Общий случай задачи выбора последовательности обработки деталей на двух станках, если детали должны пройти обработку на одном станке, а затем на втором и на станке не может обрабатываться больше одной детали, рассмотрел в 1954 г. С. Джонсон. Метод решения такой задачи называют алгоритмом Джонсона.

Рассмотрим участок с двумя агрегатами. Совокупность деталей должна последовательно пройти обработку на первом агрегате, а потом на втором. Между агрегатами отсутствует склад, поэтому занятость второго агрегата задерживает освобождение первого. Требуется выбрать очередность обработки деталей, обеспечивающую меньшее суммарное время занятости участка. Это время рассчитывается от момента начала обработки первой детали на первом агрегате до окончания обработки последней детали на втором агрегате.

Очевидным является вывод, что выигрыша во времени можно достигнуть только за счет параллельной работы агрегатов. Длительная занятость первого агрегата, пока второй стоит, так же как и занятость второго, когда первый агрегат уже закончил работу, нерациональны. Отсюда ясно, что на первое место в очередности следует поставить деталь с меньшим временем обработки на первом агрегате. Аналогично на последнее место следует поставить деталь, у которой самое короткое время обработки на втором агрегате. Если это правило распространить на всю совокупность деталей, то получим алгоритм Джонсона.

Обобщения алгоритма Джонсона Значительно больший практический интерес представляло бы решение задачи, подобной задаче о двух станках, для произвольного количества m станков, на которых должны последовательно пройти обработку п деталей. Анализируя алгоритм Джонсона для задачи о двух станках, можно извлечь из него рекомендации, применимые и к общему случаю последовательной обработки деталей на п танках при произвольном m. Обобщения алгоритма Джонсона: 1. В обработку сначала запускают детали, требующие минимальное время обработки на первом станке в порядке возрастания этого времени. 2. В обработку запускаются сначала детали, требующие максимальное время обработки на последнем станке в порядке убывания этого времени. 3. В обработку запускаются сначала детали, у которых “узкое место” находится дальше от начала процесса обработки (“узким местом” для данной детали называется станок, на котором обработка этой деталей занимает наибольшее время). 4. Обрабатываются вначале детали, у которых суммарное время обработки на всех станках максимальное в порядке убывания этого времени.

Каждое из вышеописанных обобщений алгоритма Джонсона в определенных условиях имеет свои преимущества и свои недостатки. Каждое из этих правил в определенной степени логично. Применение первого из них способствует скорейшему вовлечению в обработку второго станка. Второе правило позволяет уменьшить конечный простой первого станка. Третье правило способствует наиболее быстрому "проскакиванию" к концу технологической линии тех деталей, для которых обработка на первом станке занимает меньшее время, с тем, чтобы освободить первый станок деталям, для которых он является узким местом. К сожалению, эти правила не совместимы друг с другом: последовательность обработки, найденная с использованием одного из них, не соответствует последовательности, полученной по другим правилам.

Пример решения задачи методом Джонсона Время обработки, мин Станок деталь 1 2 3 4 5 Суммарное время обработки 2 5 10 1 5 8 7 5 1 10 3 5 10 2 3 7 7 4 4 5 9 3 1 10 7 4 8 3 1 4 1 2 9 8 2 8 9 2 6 11 25 29 23 27 30 20 22 36

В результате решения задачи по четырем выше указанным рекомендациям получаем такой порядок запуска деталей в обработку: – по первой рекомендации: 7 -1 -3 -6 -2 -4 -8 -5; – по второй рекомендации: 2 -8 -5 -4 -6 -3 -7 -1; – по третьей рекомендации: 2 -8 -5 -7 -3 -1 -6 -4; – по четвертой рекомендации: 8 -5 -2 -4 -1 -3 -7 -6. Примечание. Если по какой-либо рекомендации две, или больше деталей оказываются равноценными, то для определения их приоритетов следует воспользоваться какой-либо другой рекомендацией. Например, по рекомендациям вторая и восьмая детали равноценны, но по первой рекомендации целесообразно в обработку запустить сначала вторую деталь, т. к. время ее обработки на первом станке меньше, чем у восьмой детали.

Для каждой детали найдем сумму мест во всех полученных решениях: первая деталь: (2 + 8 + 6 + 5) = 21; вторая деталь: (5 + 1 + 3) = 10; третья деталь: (3 + 6 + 5 + 6) = 20; четвертая деталь: (6 + 4 + 8 + 4) = 22; пятая деталь: (8 + 3 + 2) = 16; шестая деталь: (4 + 5 + 7 + 8) = 24; седьмая деталь: (1 + 7 + 4 + 7) = 19; восьмая деталь: (7 + 2 + 1) = 12.

Расположим детали в порядке возрастания суммы мест: 2– 8– 5– 7– 3– 1– 3– 6. Это и является новым решением. При решении конкретных задач для трех и более станков рекомендуется проанализировать результаты, полученные по каждому из этих правил, и в качестве окончательного варианта выбрать ту последовательность, которая обеспечивает минимум суммарного времени обработки.

Задачи выбора последовательности обработки деталей на двух станках, если детали должны пройти обработку на одном станке, а затем на втором, причем на станке не может обрабатываться больше одной детали, рассмотрел в 1954 г. С. Джонсон. Метод ее решения называют алгоритмом Джонсона.  

В этой главе мы рассказали о принципах работы систем календарного планирования производства . Сложность календарного планирования связана с большим количеством вариантов графиков работы . Решению этой проблемы способствуют разделение планирования и загруЗки оборудования , планирование наиболее трудоемких партий в первую очередь, применение приоритетов и использование алгоритма Джонсона. Ни один метод не дает оптимального решения,  

Для пояснения алгоритма Джонсона представим матрицу Т как двухстолбцовую  

В одном из вариантов алгоритма Джонсона процессы, состоящие из нескольких стадий, рассматриваются, как состоящие из двух операций, при этом метод дает если не оптимальные, то хорошие результаты. При этом искусственно создается несколько точек по две стадии и на каждой из них применяется описанный выше алгоритм. Далее подсчитыва-ется общая длительность всех графиков и выбирается наименьшее значение. Искусственное разбиение на две стадии производится за счет рассмотрения двух соседних операций, так для процесса из шести стадий будут строиться следующие графики  

Метод Петроват-Соколицына. Исходная матрица та же, что и в методе Джонсона, но снято ограничение на число операций (столбцов). Алгоритм предполагает расчет двух промежуточных сумм и их разности. Затем определяется несколько последовательностей запуска партий в обработку по следующим правилам  

Подробная характеристика первых трех вариантов решения задачи дана в главе 11. Напомним, что первый вариант имеет строгое и эффективное решение , называемое по имени его создателя алгоритмом (методом) Джонсона. Второй вариант можно при определенных условиях также свести к решению методом Джонсона, но результат при этом будет не обязательно оптимальным. Строгое решение этой задачи дал Р. Беллман, однако оно трудоемко. Третийвариант самый сложный. Эффективная эвристическая процедура его разрешения известна под названием DS-алгоритм. Этот алгоритм распространяет метод Джонсона на общий случай постановки задачи и обеспечивает околооптимальное решение. Существуют и другие подходы, которые используют теорию очередей и компьютерное моделирование , чтобы решить эту проблему. Но все они трудоемки и сложны и в то же время не гарантируют нахождения оптимальной последовательности.  

Второй пример календарной задачи на оптимизацию заключается в построении графика , наилучшим образом согласующего сроки выпуска продукции на нескольких последовательных стадиях произ-ва (переделах) при различной длительности обработки изделия на каждой из них. Напр., в типографии надо согласовать работу наборного, печатного и переплетного цехов при условии различной трудо-станкоемкости по отдельным цехам разных видов изделий (бланочной продукции, книжной продукции простого или сложного набора, в переплете или без него и т. п.). Задача может решаться при различных критериях оптимизации и различных ограничениях. Так, можно решать задачу на минимальную длительность производств, цикла и, следовательно, минимальную величину среднего остатка изделий в незавершенном произ-ве (заделе) ограничения при этом должны определяться по наличной пропускной способности различных цехов (переделов). Возможна и другая постановка той же задачи, при к-рой критерием оптимизации является наибольшее использование наличной производств, мощности при ограничениях, наложенных на сроки выпуска отдельных видов продукции. Алгоритм для точного решения этой задачи (т. н. задачи Джонсон а) разработан для случаев, когда изделие проходит всего 2 операции, и для приближенного решения при трех операциях. При большем числе операций эти алгоритмы непригодны, что практически их обесценивает, т. к. потребность в решении задачи оптимизации календарного графика возникает гл. обр. в планировании многооперационных процессов (напр., в машиностроении). Е. Боуменом (США) в 1959 и А. Лурье (СССР) в 1960 предложены математически строгие алгоритмы, основанные на общих идеях линейного программирования и позволяющие в принципе решать задачу при любом числе операций. Однако в настоящее время (1965) практически применить эти алгоритмы нельзя они слишком громоздки в расчетном отношении даже для самых мощных из существующих электронных вычислительных машин . Поэтому указанные алгоритмы имеют лишь перспективное значение либо их удастся упростить, либо прогресс вычислительной техники позволит реализовать их на новых машинах.  



План:

    Введение
  • 1 Алгоритм
    • 1.1 Сохранение кратчайших путей
    • 1.2 Изменение веса
    • 1.3 Основная процедура
  • 2 Сложность
  • Литература

Введение

Алгоритм Джонсона позволяет найти кратчайшие пути между всеми парами вершин взвешенного ориентированного графа. Данный алгоритм работает, если в графе содержатся рёбра с положительным или отрицательным весом, но отсутствуют циклы с отрицательным весом.


1. Алгоритм

Дан граф G = (V ,E ) с весовой функцией . Если веса всех рёбер ω в графе неотрицательные, можно найти кратчайшие пути между всеми парами вершин, запустив алгоритм Дейкстры один раз для каждой вершины. Если в графе содержатся рёбра с отрицательным весом, но отсутствуют циклы с отрицательным весом, можно вычислить новое множество рёбер с неотрицательными весами, позволяющее воспользоваться предыдущим методом. Новое множество, состоящее из весов рёбер , должно удовлетворять следующим свойствам.


1.1. Сохранение кратчайших путей

Лемма (Изменение весов сохраняет кратчайшие пути). Пусть дан взвешенный ориентированный граф с весовой функцией , и пусть - произвольная функция, отображающая вершины на действительные числа. Для каждого ребра определим

Пусть - произвольный путь из вершины v 0 в вершину v k . p является кратчайшим путем с весовой функцией ω тогда и только тогда, когда он является кратчайшим путем с весовой функцией , то есть равенство равносильно равенству . Кроме того, граф G содержит цикл с отрицательным весом с использованием весовой функции ω тогда и только тогда, когда он содержит цикл с отрицательным весом с использованием весовой функции .


1.2. Изменение веса


1.3. Основная процедура

В алгоритме Джонсона используется алгоритм Беллмана - Форда и алгоритм Дейкстры, реализованные в виде подпрограмм. Рёбра хранятся в виде списков смежных вершин. Алгоритм возврашает обычную матрицу D = d i j размером , где , или выдает сообщение о том, что входной граф содержит цикл с отрицательным весом.

Алгоритм Джонсона

Строится граф G " if Bellman_Ford = FALSE then print «Входной граф содержит цикл с отрицательным весом» else for для каждой do присвоить величине h (v ) значение , вычисленное алгоритмом Беллмана - Форда for для каждого ребра do for для каждой вершины do вычисление с помощью алгоритма Дейкстры величин для всех вершин for для каждой вершины do return D

2. Сложность

Если в алгоритме Дейкстры неубывающая очередь с приоритетами реализована в виде фибоначчиевой кучи, то время работы алгоритма Джонсона равно O (V 2 logV + V E ) . При более простой реализации неубывающей очереди с приоритетами время работы становится равным O (V E logV ) , но для разреженных графов эта величина в асимптотическом пределе ведёт себя лучше, чем время работы алгоритма Флойда - Уоршелла.

скачать
Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 20.07.11 23:27:10
Похожие рефераты:

В задаче Джонсона общее время производственного цикла зависит от порядка запуска деталей в обработку. Пусть имеется n деталей, каждая из которых должна последовательно пройти обработку сначала на первом, затем на втором станке. Предполагается заданным время t ij обработки i -й детали на j -м станке (i=1,2,...,n; j=1,2). Требуется определить такой порядок запуска деталей, при котором общая длительность их обработки на обоих станках будет минимальной.

Назначение сервиса . С помощью онлайн калькулятора можно решить задачу Джонсона для частного варианта ее постановки, когда число станков n=2 . При этом рассчитывается длительность совокупного производственного цикла для найденной оптимальной очередности запуска деталей в обработку. Результаты вычислений оформляются в отчете формата Word (Пример оформления).

ИНСТРУКЦИЯ . Для решения задачи необходимо задать количество деталей (строк).

Количество строк

Вставьте данные из Excel (A - первый столбец,B - второй столбец), нажмите Далее.

Правило Джонсона

Вначале детали, подлежащие обработке, условно делят на две группы. В первую группу относят детали, для которых время обработки на первом станке не превышает времени обработки на втором станке. Остальные детали образуют вторую группу. Вначале следует обрабатывать детали первой группы в порядке возрастания длительности их обработки на первом станке. Затем должны обрабатываться детали второй группы в порядке убывания времени их обработки на втором станке.

Алгоритм Джонсона

  1. В обработку сначала запускают детали, требующие минимальное время обработки на первом станке в порядке возрастания этого времени.
  2. В обработку запускаются сначала детали, требующие максимальное время обработки на последнем станке в порядке убывания этого времени.
  3. В обработку запускаются сначала детали, у которых “узкое место” находится дальше от начала процесса обработки (“узким местом” для данной детали называется станок, на котором обработка этой деталей занимает наибольшее время).
  4. Обрабатываются вначале детали, у которых суммарное время обработки на всех станках максимальное в порядке убывания этого времени.

Cтраница 2



Для вычислений показателей методом Джонсона составляют вариационный ряд, в каждом интервале которого изделия, достигшие предельного состояния mi; группируют после К приостановленных.  

Кислотность поверхности определяли методом Джонсона путем титрования w - бутиламином образцов катализаторов, суспендированных в бензоле, применяя в качестве индикатора фенилазонафтиламин.  

Значительно позднее Кори и Опползер сообщили о других примерах использования метода Джонсона. Они показали, что бутилиден - и этилидендифенилсульфураны реагируют с различными карбонильными соединениями, образуя при этом соответствующие эпоксиды с хорошим выходом / Эти авторы сообщили об отсутствии стереоселективности рассматриваемой реакции, в то время как Джонсон и Граби отмечали стереоселективное образование гронс-эпоксидов.  

Наиболее распространенными методами обработки результатов незавершенных испытаний являются метод максимального правдоподобия и метод Джонсона (РТМ 37.001.006 - 74), позволяющие учесть практически всю имеющуюся информацию об отказавших и приостановленных изделиях. Процесс обработки включает в себя установление закона распределения случайной величины, определение параметров этого закона, расчет основных показателей надежности. В этой последовательности и рассмотрим основные правила обработки результатов незавершенных испытаний по указанным выше методам.  

При больших объемах информации (N 50 и m / N 0 2) и сгруппированных данных применяют метод Джонсона.  

Используя экспериментальные данные по теплоемкости 2-метилбутана и 2-метилпентана, опубликованные в справочной литературе, рассчитана молярная теплоемкость гомологов 2-диметилалканов по предложенной нами формуле и методом Джонсона и Хуанга.  


Учитывая, что теплоемкость 2-метилбутана и 2-метилпентана экспериментально изучена , в настоящей работе с применением методов, описанных в и , вычислена молярная теплоемкость 2-метилалканов и показано, что большие расхождения, которые дает метод Джонсона и Хуанга для некоторых жидких углеводородов, обусловлены структурой молекулы.  

Кеталь удаляет воду, используя ее на расщепление до спирта и ацетона. Однако, согласно некоторым данным , ни метод Джонсона и др. с использованием НС1 вместо НВг, ни последняя методика не годятся для получения н-амиловых эфиров.  

Как видно из таблицы, данные авторов завышены. Это объясняется тем, что они необоснованно пользуются методом Джонсона (В. Н. Русских) для обработки последних гармоник, который справедлив только для первой гармоники.  

Напомним, что первый вариант имеет строгое и эффективное решение, называемое по имени его создателя алгоритмом (методом) Джонсона. Второй вариант можно при определенных условиях также свести к решению методом Джонсона, но результат при этом будет не обязательно оптимальным. Беллман, однако оно трудоемко. Эффективная эвристическая процедура его разрешения известна под названием CDS-алгоритм. Этот алгоритм распространяет метод Джонсона на общий случай постановки задачи и обеспечивает околооптимальное решение. Существуют и другие подходы, которые используют теорию очередей и компьютерное моделирование, чтобы решить эту проблему. Но все они трудоемки и сложны и в то же время не гарантируют нахождения оптимальной последовательности.