 2025 году. Ожидается, что к этому времени общемировое потребление трафика вырастет в восемь раз.

В условиях такого роста новый кабель нужен Microsoft и Facebook, чтобы обеспечивать стабильную работу своих сервисов. Президент Microsoft Брэд Смит (Brad Smith) уже высказался о важности Marea:

«Marea проложили вовремя. Через трансатлантические кабели проходит на 55% больше данных, чем через кабели Тихого океана. И на 40% больше, чем по кабелям, соединяющим США и Латинскую Америку.

Безусловно, поток данных через Атлантический океан будет расти, а Marea обеспечит необходимое качество соединения для США, Испании и других стран».


Еще одна причина , по которой компании инициировали проект, - природные катаклизмы. В 2006 году на острове Тайвань произошло семибалльное землетрясение, из-за чего были повреждены восемь кабелей, соединяющих остров с Китаем. Чтобы их восстановить, понадобилось 11 кораблей и 49 дней. А ураган Сэнди в 2012 году оставил без связи Восточное побережье США. С этого момента в Microsoft решили повысить отказоустойчивость трансатлантических соединений. Получается, что как раз Сэнди объединил Facebook и Microsoft.
«Мы постоянно встречались с представителями Facebook на различных мероприятиях и поняли, что пытаемся решить одну и ту же проблему. Поэтому мы объединились и улучшили трансатлантическую сеть, спроектировав новый кабель», - рассказал Фрэнк Рей (Frank Ray), руководитель инфраструктурного направления облачных решений.

Marea состоит из восьми пар оптоволоконных кабелей, защищенных медью, пластиком и водонепроницаемым покрытием. На большей части пути кабель лежит на дне океана, а рядом с берегами закопан под землю, чтобы его не порвали корабли. Так

Техника молодёжи №1 1937 год



В первой половине XIX столетия появился электрический телеграф. Появление его было вызвано развитием машинной индустрии и гигантским расширением мирового рынка. Капитализм нуждался в надежной и быстрой связи. Телеграф быстро завоевал себе всеобщее признание и стал необходимейшим средством деловых сношений и международной спекуляции..


Естественно, вскоре встал вопрос о необходимости налаживания телеграфной связи между Старым и Новым Светом - между Европой и Америкой. На телеграфных линиях уже работали автоматические аппараты Уитстона и буквопечатающие - Юза, а сообщение из Америки в Европу еще осуществлялось на пароходах в 20 дней. При столь увеличившихся международных связях такая медлительность была совершенно нетерпима.


Вопрос о том, как наладить электрическую связь через огромные просторы Атлантического океана, разделяющего Европу и Америку, волновал умы ученых, техников и изобретателей уже с начала сороковых годов. Еще в те времена американский изобретатель пишущего телеграфа


Самуэль Морзе высказал уверенность в том, что возможно проложить телеграфный «провод по дну Атлантического океана. Понадобилось еще, однако, более двадцати лет упорных трудов и титанических усилий, связанных с преодолением необычайных трудностей, прежде чем люди смогли соединить телеграфной связью оба материка.


Первая мысль о подводном телеграфировании возникла у английского физика Уитстона, который в 1840 году предложил свой проект соединения Англии и Франции телеграфной связью. Его идея была, однако, отвергнута как неосуществимая. К тому же в то время не умели еще так надежно изолировать провода, чтобы они могли проводить электрический ток, находясь на дне морей и океанов.


Положение изменилось после того, как в Европу доставили вновь открытое в Индии вещество-гуттаперчу, и германский изобретатель Вернер Сименс предложил покрывать ею провода для изоляции. Гуттаперча как нельзя более подходит для изоляции именно подводных проводов, ибо, окисляясь и ссыхаясь в воздухе, она нисколько не изменяется в воде и может сохраняться там неопределенно долгое время. Так был решен важнейший вопрос об изоляции подводных проводов.


В 1847 тоду английский инженер Джон Бретт получил от французского (правительства концессию на постройку подводной телеграфной линии между Францией и Англией, но он не сумел закончить работы в срок и концессию потерял. Она была возобновлена в 1849 году, причем Бретт на этот раз обязался открыть сообщение к 1 сентября 1850 года. Потребность в быстрой электрической связи между обеими странами была так велика и установление этой связи сулило такие большие барыши, что Бретту без особого труда удалось учредить акционерное общество и собрать необходимый капитал для своего предприятия. Изготовленный в Англии кабель состоял из двух медных проволок, каждая шириной в 2 миллиметра. Проволоки были обтянуты для изоляции толстой гуттаперчевой оболочкой.


23 августа 1850 года в море вышло для прокладки кабеля специальное судно «Голиаф» с буксирным пароходом.


Путь их лежал от Дувра к берегам Франции. Впереди шло военное судно «Вигдеон», указывавшее «Голиафу» и буксиру заранее определенный путь, отмеченный буями с развевавшимися на них флагами.


Все шло хорошо. Установленный на борту парохода цилиндр, на который был намотан кабель, равномерно разматывался, и провод погружался в воду. Через каждые 15 минут к проводу подвешивали груз в 10 килограммов 4 свинца, чтобы он погружался на самое дно. На четвертые сутки «Голиаф> достиг французского берега, кабель был выведен на сушу я соединен с телеграфным аппаратом. В Дувр по подводному кабелю была послана приветственная телеграмма из 100 слов. Огромная толпа, собравшаяся в Дувре у конторы телеграфной компании и с нетерпением ожидавшая вестей из Франции, с большим воодушевлением приветствовала рождение подводной телеграфии.


Увы, эти восторги оказались преждевременными! Первая телеграмма, переданная по подводному кабелю с французского берега в Дувр, оказалась и последней. Кабель внезапно отказался работать. Только через некоторое время узнали причину столь внезапной порчи. Оказалось, что какой-то французский рыбак, закидывая невод, случайно зацепил кабель и вырвал из него кусок. Но, как говорится, нет худа без добра. Этот несчастный случай, как это ни странно, содействовал дальнейшему улучшению и усовершенствованию техники прокладки подводных кабелей. Электротехники, обследовавшие обнаруженный у рыбака кусок кабеля, который уже побывал на дне океана, нашли, что гуттаперчевая изоляция слишком тонка, что кабель не защищен от механических повреждений и что, вообще, в его структуру необходимо внести существенные изменения.


Но все же, несмотря на первую неудачу, даже самые ярые скептики поверили в подводную телеграфию. Джон Бретт организовал в 1851 году второе акционерное общество для продолжения дела. На этот раз был уже учтен опыт первой прокладки, и новый кабель был устроен по совершенно другому образцу. Он состоял из четырех медных проволок, из которых каждая была окружена гуттаперчевой оболочкой толщиной в шесть миллиметров. Все медные проволоки вместе с пятью круглыми просмоленными и пропитанными салом пеньковыми шнурами были скручены в один кабель, обвитый уже общим пеньковым просмоленным шнуром. Сверху был наложен еще один пеньковый слой, и все это для прочности и защиты от механических повреждений было обвито десятью железными оцинкованными проволоками диаметром в семь миллиметров. Насколько этот кабель отличался от первого, видно хотя бы из того, что он весил 166 тонн, в то время как вес первого кабеля не превышало первого, видно хотя бы из того, что он весил 166 тони, в то время как вес первого кабеля не превышал 14 тонн.


На этот раз предприятие увенчалось полным успехом. Специальное судно, укладывавшее кабель, прошло без особых затруднений путь из Дувра до Кале, где конец кабеля был соединен с телеграфным аппаратом, установленным в палатке прямо на прибрежном утесе.


Через год, 1 ноября 1852 года было установлено прямое телеграфное сообщение между Лондоном и Парижем. Вскоре Англия -была соединена подводным кабелем с Ирландией, Германией, Голландией и Бельгией. Затем; телеграф связал Швецию с Норвегией, Италию - с Сардинией и Корсикой. В 1854-1855 гг. был проложен подводный кабель через Средиземное и Черное моря. По этому кабелю командование союзных войск, осаждающих Севастополь, сносилось со своими правительствами.


После успеха этих первых подводных линий вопрос о прокладке кабеля через Атлантический океан для соединения Америки с Европой телеграфной связью был поставлен уже практически. За это грандиозное дело взялся энергичный американский предприниматель Сайрос Филд, образовавший в 1856 году «Трансатлантическую компанию». Прежде чем приступить к выполнению грандиозного предприятия, Филд связался с виднейшими экспертами по телеграфии, которые должны были разрешить ряд важнейших и неясных еще тогда технических вопросов. Невыясненным был, в частности, вопрос о том, может ли электрический ток пробежать огромное расстояние в 4-5 тысяч километров, отделяющее Европу от Америки. Ветеран телеграфного дела Самуэль Морзе ответил на этот вопрос утвердительно. Для большей уверенности Филд обратился к английскому правительству с просьбой соединить в одну линию все имевшиеся в его распоряжении провода и пропустить через них ток. Английское правительство, кровно заинтересованное в успехе предприятия Филда, удовлетворило его просьбу, и в ночь на 9 декабря 1856 года все воздушные, подземные и подводные провода Англии и Ирландии были соединены в одну непрерывную цепь длиной в 8 тысяч километров. То« легко "прошел через громадную цепь, и с этой стороны больше сомнений не было.


Одновременно Филд выяснял характер и направление будущей «трассы» трансатлантического кабеля. В этом отношении большую услугу оказал ему лейтенант Мори, руководивший по заданию американского правительства исследованием глубинных течений Атлантического океана и температурного режима его нижних слоев. Мори сообщил, что среди океана находится обширная подводная возвышенность, тянущаяся между Ирландией и Ньюфаундлендом. Конечно, по этой возвышенности, удобнее всего уложить кабель. Мори указал также, что по его многочисленным наблюдениям наиболее благоприятным временем года, когда океанские равнины бывают спокойными, является начало августа.


Собрав все необходимые предварительные сведения, Филд приступил в феврале 1857 года к изготовлению кабеля. Кабель «состоял из семипроволочного медного каната с гуттаперчевой оболочкой. Жилы его были обложены просмоленной пенькой, а снаружи кабель был еще обвит 18 шнурами из 7 железных проволок каждый. В таком виде кабель длиной в 4 тысячи километров весил три тысячи тонн. Это значит, что для его перевозки по железной дороге понадобился бы состав из 183 товарных вагонов.


6 августа 1857 года из Валенсии (в Ирландии) двинулась по направлению к Ньюфаундленду флотилия судов, нагруженная кабелем. Сначала все шло хорошо. Суда. медленно продвигались вперед, прокладывая кабель со скоростью трех с половиной километров в час, но вскоре в (каких-нибудь десяти километрах от берега по недосмотру матроса кабель оборвался. Так как было еще не глубоко, то к концу следующего дня удалось извлечь оборвавшийся конец из воды, соединить его с остальным кабелем и двинуться дальше.


11 августа во время сильного волнения произошел второй разрыв «кабеля, когда уже было проложено около 540 километров. На этот раз ввиду больших глубин извлечь оборвавшийся конец со дна океана не удалось. Оставшегося кабеля уже не хватило для прокладки между обоими материками. Суда вернулись обратно в Англию, и дело пришлось начать сызнова.


Перебрали весь старый кабель, вырезали из него все плохие места и приготовили новый кусок кабеля длиной в 1 350 километров.


Но истинная причина неисправности выяснилась спустя много лет и заключалась она в недостаточно тщательной спайке (весь кабель состоял примерно из двух тысяч отдельных кусков и имел столько же спаек).


Около этого же времени перестал действовать второй подводный кабель из Суэца в Индиго длиной более 5 тысяч километров.


Все это вынудило английское правительство временно прекратить выдачу дальнейших концессий на устройство подводного телеграфа между Америкой и Европой. Была назначена специальная комиссия для выработки норм изготовления и прокладки кабелей. Комиссия закончила свои работы в апреле 1861 года, и ее заключения послужили основанием для всей дальнейшей подводной телеграфии.


Тем временем все тот же неутомимый Сайрое Филд организовал компанию, чтобы еще раз попытаться проложить кабель через неподатливый океан. Изготовленный компанией новый "кабель состоял из семипроволочного шнура, изолированного четырьмя слоями. Между-проволокой и внутренней гуттаперчевой оболочкой, так же как и между остальными слоями гуттаперчи, прокладывали слой особого состава, тесно связывавший вместе проволоку и оболочку и устранявший появление воздушных пузырьков. Сама проволока была изготовлена из лучшей меди, чем раньше, и была в два раза толще прежней. Снаружи кабель был покрыт слоем «просмоленной пеньки и обмотан десятью стальными проволоками. Для прокладки кабеля было приспособлено специальное судно «Грейт Истерн»- в прошлом прекрасно оборудованный океанский пароход, не окупавший расходов по пассажирскому движению и снятый с рейсов.


3 июля 1865 года «Грейт Истерн» в сопровождении двух английских военных кораблей вышел в море, предварительно соединив конец кабеля со специальной телеграфной станцией, устроенной на прибрежных утесах Валенсии. Эта станция была соединена со всей ирландской и европейской сетью, и, таким образом, в течение всего своего рейса «Грейт Истерн» мог пересылать в Европу телеграфные сообщения о ходе работ. На борту корабля находились первоклассные научные и технические силы, которые тщательно следили за укладкой кабеля. Между прочим, в качестве электротехника на «Грейт Истерн» находился знаменитый английский физик Вильям Томсон (лорд Кельвин), который впоследствии сконструировал специальный приемный аппарат для трансатлантического телеграфа.


Уже на другой день после отплытия с Грейт Истерн электротехники обнаружили, что по кабелю прекратилось прохождение тока. Пароход, проделав чрезвычайно сложный и опасный маневр, во время которого чуть было не произошел разрыв кабеля, сделал полный поворот и стал обратно наматывать уже спущенный на дно кабель. Вскоре, когда кабель стал подниматься из воды, все заметили причину порчи: через кабель был проткнут острый железный прут, задевший гуттаперчевую изоляцию.


Такая же история повторилась через пять дней, когда было пройдено уже 1300 километров. Только впоследствии выяснилось, что никакой злой воли тут не было, а порча кабеля происходила исключительно по техническому недосмотру-наружная стальная проволока в некоторых местах отогнулась, и при быстром вращении металлического цилиндра эти отогнувшиеся концы вдавливались в кабель.


По этой же причине кабель испортился в третий раз. Это случилось 2 августа, когда «Грейт Истерн» прошел уже около двух третей своего пути. Когда стали поднимать обратно кабель с глубины 4 тысяч метров, он от сильного натяжения оборвался и утонул. Капитан «Грейт Истерн» Андерсон, обладавший большим опытом прокладки кабелей с Средиземном море, решил на этот раз не уступать кабеля океану, а извлечь его из 4-километровой глубины на поверхность воды и, спаяв его с оставшимся на корабле концом, продолжать прокладку.


В воду опустили длиннейшие канаты, к которым были привязаны якоря с открытыми лапами. Пароход направили поперек линии прокладки кабеля в надежде, что волочившиеся по дну океана якоря зацепят кабель и поднимут его на поверхность. Несколько раз якоря действительно ловили кабель, поднимали его наверх, но каждый раз канат не выдерживал громадной тяжести, - и кабель вместе с державшими его якорями погружался обратно в океан. Наконец, когда истощились запасы канатов и якорей, а пресной воды и угля оставалось ровно столько, чтобы добраться до Англия. «Грейт Истерн» взял курс на Валенсию.


После того как 2 августа из-за порчи кабеля было прекращено телеграфное сообщение с «Грейт Истери», в Англии не имели никаких сведений об экспедиции. Страна была охвачена тревогой за судьбу отважного экипажа. Это совершенно естественное человеческое чувство сопровождалось, как это водится в капиталистических странах, отвратительной биржевой игрой и спекуляцией. Акции трансатлантического телеграфного общества стремительно падали в цене, их исподволь скупали по дешевке ловкие дельцы, понимавшие, что благодаря накопленному за Долгие годы неудач техническому опыту кабель будет в скором времени проложен.


Еще до возвращения «Грейт «Истерн» в Англию компания решила изготовить новый кабель и с прежней энергией продолжать усилия по организации телеграфного сообщения между Старым и Новым Светом. А возвращение «Грейт Истерн» еще более укрепило позицию сторонников продолжения работ.


Компания изготовила новый кабель, значительно улучшенный по сравнению с прежний. «Грейт Истерн» был оборудован новыми машинами для укладки кабеля, а также специальными приспособлениями, предназначенными для подъема кабеля со дна. Новая экспедиция отправилась в путь 7 июля 1866 года. На этот раз полный успех увенчал отважное предприятие: «Прейт Истерн» достиг американского берега, проложив, наконец, телеграфный кабель через океан. Этот «кабель действовал почти без перерыва в течение семи лет.


Человеческая воля и техника победили стихию. 9 августа пароход «Прейт Истерн» в сопровождении двух других судов - «Албани» и «Медвея»- отправился в океан к тому месту, где был брошен конец предыдущего кабеля. Несмотря на наличие достаточного количества материалов и специальных машин для подъема кабеля, это предприятие оказалось весьма трудным и сложным. Несколько раз удавалось зацеплять якорями кабель и поднимать его вверх, но кабель неизменно разрывался и снова падал в воду.


Только 2 сентября после долгих усилий все три парохода одновременно подцепили кабель и осторожно стали его поднимать. На этот раз громадная тяжесть кабеля была распределена между тремя пароходами, и его удалось благополучно извлечь на поверхность. Тотчас же в Европу, где уже более трех недель не имели никаких сведений о «Грейт Истерн», была передана радостная весть о благоприятном ходе работ. Итак, кабель, покоившийся около года на дне океана, прекрасно работал. Его спаяли с кабелем, имевшимся на «Грейт Истерн», и корабль снова направился ж Ньюфаундленду, которого он благополучно достиг 8 сентября. Таким образом, за каких-нибудь полтора месяца две телеграфных линии были проложены через Атлантический океан между Европой и Америкой.



Третий трансатлантический кабель был проложен англоамериканской телеграфной компанией в 1873 году. Он соединял Пти-Минон возле Бреста во Франции с Ньюфаундлендом. В течение последующих 11 лет та же компания проложила между Валенсией и Ньюфаундлендом еще четыре кабеля. В 1874 году была построена телеграфная линия, соединявшая Европу с Южной Америкой. .Минин эта начинается в Лиссабоне, затем идет через острое Мл деру и острова Зеленого мыса и заканчивается в Пернам-буко в Бразилии. Еще один кабель в этом же направлении был закончен постройкой в 1884 году.


После мировой империалистической войны между Америкой и Европой действовало 20 подводных кабелей. Не смотря на такое большое количество проводов и на установившееся между обоими материками радиосообщение, телеграфный обмен настолько увеличился, что потребовалось уложить еще два усовершенствованных кабеля. Они были обмотаны тонкой лентой из пермаллоя-особого сплава железа с никелем, позволяющего в несколько раз увеличить скорость передачи сигналов по кабелю.


В 1809 году, то есть через три года после прокладки подводного кабеля через Атлантический океан, была завершена постройка еще одного грандиозного телеграфного предприятия - Индо-европейской линии. Эта линия соединила двойным проводом Калькутту с Лондоном. Длина ее- 10 тысяч километров.


Значительно позже, чем через Атлантику, был проложен телеграфный кабель через весь Великий океан. Еще в XIX веке Индия была соединена подводным кабелем с Австралией, но лишь 31 октября 1902 года было завершено соединение Канады с Австралией "кабелем длиной около Я тысяч километров. До этого телеграмма из Канады в Австралию должна была пройти через Атлантический океан до Англии, а отсюда - дальше на восток через Красное море иди восточный берег Африки, подвергаясь дюжине переприемов в различных странах.


Так телеграфная сеть поистине опутывала весь земной шар. В 1898 году длина всех телеграфных линий достигла 318 тысяч километров. А в 1934 году цифра эта увеличилась. 643 тысячи километров телеграфных линий было в этом году во всех странах.


Материалы: Техника молодёжи №1 1937 год

Подводные волоконно-оптические линии связи (ВОЛС) являются магистральными каналам передачи данных между континентами – 99% всего мирового Интернет-трафика между континентами проходит по подводным ВОЛС. Но используются они и для предоставления Интернет-доступа удаленным регионам, куда еще труднее протянуть наземные оптоволоконные линии. Несмотря на высокую стоимость подводной оптики (около $40 тыс. за 1 км сети), это направление очень активно развивается в России. Так, Дальний Восток скоро получит высокоскоростной Интернет благодаря ВОЛС «Сахалин-Магадан-Камчатка».

Подводные ВОЛС используются для передачи данных на значительные расстояния под водой. Таким образом, телефонные и Интернет сети между материками прокладываются по океанскому дну именно при помощи подводных ВОЛС. Такой вид связи в настоящий момент является наиболее эффективным и надежным, поскольку беспроводная связь на такие большие расстояния не может быть проведена. Кроме того, осуществлять передачу данных на достаточно высоких скоростях можно сегодня только по оптоволокну. Поэтому около 99% всего мирового Интернет-трафика между континентами проходит по подводным ВОЛС.

Предшественниками подводных оптоволоконных линий были подводные коаксиальные линии. Первый подводный оптоволоконный кабель связи был проложен еще в 1985 г. на Канарских островах. А первый подводный кабель, соединяющий Европу и Американский континент, был проложен в 1988 г. Это был первый трансатлантический телефонный оптический кабель (TAT-8). С тех пор общая протяженность таких волоконно-оптических линий связи в мире составляет более 1 млн км. В ХХ веке кабели прокладывались по морскому и океанскому дну, сегодня же их закапывают под поверхность, чтобы избежать повреждений от кораблей (в основном, от якорей) и подводных лодок, а также продлить срок эксплуатации. Вот почему на мелководье кабель закапывается как можно глубже. Траншеи для кабелей копаются при помощи мощной струи воды, редко (только на мелководье) – экскаваторами.

Подводные ВОЛС между материками

* Чем толще линии, тем выше пропускная способность.

Прокладка кабелей осуществляется специальными судами – кабелеукладчиками. Для подводных ВОЛС используются толстые оптические кабели, толщина которых составляет 7-10 см. Кроме того, они имеют защитную бронированную оболочку. Пропускная способность и надежность таких линий связи должны быть высокими, поскольку через один кабель может проходить весь Интернет-трафик 50-миллионной страны и больше.

Естественно, стоимость прокладки подводных ВОЛС достаточно высокая. Так, чтобы проложить 1 км оптического кабеля придется выложить $40 тыс. Таким образом, длинный трансатлантический кабель может стоить до $120 млн за 3 тыс. км. Но если считать те объемы трафика, которые проходят через подводные ВОЛС, то получается около $15-20 тыс. за 1 Мбит/с. Существенный недостаток таких сетей в том, что кабели сравнительно быстро изнашиваются, а ремонту они не подлежат – нужно прокладывать новые на место старых. Поэтому расходы на подводные ВОЛС столь значительны.

Российские подводные ВОЛС

Россия осуществила уже целый ряд проектов по подведению подводных волоконно-оптический линий. Так, в 90-х гг. ХХ в. были проведены линии «Дания-Россия №1», «Россия-Япония-Корея», «Италия-Турция-Украина-Россия». Правда, эти линии связи на данный момент уже достаточно изношены, да и скорость передачи данных у них сравнительно низкая – 560 Мбит/с.

В 2007 г. на Сахалине была проложена подводная ВОЛС между материковой частью РФ и о. Сахалин. Общая протяженность линии составляет 214 км. Пропускная способность сети равна 2,5 Гбит/с, а максимальная емкость кабельной системы – 40 каналов по 10G. Данная ВОЛС является частью проекта Хоккайдо-Сахалин – подводной волоконно-оптической линии между Японией и Россией. Этот проект играет большую роль не только для нашей страны, но и для всего мира, ведь данная магистраль позволила обмен трафиком между Европой и Азией, который ранее был возможен только через магистрали на дне Индийского океана. ВОЛС Хоккайдо-Сахалин имеет протяженность в 570 км и пропускную способность в 640 Гбит/с.

В нынешнем 2012 г. у четверки крупнейших операторов РФ появились глобальные планы на развитие отечественных подводных ВОЛС. Так, в мае текущего года операторы «Ростелеком», «ВымпелКом» (бренд «Билайн»), «МегаФон» и «Мобильные ТелеСистемы» подписали соглашение о совместном строительстве подводной волоконно-оптической линии «Сахалин-Магадан-Камчатка». 9-го июня началось исследование морского дна для прокладки кабелей. Ожидается, что уже в сентябре 2012 г. исследовательские работы будут закончены, после чего будет проведен тендер по выбору оборудования и начнется собственно прокладка кабелей.

Таким образом, российские операторы и правительство намерены решить проблему с широкополосным Интернетом в таких отдаленных регионах РФ, как Камчатка и Магаданский край. Жители Дальнего Востока получат не только высокоскоростной дешевый Интернет, но также и дешевые цифровое телевидение и телефонию. Пропускная способность сети должна составить 8 Тбит/с, а общая протяженность кабелей – порядка 2 тыс. км. Провайдеры утверждают, что проект будет реализован в течение 2 лет. Пока неизвестно, насколько в действительности затянется строительство ВОЛС «Сахалин-Магадан-Камчатка», но, по словам экспертов рынка, операторам выгодно закончить данный проект, поэтому уже на протяжении ближайших нескольких лет на Дальнем Востоке все-таки появится скоростной Интернет.

Подводные ВОЛС в мире

Планета Земля уже опоясана оптоволоконными магистралями для передачи данных между континентами, для чего используются как наземные, так и подводные ВОЛС. Больше всего в мире трансатлантических подводных магистралей, соединяющих Северную Америку и Европу.

В частности, недавний глобальный проект, реализованный в 2011 г., позволил успешно передавать данные на скорости 100 Гбит/с на расстояние более 5 тыс. км. Данная трансатлантическая ВОЛС соединила Канаду и Британию. Протяженность подводных линий связи составила 5570 км. Это самая емкостная магистраль в Атлантике. Обеспечить такую высокую пропускную способность позволили современные технологии, используемые в оптоволоконных соединениях. Так, была использована технология когерентного приема.

Еще одна крупнейшая в мире подводная ВОЛС – транстихоокеанская оптоволоконная сеть PC-1. Это самая протяженная магистральная сеть, длина которой составляет 20890 км. Пропускная способность сети на начальном этапе была равна 180 Гбит/с, а позже, после модернизации 2006 г., увеличена до 640 Гбит/с. Данная ВОЛС имеет 4 опорные точки – 2 в США (Харбор Поинт и Грувер Бич) и 2 в Японии (Шима и Ажигаура). Таким образом две оптоволоконные линии соединяют континенты.

Подводные оптоволоконные линии на карте мира

В 2012 г. был реализован еще один проект по соединению США и Японии подводной магистралью. Финансировала строительство сети, получившей название Unity cable, компания Google. Кабели имеют протяженность почти 10 тыс. км. Их прокладывание началось еще в 2008 г. Пропускная способность сети составляет 4,8 Тб/с. Данная Подводная ВОЛС соединила город и порт Лос-Анджелес (США) с полуостровом Босо в префектуре Чиба (Япония).

Еще одна подводная телекоммуникационная система соединяет США и Китай, а также Южную Корею. Это магистраль Trans-Pacific Express. Общая протяженность оптоволоконных линий равна 18 тыс. км, а пропускная способность – порядка 4,8 Тб/с.

Стоит также упомянуть о магистрали Asia-America Gateway, соединяющей США и Азию через Гонконг и Гавайи.

Все материки нашей планеты обвивает глобальная подводная волоконно-оптическая сеть. Важность этих ВОЛС для развития Интернет-технологий и предоставления доступа в Интернет для простых людей сложно переоценить. Вот почему прокладываются все новые и новые подводные сети, их пропускная способность с каждым следующим проектом увеличивается. В одной статье невозможно описать каждую из подводных ВОЛС на Земле, поэтому мы перечислили только некоторые из них.

Развитие рынка подводных ВОЛС и перспективы данного направления

По мере того, как совершенствуются способы передачи данных по оптоволокну, развивается и область подводных оптических линий связи. В первых подводных ВОЛС примерно каждые 40-80 км на кабелях устанавливались специальные регенераторы, которые усиливали и восстанавливали форму сигнала. Без этого данные невозможно было передавать на тысячи километров. За годы существования оптоволокна были найдены способы уменьшить количество вспомогательного оборудования на линиях связи, в том числе и регенераторов. Сегодня благодаря усилителям сигнала и прочему специализированному оборудованию подводные регенераторы практически не используются. Но зато возник новый рынок – усилителей сигналов для подводных ВОЛС, который и сегодня успешно развивается.

Почему рынок подводных волоконно-оптических линий связи является перспективным? Дело в том, что проведение подводных линий связи – это трудоемкий, дорогостоящий и сложный процесс. Требуется специальное оборудование, начиная от судов-кабелеукладчиков и заканчивая каждым элементом линии. Это и кабеля, и муфты, и усилители сигнала, и защитные оболочки для кабеля, и многое другое. Поэтому на сегодняшний день в мире есть лишь несколько компаний, занимающихся производством оборудования и комплектующих для подводных оптоволоконных сетей.


А вот так выглядит подводный кабель в разрезе

Сегодня одними из самых успешных и крупных игроков на рынке подводных оптоволоконных линий являются Huawei Marine Networks, Nexans, Hibernia Atlantic. Так, именно компании Huawei и Hibernia Atlantic совместно реализовали сеть Ethernet LAN-PHY 10 Гбит/с в Атлантическом океане в 2006 г. Компания Huawei Marine сотрудничает и с производителем оптоволоконных кабелей для подводных линий компанией Nexans. Последняя предоставила оборудование для проекта Libya Silphium – прокладывания подводных ВОЛС по дну Средиземного моря между Ливией и Грецией.

Чтобы сделать процесс проведения подводных магистралей менее затратным и длительным, изобретаются новые технологии передачи данных, новые оптические кабели (более надежные и мощные), новое оборудование для очистки и усиления сигнала. Кроме того, все оборудование требует проведения тщательнейших тестов перед тем, как оно станет частью сети на дне океанов, ведь малейшая недоработка или брак может стоить десятков миллионов долларов в дальнейшем.

Еще одна проблема – разные условия пролегания подводных ВОЛС, требующие разных решений. Так, по береговой линии прокладываются одни кабели и используются одни технологии, между материками – несколько другие. Все это объясняется и глубиной прокладывания линий, и расстоянием между терминальными станциями, и давлением, и напряжением питания, и т.п.

Прокладывание подводных ВОЛС состоит из нескольких важных этапов: длительное и тщательное планирование (измерение глубин, прокладывание наиболее эффективных маршрутов, сравнение линии сети с судоходными маршрутами), подбор оптоволоконного кабеля (проведение множества тестов, зачастую также проведение тендера между производителями), закапывание кабеля (для чего также есть целый ряд способов), установка оборудования для энергоснабжения, установка усилителей, терминальных станций и проч., налаживание бесперебойной работы сети, введение в эксплуатацию.

Учитывая стоимость проведения подводных ВОЛС, а также уровень их востребованности в наше время, данное направление деятельности является чрезвычайно перспективным и многообещающим.

Принято думать, что мировая информационная паутина — это нечто неосязаемое. И отчасти это так. Атмосфера планеты за последнюю сотню лет превратилась из банальной смеси азота и кислорода в густой бульон из радиоволн. Но не стоит заблуждаться — каждый бит информации, прежде чем стать эфирным электромагнитным излучением, обязательно проделывает неблизкий путь по проводам, большая часть которых проложена по океанскому дну.

Попытки соединить континенты проводами начались в первые же годы после изобретения самого телеграфа. В 1840 году английский профессор Уитстон представил на рассмотрение парламента проект прокладки подводного кабеля от Дувра к французскому берегу, но не получил согласия законодателей и, соответственно, денег.

Через два года изобретатель наиболее распространенной версии телеграфа Сэмюэл Морзе связал кабелем берега бухты Нью-Йорка и передал по нему сообщение. Тогда же он предсказал, что через недолгое время телеграф свяжет Старый Свет с Новым. Через десятилетие после этого компания братьев Джона и Джекоба Бреттов запустила телеграфное сообщение между Англией и Францией, проложив одножильный медный провод, одетый в гуттаперчу и стальную оплетку, под водами Ла-Манша.


Nexans Skaggerak — специализированное судно, построенное в 1976 году новрежской компанией Øgreys Mekaniske Verksted для подводной прокладки силовых кабелей и шлангопроводов. В марте 2010 года модернизирован в ремонтных доках Cammell Laird в Биркенхеде, Англия. Судно было распилено поперек, и между двумя его половинками была вварена дополнительная секция длиной 12.5 метра. Также на Skagerrak установили новую поворотную платформу. Справа на фото — силовой кабель, предназначенный для укладки в море, поступает с берега по специальному транспортеру, исключающему слишком резкие перегибы, и складируется в специальном отсеке, цилиндрической формы. Современный подводный силовой кабель может иметь диаметр порядка 100 мм. Метр такой «ниточки» вполне может потянуть на пару десятков килограмм, поэтому немудрено, что для контроля укладки требуются несколько дюжих рабочих. Снизу на фото — поворотная платформа, установленная на Skagerrak, имеет диаметр 29 метров и полезную нагрузку 7000 тонн, при объеме 2000 кубометров.

Человеком, соединившим мгновенной связью Старый и Новый Свет, стал американский предприниматель Сайрус Филд, основавший в 1854 году «Нью-Йоркско-Ньюфаундлендскую и Лондонскую телеграфную компанию». Вице-президентом стал известный нам Сэмюэл Морзе. Укладка кабеля началась в 1857 году при содействии правительств США и Великобритании, предоставивших для использования в роли кабелеукладчиков военные корабли: пароходофрегат «Ниагара» и парусно-паровой линкор «Агамемнон». На дно Атлантики было уложено 620 км кабеля, после чего он оборвался.

Следующая попытка была предпринята через год — «Ниагара» и «Агамемнон», соединив концы кабеля посередине океана, отправились в разные стороны. После нескольких обрывов корабли вернулись в Ирландию для пополнения запасов. Следующий старт — в июле того же года — принес успех, на который уже мало кто надеялся. Но… телеграф проработал около месяца и замолчал.


Неутомимый Филд вернулся к своей затее в 1865 году, зафрахтовав в качестве кабелеукладчика крупнейшее судно той поры — «Грейт Истерн». С него на дно было уложено три четверти линии, когда 2 августа кабель вновь оборвался и ушел на дно. Наконец, в 1866 году телеграфная линия пересекла Атлантику, а в самом начале прошлого века — безбрежный Тихий океан.

Вплоть до 30-х годов XX века главной проблемой межконтинентальных коммуникаций было низкое качество изоляции. Основными материалами для ее изготовления служили натуральные полимеры каучук и гуттаперча, сверху кабель обвивался броней из стальной проволоки, а на прибрежных участках броня иногда делалась двухслойной для защиты от якорей и рыбацких снастей.


Возможность мгновенной передачи данных на тысячи километров сейчас воспринимается как должное — уже полторы сотни лет никто не удивляется. Но за очевидностью стоят немаленькие технологические ухищрения. Всемирная Сеть — это не только пропускная способность и протяженность, но еще масса и объем. Чтобы убедится в этом достаточно поглядеть на барабан, в котором хранится свернутый кабель. Размеры этой «катушки» вполне соответствуют масштабам решаемых задач. Современный кабельный барабан на специализированном судне — это тысячи тонн и кубометров плюс специальные системы для укладки кабеля и его размотки. А барабанов таких на флагманах «проводного флота» — по три-четыре. Конструкция должна обеспечить намотку, размотку и хранение кабеля без перегибов, сильных нагрузок и прочего экстрима. Именно с этим связан большой диаметр «катушки» — современные подводные провода не рассчитаны на сколь-нибудь серьезный изгиб, поэтому сворачивать моток слишком туго нельзя — сломается.

Сегодняшние оптоволоконные кабели имеют многоуровневую защиту от едкой морской воды и механических повреждений. Пучок передающих волокон «плавает» в гелевом гидрофобном наполнителе внутри медной или алюминиевой трубки, покрытой слоем эластичного поликарбоната и алюминиевым экраном. Следующий слой- скрученная стальная проволока, обернутая майларовой лентой. Снаружи кабель одет в полиэтиленовую «рубашку». Другой вариант — кабель с профилированным несущим сердечником. В такой схеме до восьми оптических пар помещаются внутри каждого из шести экструдированных в полиэтиленовом шнуре каналов, заполненных гелем. Пары защищены навитой майларовой лентой, медным экраном и толстой полиэтиленовой оплеткой. В центре шнура проложена толстая стальная проволока для придания кабелю жесткости. Гарантия на подводные кабели связи — не менее 25 лет.

Откуда разматывают интернет

Первая попытка использовать подводный кабель для передачи сигнала — тогда еще не телеграфного — была предпринята в России в 1812 году П. Шиллингом для подрыва с берега морских мин, снабженных электрическим запалом.
Первая попытка проложить телеграфный кабель под водой была предпринята в 1839 году в Индии. Восточно-Индийская телеграфная компания проложила кабель по дну реки Хугли, неподалеку от Калькутты. К сожалению, данные об использовании линии до нас не дошли.
Первый трансатлантический кабель, проложенный между в 1858 году, прослужил всего около месяца. Кабели 1865−66 гг служили без ремонта около пяти лет, а ряд секций кабеля 1873 года (Ирландия — Ньюфаундленд) — около девяноста лет.
К 1900 году в мире было проложено 1750 подводных телеграфных линий общей протяженностью около 300 тысяч километров. Первая телефонная линия через Атлантику была уложена в 1956 году.
Самый длинный подводный силовой кабель проложен по дну Северного моря между г. Эемсхавен (Нидерланды) и Феда (Норвегия). Длина линии NorNed — 580 км, она рассчитана на 700 МВт. Эксплуатация началась в мае 2008 года.
Длина линии Unity, соединившей в 2010 году Японию (город Чикура) с западным побережьем США (Лос-Анжелес) по дну Тихого океана, составляет 10 тыс. км, пропускная способность — 7.68 Тбит/с.

Высоковольтные магистрали, связывающие с Большой землей острова, нефтяные платформы и ветряные электростанции, защищены еще лучше коммуникационных. Проводниками обычно служат три медные жилы, каждая из которых экранирована полупроводниковой лентой и толстым слоем изолятора из сшитого полиэтилена. Поверх изолятора проложен еще один экран, навита водонепроницаемая лента. Снаружи каждая токопроводящая жила закрыта герметичной свинцовой оболочкой и антикоррозионной полиэтиленовой оплеткой. Если в качестве основного изолятора используется этиленпропиленовая резина (ЭПР), свинцовый слой зачастую не используется в целях облегчения конструкции. В состав современного силового кабеля обязательно включается как минимум одна оптоволоконная пара для передачи данных. Проводники и оптоволокно заливаются полипропиленом или полиэтиленом, покрываются лентой-усилителем, полимерной оплеткой, броней из стальной проволоки и еще одним слоем из полиэтиленовой пряжи толщиной не менее 4 мм. Как правило, такие кабели служат верой и правдой десятки лет. Быстрое развитие морской ветроэнергетики и нефтегазодобычи привело к тому, что в настоящее время все имеющиеся на планете восемь заводов по производству подводного силового кабеля работают на пределе мощности. И спрос на их продукцию только растет.


Итальянский кабелеукладчик Gliulio Verne

Дело техники

Итак, мировой спрос на трафик просто сумасшедший — по данным агентства Telegeography, с 2007 года он растет на 100% в год. Подводные линии электропередач разрастаются вместе с альтернативной энергетикой. Отличный кабель у нас имеется. Остается только соединить им острова и континенты.

Создание подводной кабельной системы — сложнейшая операция, выполняемая профессионалами экстра-класса в экстремальных условиях с хирургической точностью. Первым делом выявляется оптимальный маршрут. С помощью специальных судов, оснащенных гидролокаторами бокового обзора, подводными аппаратами с дистанционным управлением и акустическими профилометрами Доплера, океанологи исследуют участки дна, на которые вскоре ляжет нить. Тщательно фиксируются и анализируются высотный профиль маршрута, состав донного грунта, сейсмическая активность зоны, наличие и характер течений, естественных и искусственных препятствий в коридоре прокладки. По полученным данным составляется конфигурация линии и технологическая карта прокладки. На критически важные точки маршрута выставляются бакены, оснащенные GPS-передатчиками и радиомаяками. Лишь после этого в дело вступают суда-кабелеукладчики.


Cable Innovator водоизмещением 10557 тонн — самое большое в мире судно, созданное для прокладки оптического кабеля. Построено в 1995 году на финских верфях Kvaerner Masa, принадлежит компании Global Marine Systems. Три 17-метровых барабана могут вместить по 2333 тонны кабеля каждый. 60 дней корабль с экипажем в восемь десятков человек может функционировать в режиме полной автономности, разматывая кабельную линию на скорости до 6.6 узлов (чуть больше 12 км/ч).

Серьезных различий между кабельными судами для прокладки силовых и коммуникационных линий нет. Разница лишь в специфической оснастке. Кроме того, «силовики» обычно работают в прибрежных районах, а оптику тянут на тысячи километров в открытом море. Самые большие и производительные в мире суда, специализирующиеся на высоковольтных магистралях, — норвежский укладчик Skagerrak, принадлежащий компании Nexans, и Giulio Verne итальянской корпорации Prysmian Group. Cable Innovator из флотилии Global Marine Systems водоизмещением 10557 т не имеет равных среди «связистов» — он может взять на борт 8500 км оптического кабеля. Крупнейшие флотилии кабельных судов базируются в Тихом океане — восемь судов трудятся на американскую компанию SubCom и столько же на ее японского конкурента NEC. Характерные особенности кабелеукладчиков — малая рабочая осадка, не превышающая 10 м, обязательное оснащение системами динамического позиционирования и гидроакустической ориентации, а также чрезвычайно чувствительные движители, позволяющие регулировать скорость с аптекарской точностью. Современный кабелеукладчик оснащен многошкивной кабельной машиной-лебедкой, развивающей тягу до 50 т, спускающей кабель в воду со скоростью порядка 1,5 км/ч. Кроме того, на борту имеются краны для погружения и подъема подводных аппаратов, устройства для сращивания и резки, водолазное оборудование и многое другое.


Схематическая карта первого трансатлантического кабеля, проложенного по дну летом 1858 года. Из-за несовершенства конструкции, плохой изоляции и использования слишком большого напряжения для передачи, линия связи тогда проработала всего около месяца, причем качество и, соответственно, скорость связи все время были ниже всякой критики. 1 сентября 1858 года через Атлантику было передано последнее сообщение, после чего континенты вновь оказались разъединенными. К 1861 году в различных частях света были проложены около 20 тысяч километров подводного кабеля, но в рабочем состоянии было не более четверти из них. Америка и Европа были окончательно соединены телеграфом 27 июля 1866 года, после чего связь уже никогда не прерывалась более, чем на несколько часов.

Аренда такого чуда техники тянет примерно на $100000 в сутки, тем не менее спрос превышает предложение. К примеру, кабелеукладчик Tyco Resolute компании SubCom, цилиндрические ангары которого вмещают 2500 км оптического кабеля, обеспечен работой на несколько лет вперед. То же можно сказать и о Skagerrak. Да и остальные не сидят без работы: рыболовные снасти, корабельные якоря, оползни и землетрясения, повреждающие подводные магистрали, держат эскадру кабельных судов в постоянной боевой готовности. Зафиксированы случаи разрыва кабеля из-за укусов акул и даже хищения десятков километров силовых линий пиратами. Только в Атлантике выполняется до 50 ремонтных операций в год. Но это дело техники…


На дно

Укладка любого кабеля начинается с суши. Эту ювелирную операцию обычно проводит команда опытных водолазов. Кабелеукладчик подходит к берегу поближе, встает по заданному курсу и стравливает на воду требуемый отрезок «нитки», соединенный с вытяжным тросом, предварительно заведенным с берега через врытую в грунт длинную трубу. В ходе этой операции вытравленный кабель висит на поплавках во избежание критических перегибов и спутывания. Процесс вывода троса и кабеля на соединительный щиток контролируется визуально посредством телекамер — починить этот отрезок линии впоследствии будет гораздо сложнее, чем какой-либо другой. Проверка целостности кабеля подачей сигнала (или напряжения, если он силовой) происходит во время укладки в постоянном режиме. Если все в норме — труба замуровывается со стороны моря, из нее откачивается вода, а вместо нее внутрь подается антикоррозийная смесь ингибиторов, биоцидов, убивающих водные бактерии, и раскислителя, поглощающего кислород. Береговая укладка, несмотря на кажущуюся простоту, — самый долгий этап работ. Команде Бьорна Ладегаарда, инженера компании Nexans, понадобилось целых три недели, чтобы в январе этого года подцепить к сети силовую ветку на пляжах Майорки на участке всего около 500 м!


В открытом море все проще, но и там свои трудности. Рельеф морского дна редко бывает достаточно удобным для так называемой свободной укладки, когда «нитка» опускается прямо на грунт. Так, силовую магистраль между Испанией и Балеарами пришлось зарывать на участке 283 км, в том числе на глубинах более километра. Еще 23 км были вырублены в скале!

В подводных дебрях незаменимые помощники инженеров — глубоководные аппараты с дистанционным управлением через шланг-кабель. Специалисты компании Nexans имеют в своем распоряжении три машины. Маленький и юркий CapTrack с комплексом датчиков, трансмиттером GPS, мощными прожекторами и телекамерами предназначен для оперативного мониторинга и точной укладки «нитки» на дно. На участках с экстремально сложным рельефом используется подводный бульдозер Spider с дополнительным «вооружением» в виде буровой головки, водометов и мощного насоса. Рука-манипулятор Spider может оснащаться целой кучей жутких инструментов, предназначенных для разрушения. Большую же часть работы на маршрутах выполняет траншейная машина Capjet со своим плугом-водометом. Вскрытый грунт постоянно откачивается насосом из полутораметровой траншеи и подается за корму Capjet, засыпая уложенный кабель.


Когда на пути прокладки оказываются более серьезные препятствия, инженеры используют арочные системы перехода. Кабель в специальном рукаве подвешивается на заякоренных герметичных стальных баллонах, наполненных воздухом. При наличии «попутных» трубопроводов кабель закрепляется на них специальными клипсами. Если через трубы приходится «перешагивать», применяются бетонные мостики или защитные рукава, укладываемые в нужном месте подводными аппаратами. В зонах с устойчивыми донными течениями кабель, как и любое цилиндрическое тело, подвергается разрушительному воздействию вихревых вибраций. Постепенно эти незаметные глазу высокочастотные колебания разрушают даже железобетонные балки. Для борьбы с этой бедой «нитка» одевается в пластиковое спиралевидное «оперение». Чтобы предотвратить перетирание изоляции о скалистый грунт, используются мягкие полиуретановые маты или ленточные протекторы. Все операции по удлинению, разветвлению кабеля, установке на него усилителей и контрольной аппаратуры производятся на судне непосредственно перед укладкой данного участка на дно. На финише маршрута кабелеукладчик повторяет операцию по выводу магистрали на берег. После этого линия тестируется и запускается в эксплуатацию.

А не проще ли запустить на орбиту пару спутников, спросите вы? Не проще. Скорости не те — мегабиты в секунду для XXI века уже не годятся. Да и гигабиты — тоже. Подводные терабиты совсем другое дело…