Известно, что источником энергии, которая используется в промышленности, на транспорте, в сельском хозяйстве, в быту, является топливо. Это уголь, нефть, торф, дрова, природный газ и др. При сгорании топлива выделяется энергия. Попытаемся выяснить, за счёт чего выделяется при этом энергия.

Вспомним строение молекулы воды (рис. 16, а). Она состоит из одного атома кислорода и двух атомов водорода. Если молекулу воды разделить на атомы, то при этом необходимо преодолеть силы притяжения между атомами, т. е. совершить работу, а значит, затратить энергию. И наоборот, если атомы соединяются в молекулу, энергия выделяется.

Использование топлива основано как раз на явлении выделения энергии при соединении атомов. Так, например, атомы углерода, содержащиеся в топливе, при горении соединяются с двумя атомами кислорода (рис. 16, б). При этом образуется молекула оксида углерода - углекислого газа - и выделяется энергия.

Рис. 16. Строение молекул:
a - воды; б - соединение атома углерода и двух атомов кислорода в молекулу углекислого газа

При расчёте двигателей инженеру необходимо точно знать, какое количество теплоты может выделить сжигаемое топливо. Для этого надо опытным путём определить, какое количество теплоты выделится при полном сгорании одной и той же массы топлива разных видов.

    Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива.

Удельная теплота сгорания обозначается буквой q. Единицей удельной теплоты сгорания является 1 Дж / кг.

Удельную теплоту сгорания определяют на опыте с помощью довольно сложных приборов.

Результаты опытных данных приведены в таблице 2.

Таблица 2

Из этой таблицы видно, что удельная теплота сгорания, например, бензина 4,6 10 7 Дж / кг.

Это значит, что при полном сгорании бензина массой 1 кг выделяется 4,6 10 7 Дж энергии.

Общее количество теплоты Q, выделяемое при сгорании m кг топлива, вычисляется по формуле

Вопросы

  1. Что такое удельная теплота сгорания топлива?
  2. В каких единицах измеряют удельную теплоту сгорания топлива?
  3. Что означает выражение «удельная теплота сгорания топлива равна 1,4 10 7 Дж / кг? Как вычисляют количество теплоты, выделяемое при сгорании топлива?

Упражнение 9

  1. Какое количество теплоты выделяется при полном сгорании древесного угля массой 15 кг; спирта массой 200 г?
  2. Сколько теплоты выделится при полном сгорании нефти, масса которой 2,5 т; керосина, объём которого равен 2 л, а плотность 800 кг / м 3 ?
  3. При полном сгорании сухих дров выделилось 50 000 кДж энергии. Какая масса дров сгорела?

Задание

Используя таблицу 2, постройте столбчатую диаграмму для удельной теплоты сгорания дров, спирта, нефти, водорода, выбрав масштаб следующим образом: ширина прямоугольника - 1 клетка, высота 2 мм соответствует 10 Дж.

В таблицах представлена массовая удельная теплота сгорания топлива (жидкого, твердого и газообразного) и некоторых других горючих материалов. Рассмотрено такое топливо, как: уголь, дрова, кокс, торф, керосин, нефть, спирт, бензин, природный газ и т. д.

Перечень таблиц:

При экзотермической реакции окисления топлива его химическая энергия переходит в тепловую с выделением определенного количества теплоты. Образующуюся тепловую энергию принято называть теплотой сгорания топлива. Она зависит от его химического состава, влажности и является основным . Теплота сгорания топлива, отнесенная на 1 кг массы или 1 м 3 объема образует массовую или объемную удельную теплоты сгорания.

Удельной теплотой сгорания топлива называется количество теплоты, выделяемое при полном сгорании единицы массы или объема твердого, жидкого или газообразного топлива. В Международной системе единиц эта величина измеряется в Дж/кг или Дж/м 3 .

Удельную теплоту сгорания топлива можно определить экспериментально или вычислить аналитически. Экспериментальные методы определения теплотворной способности основаны на практическом измерении количества теплоты, выделившейся при горении топлива, например в калориметре с термостатом и бомбой для сжигания. Для топлива с известным химическим составом удельную теплоту сгорания можно определить по формуле Менделеева .

Различают высшую и низшую удельные теплоты сгорания. Высшая теплота сгорания равна максимальному количеству теплоты, выделяемому при полном сгорании топлива, с учетом тепла затраченного на испарение влаги, содержащейся в топливе. Низшая теплота сгорания меньше значения высшей на величину теплоты конденсации , который образуется из влаги топлива и водорода органической массы, превращающегося при горении в воду.

Для определения показателей качества топлива, а также в теплотехнических расчетах обычно используют низшую удельную теплоту сгорания , которая является важнейшей тепловой и эксплуатационной характеристикой топлива и приведена в таблицах ниже.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

В таблице представлены значения удельной теплоты сгорания сухого твердого топлива в размерности МДж/кг. Топливо в таблице расположено по названию в алфавитном порядке.

Наибольшей теплотворной способностью из рассмотренных твердых видов топлива обладает коксующийся уголь — его удельная теплота сгорания равна 36,3 МДж/кг (или в единицах СИ 36,3·10 6 Дж/кг). Кроме того высокая теплота сгорания свойственна каменному углю, антрациту, древесному углю и углю бурому.

К топливам с низкой энергоэффективностью можно отнести древесину, дрова, порох, фрезторф, горючие сланцы. Например, удельная теплота сгорания дров составляет 8,4…12,5, а пороха — всего 3,8 МДж/кг.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)
Топливо
Антрацит 26,8…34,8
Древесные гранулы (пиллеты) 18,5
Дрова сухие 8,4…11
Дрова березовые сухие 12,5
Кокс газовый 26,9
Кокс доменный 30,4
Полукокс 27,3
Порох 3,8
Сланец 4,6…9
Сланцы горючие 5,9…15
Твердое ракетное топливо 4,2…10,5
Торф 16,3
Торф волокнистый 21,8
Торф фрезерный 8,1…10,5
Торфяная крошка 10,8
Уголь бурый 13…25
Уголь бурый (брикеты) 20,2
Уголь бурый (пыль) 25
Уголь донецкий 19,7…24
Уголь древесный 31,5…34,4
Уголь каменный 27
Уголь коксующийся 36,3
Уголь кузнецкий 22,8…25,1
Уголь челябинский 12,8
Уголь экибастузский 16,7
Фрезторф 8,1
Шлак 27,5

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)

Приведена таблица удельной теплоты сгорания жидкого топлива и некоторых других органических жидкостей. Следует отметить, что высоким тепловыделением при сгорании отличаются такие топлива, как: бензин, дизельное топливо и нефть.

Удельная теплота сгорания спирта и ацетона существенно ниже традиционных моторных топлив. Кроме того, относительно низким значением теплоты сгорания обладает жидкое ракетное топливо и — при полном сгорании 1 кг этих углеводородов выделится количество теплоты, равное 9,2 и 13,3 МДж, соответственно.

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)
Топливо Удельная теплота сгорания, МДж/кг
Ацетон 31,4
Бензин А-72 (ГОСТ 2084-67) 44,2
Бензин авиационный Б-70 (ГОСТ 1012-72) 44,1
Бензин АИ-93 (ГОСТ 2084-67) 43,6
Бензол 40,6
Дизельное топливо зимнее (ГОСТ 305-73) 43,6
Дизельное топливо летнее (ГОСТ 305-73) 43,4
Жидкое ракетное топливо (керосин + жидкий кислород) 9,2
Керосин авиационный 42,9
Керосин осветительный (ГОСТ 4753-68) 43,7
Ксилол 43,2
Мазут высокосернистый 39
Мазут малосернистый 40,5
Мазут низкосернистый 41,7
Мазут сернистый 39,6
Метиловый спирт (метанол) 21,1
н-Бутиловый спирт 36,8
Нефть 43,5…46
Нефть метановая 21,5
Толуол 40,9
Уайт-спирит (ГОСТ 313452) 44
Этиленгликоль 13,3
Этиловый спирт (этанол) 30,6

Удельная теплота сгорания газообразного топлива и горючих газов

Представлена таблица удельной теплоты сгорания газообразного топлива и некоторых других горючих газов в размерности МДж/кг. Из рассмотренных газов наибольшей массовой удельной теплотой сгорания отличается . При полном сгорании одного килограмма этого газа выделится 119,83 МДж тепла. Также высокой теплотворной способностью обладает такое топливо, как природный газ — удельная теплота сгорания природного газа равна 41…49 МДж/кг (у чистого 50 МДж/кг).

Удельная теплота сгорания газообразного топлива и горючих газов (водород, природный газ, метан)
Топливо Удельная теплота сгорания, МДж/кг
1-Бутен 45,3
Аммиак 18,6
Ацетилен 48,3
Водород 119,83
Водород, смесь с метаном (50% H 2 и 50% CH 4 по массе) 85
Водород, смесь с метаном и оксидом углерода (33-33-33% по массе) 60
Водород, смесь с оксидом углерода (50% H 2 50% CO 2 по массе) 65
Газ доменных печей 3
Газ коксовых печей 38,5
Газ сжиженный углеводородный СУГ (пропан-бутан) 43,8
Изобутан 45,6
Метан 50
н-Бутан 45,7
н-Гексан 45,1
н-Пентан 45,4
Попутный газ 40,6…43
Природный газ 41…49
Пропадиен 46,3
Пропан 46,3
Пропилен 45,8
Пропилен, смесь с водородом и окисью углерода (90%-9%-1% по массе) 52
Этан 47,5
Этилен 47,2

Удельная теплота сгорания некоторых горючих материалов

Приведена таблица удельной теплоты сгорания некоторых горючих материалов ( , древесина, бумага, пластик, солома, резина и т. д.). Следует отметить материалы с высоким тепловыделением при сгорании. К таким материалам можно отнести: каучук различных типов, пенополистирол (пенопласт), полипропилен и полиэтилен.

Удельная теплота сгорания некоторых горючих материалов
Топливо Удельная теплота сгорания, МДж/кг
Бумага 17,6
Дерматин 21,5
Древесина (бруски влажностью 14 %) 13,8
Древесина в штабелях 16,6
Древесина дубовая 19,9
Древесина еловая 20,3
Древесина зеленая 6,3
Древесина сосновая 20,9
Капрон 31,1
Карболитовые изделия 26,9
Картон 16,5
Каучук бутадиенстирольный СКС-30АР 43,9
Каучук натуральный 44,8
Каучук синтетический 40,2
Каучук СКС 43,9
Каучук хлоропреновый 28
Линолеум поливинилхлоридный 14,3
Линолеум поливинилхлоридный двухслойный 17,9
Линолеум поливинилхлоридный на войлочной основе 16,6
Линолеум поливинилхлоридный на теплой основе 17,6
Линолеум поливинилхлоридный на тканевой основе 20,3
Линолеум резиновый (релин) 27,2
Парафин твердый 11,2
Пенопласт ПХВ-1 19,5
Пенопласт ФС-7 24,4
Пенопласт ФФ 31,4
Пенополистирол ПСБ-С 41,6
Пенополиуретан 24,3
Плита древесноволокнистая 20,9
Поливинилхлорид (ПВХ) 20,7
Поликарбонат 31
Полипропилен 45,7
Полистирол 39
Полиэтилен высокого давления 47
Полиэтилен низкого давления 46,7
Резина 33,5
Рубероид 29,5
Сажа канальная 28,3
Сено 16,7
Солома 17
Стекло органическое (оргстекло) 27,7
Текстолит 20,9
Толь 16
Тротил 15
Хлопок 17,5
Целлюлоза 16,4
Шерсть и шерстяные волокна 23,1

Источники:

  1. ГОСТ 147-2013 Топливо твердое минеральное. Определение высшей теплоты сгорания и расчет низшей теплоты сгорания.
  2. ГОСТ 21261-91 Нефтепродукты. Метод определения высшей теплоты сгорания и вычисление низшей теплоты сгорания.
  3. ГОСТ 22667-82 Газы горючие природные. Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе.
  4. ГОСТ 31369-2008 Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава.
  5. Земский Г. Т. Огнеопасные свойства неорганических и органических материалов: справочник М.: ВНИИПО, 2016 — 970 с.

Кероси́н (англ. kerosene от греч. κηρός - воск) - смеси углеводородов (от C 12 до C 15), выкипающие в интервале температур 150-250 °C, прозрачная, слегка маслянистая на ощупь, горючая жидкость, получаемая путём прямой перегонки или ректификации нефти.

Свойства и состав

Плотность 0,78-0,85 г/см³ (при 20 °C), вязкость 1,2-4,5 мм²/с (при 20 °C), температура вспышки 28-72 °C, теплота сгорания около 43 МДж/кг.

В зависимости от химического состава и способа переработки нефти, из которой получен керосин, в его состав входят:

    предельные алифатические углеводороды (C n H 2n+2) - 20-60 %

    нафтеновые углеводороды (С n H 2n) - 20-50 %

    бициклические ароматические 5-25 %

    непредельные углеводороды - до 2 %

    примеси сернистых, азотистых или кислородных соединений.

Типичный состав углеводородов в топливах (в %)

Циклоалканы

Из таблицы видно, что в наибольших количествах в топливах содержатся алканы и циклоалканы. Количество аренов составляет 10 – 20%. как продукты прямой перегонки эти топлива практически не имеют в своем составе олеыиновых углеводородов. С точки зрения требований, предъявляемых к топливам данной категории, классы углеводов далеко не равнозначные. Рассмотрим их влияние на некоторые из эксплуатационных свойств топлив

Для определения в керосинах каждого из четырёх основных классов углеводородов применяют методы: сульфирование, определение анилиновых точек и йодных чисел

Теплота сгорания. Чем больше в топливе доля водорода, тем выше теплота сгорания. В этом отношении углеводородный состав прямогонных керосиновых фракций, из которых вырабатываются авиационные керосины, оказывается наиболее благоприятным. Более насыщенные водородом (алканы и циклоалканы) в них составляют до 80%.

Показатель теплоты сгорания топлива для реактивных двигателей имеет особо важное значение. Чем он выше, тем больше дальность полета самолетана одной заправке, т. е. тем большую работу он может выполнить. Но теплоту сгорания следует рассматривать исходя из двух условий: самолет имеет ограниченный объем топливных баков или для него ограничена масса топлива, которым он может быть заправлен, хотя объем баков имеет запас. В первом случае для дальности полета лучшем является топливо с высокими значениями плотности и объемной теплоты сгорания, которыми обладают фракции циклоалкановой основы. Во втором случае лучшим будет топливо с меньшей плотностью, но с большей весовой теплотой сгорания. Такие свойства характерны для алкановых углеводородов.

Содержание ареновых углеводородов. Арены, входящие в состав авиационных керосинов (алкилбензолы, нафталин и его гомологи) плохо горят. Теплота их сгорания на 11 – 12% ниже, чем у остальных углеводородов. Они способствуют образованию нагара на деталях двигателей, кристаллизуются при низких температурах и забивают топливные фильтры. Поэтому присутствие в данных топливах этого класса углеводородов нежелательно.

Показатели «высота некоптящего пламени» характеризует нагарообразующую способность топлива, которая является следствием плохого сгорания аренов. Нагар отлагается на форсунках и приводит к нарушению геометрии факела распыла и пламени сгорания топлива. А это опасно, так как возможен прогар стенок камеры сгорания и лопаток турбины.

Для определения высоты некоптящего пламени керосина существует несколько фитильных приборов. Простейший из них показаны на рисунке.

1 – резервуар; 2 - втулка для резервуара; 3 - камера; 4 - направляющая фитиля: 5 - шкала; 6 - вытяжная труб

Сущность анализа с помощью любого из этих приборов заключается в сжигании пробы топлива с постепенным увеличением длины пламени путем поднятия фитиля до появления фитиля до появления дыма. Затем пламя уменьшают до его исчезновения и в этот момент фиксируют высоту пламени по шкале замера. При содержании аренов а авиационных керосинах в пределах 10 – 22% она не должна быть менее 16 – 25 мм.

Температура начала кристаллизации и вязкости. Необходимость регламентации этого свойства объясняется эксплуатацией самолетов на больших высотах при минус 60°С и ниже. В Этих условиях есть опасность остановки двигателя из-за забивания топливных фильтров и топливопроводов кристаллами линейных алканов и растворимой воды. Вязкость обеспечивает смазывающие и распыливающие свойства топлива. Особенности влияния углеводородного состава на оба эти свойства аналогичны тем, которые рассматривались применительно к дизельным топливам.

Йодное число. Этот показатель контролируют в целях предотвращения смешения авиационных керосинов с химически не стабильными фракциями продуктов термического или каталитического крекинга

Содержание фактических смол, общей серы и кислотность относятся к числу эксплуатационных свойств топлива. Они характеризуют осмоленность и коррозионную активность топлива в момент их определения. Их зависимость от состава углеводородов и примесей минеральных кислот, а также методы определения этих свойств нам известны из лекций по бензинам и дизельным топливам.

Получение

Получается путём перегонки или ректификации нефти, а также вторичной переработкой нефти. При необходимости подвергается гидроочистке.

Ректификация

Ректификация (от лат. rectus - прямой и facio - делаю) - это процесс разделения бинарных или многокомпонентных смесей за счет противоточного массо- и теплообмена между паром и жидкостью. Ректификацию можно проводить периодически или непрерывно. Ректификацию проводят в башенных колонных аппаратах, снабженных контактными устройствами (тарелками или насадкой) ректификационных колоннах.

Ректификация- разделение жидких смесей на практически чистые компоненты, отличающиеся температурами кипения, путем многократных испарения жидкости и конденсации паров. В этом основное отличие ректификации от дистилляции, при которой в результате однократного цикла частичное испарение – конденсация достигается лишь предварительное (грубое) разделение жидких смесей.

СТАДИИ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА. Сырые нефть и газ должны пройти серию стадий в процессе их очистки и переработки, прежде чем они превратятся в окончательные продукты, применяемые в промышленности и быту. После подъема под действием давления газа или воды в полевой (промысловый) сепаратор природный газ и легкий природный бензин удаляются, а жидкая нефть сохраняется. Серия насосных станций подает нефть по трубопроводам в хранилища нефтеперерабатывающих предприятий. Там, путем термической обработки в ректификационных колоннах, происходит разделение на бензин, керосин, различные типы газойля, масляные дистилляты и тяжелые остатки, а затем их индивидуальная очистка.

Дистилляция

Дистилляция (лат. distillatio - стекание каплями) - перегонка, испарение жидкости с последующим охлаждением и конденсацией паров.

Простая дистилляция - частичное испарение кипящей жидкой смеси путём непрерывного отвода и конденсации образовавшихся паров в холодильнике. Полученный конденсат называется дистиллятом, а неиспарившаяся жидкость - кубовым остатком.

Фракционная дистилляция (или дробная перегонка) - разделение многокомпонентных жидких смесей на отличающиеся по составу части - фракции. Основана на различии в составах многокомпонентной жидкости и образующегося из неё пара. Осуществляется путём частичного испарения легколетучих компонентов исходной смеси и последующей их конденсации. Первые (низкотемпературные) фракции полученного конденсата обогащены низкокипящими компонентами, остаток жидкой смеси - высококипящими.

Устройство простейшего перегонного аппарата.

1 Нагревательный элемент 2 Перегонный куб 3 Отводная трубка или насадка Вюрца 4 Термометр 5 Холодильник 6 Подвод охлаждающей жидкости 7 Отвод охлаждающей жидкости 8 Приёмная колба 9 Отвод газа (в том числе с понижением давления) 10 Аллонж 11 Температура нагревателя 12 Скорость перемешивания 13 Нагреватель 14 Водяная (масляная, песочная и т. п.) баня 15 Мешалка или гранулы 16 Охлаждающая ванна

Гидроочистка нефтепродуктов

Гидроочистка - процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре. Гидроочистка нефтяных фракций направлена на снижение содержания сернистых соединений в товарных нефтепродуктах. Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов. Наиболее распространённый процесс нефтепереработки. Гидроочистке подвергаются следующие фракции нефти:

    1. Бензиновые фракции (прямогонные и каталитического крекинга);

    2. Керосиновые фракции;

    3. Дизельное топливо;

    4. Вакуумный газойль;

5. Моторные масла

Гидроочистка керосиновых фракций

    Гидроочистка керосиновых фракций направлена на снижение содержания серы и смол в реактивном топливе. Сернистые соединения и смолы вызывают коррозию топливной аппаратуры летательных аппаратов и закокcовывают форсунки двигателей.

Качество топлива до и после гидроочистки:

Применение керосина

Керосин применяют как реактивное топливо, горючий компонент жидкого ракетного топлива, горючее при обжиге стеклянных и фарфоровых изделий, для бытовых нагревательных и осветительных приборов, в аппаратах для резки металлов, как растворитель (например для нанесения пестицидов), сырьё для нефтеперерабатывающей промышленности. Керосин может использоваться как заменитель зимнего и арктического дизтоплива для дизельных двигателей. Для многотопливных двигателей (на основе дизеля) возможно применение чистого керосина. Допускается добавление до 20 % керосина в летнее дизельное топливо для снижения температуры застывания, при этом не ухудшаются эксплуатационные характеристики. Применяется так же для промывки механизмов, для удаления ржавчины.

Основные виды керосина

    ТС - авиационный керосин ;

    КТ - керосин технический ;

    КО - керосин осветительный.

Авиационный керосин

АВИАКЕРОСИН - смеси парафиновых (20-60%), нафтеновых (20-60%), ароматич. (18,5-22,0%) и непредельных (0,3-1,0%) углеводородов. используемые как топливо для самолетов и вертолетов с газотурбинными двигателями. авиакеросин получают в основном при прямой перегонке нефти (часто с последующим гидроочисткой или гидрированием). В качестве авиакеросин обычно применяют дистилляты, содержащие лигроиновые, керосиновые или газойлевые фракции, ограниченно - смеси широкого фракционного состава (пределы выкипания 60-230 °С), включающие бензиновые дистилляты.

Характеристики авиационных керосинов

Всем известно, что в нашей жизни огромную роль играет использование топлива. Топливо применяют практически в любой отрасли современной промышленности. Особенно часто применяется топливо, полученное из нефти: бензин, керосин, соляр и другие. Также применяют горючие газы (метан и другие).

Откуда берется энергия у топлива

Известно, что молекулы состоят из атомов . Для того, чтобы разделить какую либо молекулу (например, молекулу воды) на составляющие её атомы, требуется затратить энергию (на преодоление сил притяжения атомов). Опыты показывают, что при соединении атомов в молекулу (это и происходит при сжигании топлива) энергия, напротив, выделяется.

Как известно, существует ещё и ядерное топливо, но мы не будем здесь говорить о нём.

При сгорании топлива выделяется энергия. Чаще всего это тепловая энергия . Опыты показывают, что количество выделившейся энергии прямо пропорционально количеству сгоревшего топлива.

Удельная теплота сгорания

Для расчёта этой энергии используют физическую величину, называемую удельная теплота сгорания топлива. Удельная теплота сгорания топлива показывает, какая энергия выделяется при сгорании единичной массы топлива.

Её обозначают латинской буквой q. В системе СИ единица измерения этой величины Дж/кг. Отметим, что каждое топливо имеет собственную удельную теплоту сгорания. Эта величина измерена практически для всех видов топлива и при решении задач определяется по таблицам.

Например, удельная теплота сгорания бензина 46 000 000 Дж/кг, керосина такая же, этилового спирта 27 000 000 Дж/кг. Нетрудно понять, что энергия, выделившаяся при сгорании топлива, равна произведению массы этого топлива и удельной теплоты сгорания топлива:

Рассмотрим примеры

Рассмотрим пример. 10 граммов этилового спирта сгорело в спиртовке за 10 минут. Найдите мощность спиртовки.

Решение. Найдём количество теплоты, выделившееся при сгорании спирта:

Q = q*m; Q = 27 000 000 Дж/кг * 10 г = 27 000 000 Дж/кг * 0,01 кг = 270 000 Дж.

Найдём мощность спиртовки:

N = Q / t = 270 000 Дж / 10 мин = 270 000 Дж / 600 с = 450 Вт.

Рассмотрим более сложный пример. Алюминиевую кастрюлю массой m1, заполненную водой массой m2, нагрели с помощью примуса от температуры t1 до температуры t2 (00С < t1 < t2

Решение.

Найдём количество теплоты, полученное алюминием:

Q1 = c1 * m1 * (t1 t2);

найдём количество теплоты, полученное водой:

Q2 = c2 * m2 * (t1 t2);

найдём количество теплоты, полученное кастрюлей с водой:

найдём количество теплоты, отданное сгоревшим бензином:

Q4 = Q3 / k * 100 = (Q1 + Q2) / k * 100 =

(c1 * m1 * (t1 t2) + c2 * m2 * (t1 t2)) / k * 100;