Реферат


Пояснительная записка содержит 21 страницы, 6 таблиц, 14 рисунков,3 источников литературы, в которой подробно расписана методика расчёта, которая использовалась в данной работе.

Объект исследования: система электропередачи.

Цель работы: получить навыки расчёта электромеханических переходных процессов в системе электропередачи, рассчитать предельное снижение напряжения на шинах асинхронного двигателя, оценить статическую и динамическую устойчивость системы.


Введение

Исходные данные

Заключение

Введение


Устойчивость энергосистемы - это способность ее возвращаться в исходное состояние при малых или значительных возмущениях. По аналогии с механической системой установившийся режим энергосистемы можно трактовать как равновесное положение ее.

Параллельная работа генераторов электрических станций, входящих в энергосистему, отличается от работы генераторов на одной станции наличием линий электропередачи, связывающих эти станции. Сопротивления линий электропередачи уменьшают снихронизирующую мощность генераторов и затрудняют их параллельную работу. Кроме того, отклонения от нормального режима работы системы, которые происходят при отключениях, коротких замыканиях, внезапном сбросе или набросе нагрузки, также могут привести к нарушению устойчивости, что является одной из наиболее тяжелых: аварий, приводящей к перерыву электроснабжения потребителей Поэтому изучение проблемы устойчивости очень важно, особенно применительно к линиям электропередачи переменным током. Различают два вида устойчивости: статическую и динамическую.

Статической устойчивостью называют способность системы самостоятельно восстановить исходный режим при малых и медленно происходящих возмущениях, например при постепенном незначительном увеличении или уменьшении нагрузки.

Динамическая устойчивость энергосистемы характеризует способность системы сохранять синхронизм после внезапных и резких изменений параметров режима или при авариях в системе (коротких замыканиях, отключений часта генераторов, линий или трансформаторов). После таких внезапных нарушений нормальной работы в системе возникает переходный процесс, по окончании которого вновь должен наступить установившийся послеаварийный режим работы.

Именно такие внезапные нарушения в работе СЭС приводят к тяжелым экономическим последствия для населения и промышленных объектов.

Современная энергетика уделяет очень большое внимание борьбе с авариями на линиях, короткими замыканиями, большой вклад делает еще на стадии проектировании СЭС городов и предприятий.

Исходные данные


Схема для расчёта представлена на рисунке 1.


Рисунок 1 - Схема системы электропередачи


Исходные данные для расчёта первой и второй задачи принимаем по таблице в соответствии с номером варианта.


Технические данные трансформаторов:

Тип транс форматора,

МВАПределы регулиро

вания, %, кВ

обмоток, %

%ВНТДЦ-250000/110250-11013.8; 15.75; 1810,56402000.5ТДЦ-630000/110630-1102010.59003200.45

Параметры двухцепной воздушной линии электропередачи

Марка провода,

Ом/кмДлина

l , кмU,кВАС-3300.1070.3670.3820.3301.3890.931300110

Рисунок 2 - Схема системы для расчёта предельного снижения напряжения на шинах асинхронного двигателя


Исходные данные для расчёта третьей задачи принимаем ниже по таблице в соответствии с номером варианта.


Технические данные асинхронного электродвигателя

ТипНоминальные данныеПусковые характеристикиP, кВтI, АN, об/мин, %, кг*м2U, кВn0, об/минДАЗО 17-39-8/1050061.574191.00.855.20.652.12886741

Параметры КЛ:

Тип проводаДлина l , кмх0, Ом/кмАПвВ 1*3000,0350,099


Составляем схему замещения системы, которая представлена на рис.1 и рассчитываем индуктивные сопротивления всех элементов:


Рисунок 3 - Схема замещения системы


индуктивное сопротивлении задано,

индуктивное сопротивление трансформаторов:



индуктивное сопротивление ЛЭП:



Все сопротивления схемы замещения приводятся к номинальному напряжению генератора. Сопротивление трансформаторов:



сопротивление ЛЭП:



Определяем суммарное сопротивление системы:



Рассчитываем номинальную реактивную мощность генератора:



Определяем приближённое значение синхронной ЭДС генератора:




Определяем значение коэффициента запаса статической устойчивости:



По данным расчёта строим векторную диаграмму.


Рисунок 4 - Векторная диаграмма


Результаты расчёта заносим в таблицу 3.


Таблица 3

МВт0162312,5442541603,7625603,7541442312,51620

Рисунок 5 - Угловая характеристика мощности


Система является статически устойчивой, так как коэффициент запаса больше 20%. И предел передаваемой мощности генератора в систему достигается при угле? = 900.


Рассчитываем режимы по очереди.


2.1 Расчёт аварийного и послеаварийного режима при однофазном коротком замыкании в точке К-1


1.1 Нормальный режим

1.2 Аварийный режим

Составляем схему замещения системы при однофазном КЗ


Рисунок 6 - Схема замещения для аварийного режима при однофазном КЗ


Суммарное сопротивление КЗ Х? при однофазном коротком замыкании равно сумме сопротивлению обратной последовательностии сопротивлению нулевой последовательности.

Преобразуем схему замещения системы при однофазном КЗ из соединения "звезда" в соединение "треугольник" со сторонами Х1, Х2, Х3.

Сопротивление Х2 и Х3 могут быть отброшены, т.к. поток мощности отдаваемый генератором в сеть не проходит через эти сопротивления.


Рисунок 7 - Преобразованная схема замещения


Определим суммарное сопротивлении системы:



Где X?=X2?+X0? - шунт несимметричного КЗ, который включается между началом и концом схемы прямой и обратной последовательности.

Определяем индуктивное сопротивление нулевой последовательности Х0?:



Определим индуктивное сопротивление обратной последовательности X2?


Определяем сопротивления шунта КЗ X?:

X2?+X0? = 3 +0,097 = 3,097 Ом


Хd?II = 20,2 + 0,1 + 3,5 +0,04 + = 47Ом.


Определяем предел передаваемой мощности генератора в систему:



Изменяя значения угла от 0 до 180 град., рассчитываем соответствующие значения мощности отдаваемой генератором в систему по формуле:

Результаты расчёта заносим в таблицу 4.


Таблица 4

Град0153045607590105120135150165180, МВт081,3157222,3271,9303,3314303,3271,9222,315781,30

1.3 Послеаварийный режим

Составляем схему замещения системы для послеаварийного режима.


Рисунок 8 - Схема замещения для послеаварийного режима при однофазном КЗ


Послеаварийный режим определяется отключением одной цепи ЛЭП, после чего сопротивление изменяется:



Определяем суммарное сопротивлении системы:



Определяем предел передаваемой мощности генератора в систему:



Рассчитываем значение углов:





Тоткл = +


Поскольку линия имеет защиту, то через некоторое время она отключится выключателями. Следовательно, выбираем элегазовый выключатель серии ВГБЭ-35 - 110 с временем отключения = 0,07 с. Также должно быть предусмотрены устройства релейной защиты от КЗ. Выбираем токовое реле РТ-40 с временем уставки = 0,08 с.


0,07 + 0,08 = 0,15 с,


Находим время отключения КЗ:


Тоткл = 0,07 + 0,15 = 0,22 с.


29 ? 0,22, что удовлетворяет условию? Тоткл

Изменяя значения угла от 0 до 180 град., рассчитываем соответствующие значения мощности отдаваемой генератором в систему по формуле:

Таблица 5

Результаты расчёта заносим в таблицу 5.

град0153045607590105120135150165180,

МВт0140270.5382.5468.5522.6541522.6468.5382.5270.51400

Строим в одной координатной плоскости угловые характеристики мощности в нормальном, аварийном и послеаварийном режимах, на графике указываем значение мощности турбины Р0. С учётом рассчитанного значения предельного угла отключения КЗ ?откл на графике строим площади ускорения и торможения.


Рисунок 9 - График угловых характеристик мощностей и площади ускорения и торможения при однофазном КЗ


2.2 Расчёт аварийного и послеаварийного режима при трёхфазном коротком замыкание в точке К-2


2.2.1 Нормальный режим

Расчёт нормального режима проведён в задаче 1.

2.2 Аварийный режим

Составляем схему замещения системы при трёхфазном КЗ


Рисунок 10 - Схема замещения системы при трёхфазном КЗ


При трёхфазном КЗ в точке К-2 взаимное сопротивление схемы становится бесконечно большим, т.к. сопротивление шунта КЗ Х? (3) = 0. При этом характеристика мощности аварийного режима совпадает с осью абсцисс.

2.3 Послеаварийный режим

Схема замещения при трехфазном коротком замыкании и и расчет послеаварийного режима аналогичем послеаварийному режиму, приведенному в п.2.1.3

Рассчитываем значение углов:



Находим предельный угол отключения КЗ?откл:



Рассчитываем предельное время отключения КЗ:



Выбираем соответствующие уставки срабатывания устройств РЗА:


Тоткл = +


Поскольку линия имеет защиту, то через некоторое время она отключится выключателями. Следовательно, выбираем элегазовый выключатель серии

ВГТ - 110 с временем отключения = 0,055 с. Также должны быть предусмотрены устройства релейной защиты от КЗ. Выбираем токовое реле РТ-40 с временем уставки = 0,05 с.

Время действия релейной защиты определяется:


0,005 + 0,05 = 0,055 с,


Находим время отключения КЗ:


Тоткл = 0,055 + 0,055 = 0,11 с.

17 ? 0,11, что удовлетворяет условию? Тоткл


Строим в одной координатной плоскости угловые характеристики мощности в нормальном, аварийном и послеаварийном режимах, на графике указываем значение мощности турбины Р0. С учётом рассчитанного значения предельного угла отключения КЗ?откл на графике строим площади ускорения и торможения.


Рисунок 11 - График угловых характеристик мощностей и площади ускорения и торможения при трёхфазном КЗ


Для определения динамической устойчивости системы при однофазном КЗ необходимо рассмотреть площади ускорение Fуск и торможения Fторм. Условием для динамической устойчивости системы является неравенство: Fуск? Fторм. Невооруженным глазом видно по графику угловой характеристики, что площадь ускорения на порядок больше площади торможения, значит система не является динамически устойчивой. Следовательно, накопленная кинетическая энергия не успевает превратиться в потенциальную, в результате скорость вращения ротора и угол? будут расти и генератор выпадет из синхронизма. Для определения статической устойчивости системы необходимо найти коэффициент запаса. Вычислив коэффициент запаса, можно сделать вывод, что система является статически устойчивой, так как.


Рассчитываем параметры элементов электропередачи и параметры нагрузки, приведённые к базисному напряжению Uб = 6 кВ и базисной мощности:


Sб = SАД ном = ,


Сопротивление линии:



Индуктивное сопротивление рассеяния магнитной цепи двигателя:

Определяем активную мощность потребляемая в исходном режиме двигателя:

Находим активное сопротивление ротора двигателя в исходном режиме (упрощенная схема замещения асинхронного двигателя):


0392 +0,05? = ,


произведём замену на х и получим:


05х2 - х + 0,0392 = 0;

Д = в2 - 4ас = 12 - 4?0,05?0,0392 = 0,99216;


Выбираем наибольший из корней уравнения и получаем:



Определяем реактивную мощность, потребляемую в исходном режиме двигателем:



Определяем напряжение на шинах системы в исходном режиме:



Определяем напряжение на шинах системы, при котором происходит затормаживание двигателя:



Определяем запас статической устойчивости двигателя по напряжению:



Для построения механической характеристики М = f (S) по уравнению


М = , необходимо произвести следующий расчёт:


Определяем номинальную частоту вращения ротора:

ном = n0? (1 - Sном) = 741? (1-0,01) = 734 об/мин.


Находим критическое скольжение:

кр = Sном?(?? +) = 0,01? (2,1 +) = 0,039.


Определяем номинальный и максимальный (критический) моменты двигателя:


Мном = = Н?м,

Мmax = ?? ? Мном = 2,1?6505,3 = 13661, 4 Н?м.


Для построения механической характеристики воспользуемся формулой Клосса:



Задавшись различными значениями скольжения S, найдём соответствующие им значения момента М. Результаты расчёта занесем в таблицу 6.


Таблица 6

SM, Н?м000,0166480,039136610,06124190,08105890,192620,251260,335020,426420,521180,617630,715180,813320,9115011064

По данным таблицы 6 строим график М = f (S):


Рисунок 12 - График механической характеристики асинхронного двигателя


Система является статически устойчивой, так как коэффициент запаса двигателя по напряжению больше 20%


Заключение


После выполнения данной курсовой работы были отработаны и закреплены теоретические знания, приобретенные в течение семестра по расчету различных видов КЗ; проверки системы на статическую и динамическую устойчивать; построения угловых характеристик мощности и механической характеристики асинхронных.

Научился выполнять анализ системы на устойчивость, рассчитывать режимы работы системы до, после, и во время различных видов КЗ.

Можно сделать вывод, что расчет электромеханических переходных процессов занимает одну из значимых позиций по расчету и проектировании различных простых и сложных систем энергоснабжения.

Список используемой литературы


1. Куликов Ю.А. Переходные процессы в электрических системах: Учеб. пособие. - Новосибирск: НГТУ, М.: Мир: ООО "Издательство АСТ", 2008. -

Боровиков В.Н. и др. Электроэнергетические системы и сети - Москва: Метроиздат., 2010. - 356 с.

Аполлонов А.А. Расчет и проектирование релейной защиты и автоматики - С. - Петербург, 2009г. - 159 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Устойчивость электрической системы, устойчивость электроэнергетической системы, способность электрической системы (ЭС) восстанавливать исходное (или практически близкое к нему) состояние (режим) после какого-либо его возмущения, проявляющегося в отклонении значений параметров режима ЭС от исходных (начальных) значений. В ЭС источниками электрической энергии обычно являются синхронные генераторы, связанные между собой электрически общей сетью, причём роторы всех генераторов вращаются синхронно; такой режим, называется нормальным, установившимся, должен быть устойчив, т. е. ЭС должна возвращаться в исходное (или практически близкое к нему) состояние всякий раз после отклонений от установившегося режима. Отклонения могут быть связаны, например, с изменением мощности нагрузки, короткими замыканиями, отключениями линий электропередачи и т.п. Устойчивость системы, как правило, уменьшается при увеличении нагрузки (мощности, отдаваемой генераторами) и понижении напряжения (росте мощности потребителей, снижении возбуждения генераторов); для каждой ЭС могут быть определены некоторые предельные (критические) значения этих или связанных с ними величин, характеризующих предел устойчивости. Надёжное функционирование ЭС возможно, если обеспечен определённый запас устойчивости ЭС, т. е. если параметры режима работы и параметры самой ЭС достаточно отличаются от критических. Для обеспечения У. э. с. предусматривают ряд мероприятий, таких, как обеспечение должного запаса устойчивости при проектировании ЭС, использование автоматического регулирования возбуждения генераторов, применение противоаварийной автоматики и т.д.

При анализе У. э. с. различают статическую, динамическую и результирующую устойчивость. Статическая устойчивость характеризует У. э. с. при малых возмущениях, т. е. таких возмущениях, при которых исследуемая ЭС может рассматриваться как линейная. Изучение статической устойчивости проводится на основе общих методов, разработанных А. М. Ляпуновым для решения задач об устойчивости. В инженерной практике исследование У. э. с. иногда проводят упрощённо, ориентируясь на практические критерии устойчивости, определяющие её наличие или отсутствие при некоторых вытекающих из практики допущениях (например, о невозможности т. н. самораскачивания системы, о неизменности частоты электрического тока в системе и др.). При исследовании статической устойчивости применяют цифровые и аналоговые вычислительные машины.



Динамическая устойчивость определяет поведение ЭС после сильных возмущений, возникающих вследствие коротких замыканий, отключении линий электропередач и т. и. При анализе динамической устойчивости (система, как правило, рассматривается как нелинейная) возникает необходимость интегрировать нелинейные трансцендентные уравнения высоких порядков. Для этого применяют аналоговые вычислительные машины и т. н. расчётные модели переменного тока; наиболее часто создают специальные алгоритмы и программы, позволяющие производить расчёты на ЦВМ. Состоятельность составленных программ проверяется сопоставлением результатов расчётов с результатами экспериментов на реальной ЭС либо на физической (динамической) модели ЭС.

Результирующая устойчивость характеризует У. э. с. при нарушении синхронизма части работающих генераторов. Последующее восстановление нормального режима работы происходит при этом без отключения основных элементов ЭС. Расчёты результирующей устойчивости производятся весьма приближённо (из-за их сложности) и имеют целью выявить недопустимые воздействия на оборудование, а также найти комплекс мероприятий, ведущих к ликвидации асинхронного режима работы ЭС.

Статическая У. э. с. может быть повышена в основном использованием сильного регулирования, динамическая – форсированием возбуждения генераторов, быстрым отключением аварийных участков, применением специальных устройств для торможения генераторов, отключением части генераторов и части нагрузки. Повышение результирующей устойчивости, обычно рассматриваемое как повышение живучести ЭС, достигается в первую очередь регулированием мощности, вырабатываемой выпавшими из синхронизма генераторами, и автоматическим отключением части потребителей (автоматической разгрузкой ЭС).

Метод площадей. Рассмотрим в качестве примера переход из нормального в аварийный и послеаварийный режимы простейшей системы, которая содержит генератор, работающий через трансформатор и двухцепную ЛЭП на шины бесконечной мощности (рис. 5.1). Смена состояний рассматриваемой системы представлена на рисунке через угловые характеристики активной мощности. Рабочая точка в нормальном установившемся режиме соответствует координатам (Р 0 , δ 0), отражающим равенство мощности, развиваемой первичным двигателем генератора, и мощности Р=Р m sin δ 0 , передаваемой генератором в сеть со сдвигом на угол δ 0 между эдс Е " и напряжением U. При появлении КЗ происходит сброс передаваемой мощности с Р доав (δ 0) до Р ав (δ 0) (на рисунке рабочий режим переходит из точки а в точку b), вследствие чего появляется избыточная мощность ∆Р ав =Р 0 – Р b , которая вызывает ускорение ротора генератора. Под действием этой избыточной мощности рабочая точка режима перемещается по угловой характеристике Р ав в направлении увеличения угла δ. На рис. 5.1 доаварийная, аварийная и послеаварийная мощности обозначены соответственно Р І ,Р ІІ ,Р ІІІ . . Если отключению повреждённой цепи соответствует угол δ откл, то ротор генератора во время ускорения запасает кинетическую энергию которая соответствует заштрихованной на рис. 5.1 площадке F авсd называемой площадью ускорения . Отключение повреждённого участка цепи электропередачи к возрастанию передаваемой в сеть мощности с Р с до Р е (на угловой характеристике Р Послеав). Так как Р е >Р с, то появляется тормозной момент на роторе генератора, соответствующий мощности ∆Рп. ав (δ)= Р п. ав – Р 0 , где δ >δ откл. Однако угол δ продолжает увеличиваться до тех пор, пока не будет израсходована запасённая во время ускорения кинетическая энергия ротора генератора. Рис. 5. 1. Угловые характеристики мощности для нормального, аварийного и послеаварийного режимов работы системы. Предельное значение энергии для изменения угла δ, равного δ откл – δ кр, определяется выражением Заштрихованная на рисунке площадь F def , называемая площадью торможения, соответствует кинетической и энергии, которая может быть израсходована вращающимся ротором во время торможения. Если рабочая точка режима возвратится в точку а , то говорят, что система динамически устойчива. Это возможно, если энергия ускорения меньше (равна) энергии торможения: А уск <А торм, Вытекающее из сравнения площади F abcd ускорения и площади торможения F def . Предельный угол отключения и предельное время отключения. Математически выражение равенства площадей ускорения и торможения записывается следующим образом: Из равенства (5.1) можно найти предельное по условию сохранения динамической устойчивости значения угла отключения повреждённого участка цепи ЛЭП: Предельное время отключения КЗ t откл.пред. соответствует полученному выше уравнению по предельному углу отключения. Для произвольного момента времени связь этих величин отражается уравнением движения Р т – Р эл =Т j (dω/dt)=T j α, Р т – Р эл =T j (d 2 δ/dt 2), где ω – угловая частота вращения ротора; α – угловое ускорение вращающихся масс. Аналитическое решение его возможно только для частного случая, а именно полного разрыва связи генератора с шинами приёмной системы, когда Р=Р ав (δ)=0, что происходит при трёхфазном КЗ на одной из цепе ЛЭП. При этом уравнение движения упрощается и принимает вид T j (d 2 δ/dt 2)=P 0 . Решение этого уравнения методом последовательного интегрирования при постоянных с 1 =(d δ/ dt) t=0 и с 2 = δ 0 позволяет получить выражение δ=Р 0 /(2Т j t 2)+ δ 0 , (5.3) откуда можно найти значение предельного времени отключения трёхфазного КЗ:

Для выяснения принципиальных положений анализа динамической устойчивости рассмотрим явления, возникающие при внезапном отключении одной из двух параллельных цепей линии электропередачи одномашинной энергосистемы (рис. 2.1, а).

Рис. 2.1. Одномашинная энергосистема (а) и ее схемы замещения: для нормального режима (б) и режима с отключенной цепью (в)

Взаимное реактивное сопротивление схемы замещения (рис. 2.1, б), равное

определяет максимум fj M угловой характеристики мощности генератора Р ] (б) в исходном режиме:

После отключения одной из цепей линии электропередачи (рис. 2.1,) будет получено новое, большее по значению, сопротивление

Максимум новой угловой характеристики /J|(5) составит, соответственно, меньшую величину (рис. 2.2):

Рис. 2.2.

Точке пересечения а характеристики мощности турбины /т(5) = const и угловой характеристики генератора /j(5) = Ры sin 6 в нормальном режиме соответствуют угол 6 0 , мощность Р () и скорость (частота) Ь. В результате нарушается баланс мощностей (моментов) на валу ротора генератора и турбины за счет уменьшения тормозящего момента, обусловленного электрической нагрузкой. Угол 8 0 и относительная скорость

сохраняют свои значения в момент отключения цепи в силу инерции ротора генератора. В дальнейшем под действием избыточного ускоряющего момента относительная скорость и нарастает и при значении угла 8 С становится наибольшей.

Рис. 2.3.

В точке с ускоряющий и тормозящий моменты уравновешиваются, но ротор по инерции, за счет дополнительной кинетической энергии, накопленной на участке Ьс, будет продолжать относительное движение. Однако это движение будет происходить с замедлением, поскольку справа от точки с ускоряющий момент турбины меньше, чем тормозящий электромагнитный момент генератора. Увеличение угла прекратится при значении 8,„, когда дополнительная кинетическая энергия, приобретенная ротором на участке Ьс, компенсируется равной по величине потенциальной энергией на участке cm. Очевидно, что при значении угла 6,„ режим не установится, поскольку в этом состоянии тормозящий момент генератора выше ускоряющего момента турбины. Под действием избыточного тормозящего момента от точки т ротор будет возвращаться к углу 8 С и снова по инерции его пройдет. Однако к начальному углу 6 0 ротор нс возвратится вследствие потерь на трение и действия демпфирующих моментов. Амплитуда изменения угла при дальнейших качаниях ротора будет уменьшаться (рис. 2.2, б), и окончательно режим системы установится в новой точке устойчивого равновесия - точке с.

Однако возможен и другой исход процесса. Если угол достигнет критической величины 8 кр, соответствующей точке/(рис. 2.3, а), прежде, чем относительная скорость и примет нулевое значение, то избыточный момент на валу ротора генератора становится вновь ускоряющим. Относительная скорость и ротора опять начинает возрастать до выпадения генератора из синхронизма. Такой характер нарушения устойчивости называется динамическим.

Основной причиной динамических нарушений устойчивости энергосистем являются короткие замыкания, приводящие к резким изменениям электромагнитных моментов синхронных машин.

Устойчивостью летательного аппарата называется его способность без вмешательства сохранять заданный балансировочный режим полета и возвращаться к нему после прекращения действий внешних возмущений. Устойчивость условно разделяется на статическую и динамическую. Летательный аппарат статически устойчив, если при малом изменении углов атаки, скольжения и крена возникают силы и моменты, направленные на восстановление исходного режима полета. Динамическая устойчивость характеризуется затуханием переходных процессов возмущенного движения.

Управляемостью ракеты называется её способность выполнять в ответ на целенаправленные действия летчика любой, предусмотренный в процессе эксплуатации маневр при допустимых условий полета. Балансировочными режимами полета называются режимы, при которых действующие на ракета силы и моменты уравновешены, а статическая управляемость ракеты характеризуется потребными для балансировки ракеты отклонениями органов управления, перемещениями рычагов управления и усилиями на них.

Существуют понятия продольной и боковой статической устойчивости. Под продольной статической устойчивостью понимается свойство ракеты после прекращения действия внешних возмущений возвращаться без вмешательства летчика к начальным значениям угла атаки и скорости полета, а под боковой - к начальным значениям углов крена и скольжения. Соответственно характеристики управляемости принято делить на продольные и боковые.

Для достижения цели необходимо выполнить ряд задач:

· Проанализировать понятие устойчивости летательного аппарата;

· Описать статическую устойчивость и способы ее обеспечения;

Полет ЛА происходит под действием аэродинамической силы, силы тяги двигателей и силы тяжести. Для обеспечения полета и выполнения полетной задачи ракета должена адекватно реагировать на управляющие воздействия - целенаправленные изменения аэродинамической силы и силы тяги, т.е. быть управляемым.

Небольшие не связанные с управлением заранее неизвестные отклонения (возмущения) аэродинамической силы и силы тяги от расчетных значений, также изменяют движение ЛА. Для выполнения полета ракета должен противостоять этим возмущениям, т.е. быть устойчивой.

Устойчивость и управляемость являются важными свойствами, определяющими возможность полета по заданной траектории. При исследовании устойчивости и управляемости ЛА рассматривается как материальное тело и его движение описывается уравнениями движения центра масс и вращения вокруг центра масс. Движение центра масс и его вращение относительно центра масс связаны. Однако совместное изучение этих движений весьма затруднительно ввиду большого числа уравнений, описывающих общее движение.

В реальном движении, как правило, выполняются следующие условия: во-первых, отклонение органов управления практически мгновенно приводит к изменению аэродинамических сил, действующих на ракету, во-вторых, возникающие при этом управляющие силы существенно меньше основных аэродинамических сил.

Эти условия позволяют считать, что угловое движение, в отличие от движения его центра масс, можно изменить достаточно быстро и, следовательно, движение (вращение) относительно центра масс и движение центра масс по траектории можно рассматривать отдельно.

В полете на ракету кроме основных действуют малые возмущающие силы, связанные с ветровыми и турбулентными возмущениями атмосферы, изменением конфигурации ракеты, пульсацией тяги и другими причинами. Поэтому реальное движение ракетаа является возмущенным и отличается от невозмущенного. Возмущающие силы заранее неизвестны и носят случайный характер, поэтому в уравнениях движения точно задать все силы, действующие на ракету в полете, практически невозможно.

Устойчивостью называется свойство ракеты восстанавливать кинематические параметры невозмущенного движения и возвращаться к исходному режиму после прекращения действия на ракету возмущений.

При выполнении отдельных этапов полета необходимо, чтобы можно было целенаправленно воздействовать на характер движения ракеты, то есть управлять ракетой.

При управлении ракетой решаются следующие задачи:

· обеспечение требуемых значений кинематических параметров, необходимых для реализации заданного опорного движения;

· парирование возмущающих воздействий и сохранение заданных или близких к ним параметров движения при действии возмущения.

Эти задачи могут быть решены, если ракета надлежащим образом реагирует, отзывается на управляющие воздействия, то есть обладают управляемостью.

Управляемостью называется свойство отвечать соответствующими линейными и угловыми перемещениями в пространстве на отклонение органов управления

Существует условное деление устойчивости движения ракетаа на статическую и динамическую. Статическая устойчивость ракеты характеризует равновесие сил и моментов в опорном установившемся движении. Статически устойчивым по тому или иному параметру движения называют ракету, у которого отклонение этого параметра от опорного значения сразу же после прекращения действия возмущений приводит к появлению силы (в поступательном движении) или момента (в угловом), направленных на уменьшение этого отклонения. Если силы и моменты направлены на увеличение начального отклонения, то ракета статически неустойчива.

Статическая устойчивость является важным фактором при оценке динамической устойчивости ракеты, однако ее не гарантирует, поскольку при определении динамической устойчивости оценивается не начальная тенденция к устранению возмущения, а конечное состояние – наличие асимптотической устойчивости или неустойчивости в смысле А.М. Ляпунова. При оценке динамической устойчивости важно не только конечное состояние (устойчив или неустойчив), но и показатели процесса затухания отклонений от невозмущенного движения:

· время затухания отклонений параметров движения;

· характер возмущенного движения (колебательный, апериодический);

· максимальные значения отклонений;

· период (частота) колебаний (если процесс колебательный) и др.

Расстояние между центром тяжести и точкой нейтральной центровки называют запасом статической устойчивости самолёта.

Для того чтобы быть точнее в утверждениях об устойчивости ракеты, необходимо ввести две стороны этой темы, ранее не упоминавшиеся. Во-первых, влияние начального возмущения в основном зависит от того, отклоняются или нет поверхности управления во время последующего движения. Очевидно, что следует предположить две крайние возможности, а именно, органы управления постоянно находятся в исходном положении и они полностью свободны для движения на своих петлях. Первое предположение очень близко соответствует примеру ракета с поверхностями управления, имеющими силовой привод, которые обычно необратимы в том смысле, что аэродинамические силы не могут заставить их отклониться против механизма управления. Второй ограничивающий случай – органы управления свободны – является отчасти идеализированным представлением ракета с ручным режимом управления, когда пилот позволяет ракете лететь в «автоматическом режиме». Степень устойчивости этих крайних примеров может быть различной, настолько, что, очевидно, желаемые цели по устойчивости как при постоянных, так и при свободных органах управления иногда могут быть очень трудно достижимыми.

Вторая сторона проблемы устойчивости, которая ранее не рассматривалась, – это влияние двигательной установки. Необходимо рассмотреть устойчивость как с работающим двигателем, так и с неработающим двигателем. Разница возникает в основном благодаря двум факторам: один из них – непосредственное влияние тяги на равновесие и движение ракеты; второй – изменение аэродинамических сил, действующих на крыло и хвостовое оперение вследствие течения, вызванного двигательной установкой. Последний фактор, как правило, более значим в ракетах, приводимых в движение воздушными винтами, по сравнению с ракетами с реактивными двигателями; он называется влиянием спутной струи от воздушного винта. Даже в реактивных ракетах большинство конструкторов размещают хвостовые поверхности довольно высоко над реактивной струей, чтобы избежать взаимных вредных воздействий.

Список литературы

1. Балакин, В. Л., Лазарев, Ю.Н. Динамика полета самолета. Устойчивость и управляемость продольного движения. – Самара, 2011.

2. Богословский С.В. Дорофеев А.Д. Динамика полета летательных аппаратов. – СПб.: ГУАП, 2002.

3. Ефимов В.В. Основы авиации. Часть I. Основы аэродинамики и динамики полета летательных аппаратов: Учебное пособие. – М.: МГТУ ГА, 2003.

4. Карман, Т. Аэродинамика. Избранные темы в их историческом развитии. – Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001

5. Стариков Ю.Н., Коврижных Е.Н. Основы аэродинамики летательного аппарата: Учеб. пособие. –2-е изд-е, испр. и доп. – Ульяновск: УВАУ ГА, 2010.

Областью статической устойчивости энергосистемы называется множество ее режимов, в которых обеспечивается статическая устойчивость при определенном составе генераторов и фиксированной схеме электрической сети. Поверхность, ограничивающую множество устойчивых режимов, называют границей области статической устойчивости.

Области устойчивости строятся в координатах параметров, влияющих на устойчивость режима. Такими наиболее важными параметрами являются активные мощности генераторов, нагрузки в узлах схемы энергосистемы, напряжения генераторов; чаще всего в качестве таких параметров используются перетоки по линиям электропередачи в тех или иных сечениях энергосистемы.

Пользоваться областями устойчивости в многомерном пространстве практически невозможно; поэтому следует стремиться к уменьшению количества координат. Для уменьшения числа независимых координат учитывают различную степень влияния параметров на устойчивость режима, т.е. используют те же положения и методы, что и при эквивалентировании схем и режимов энергосистем.

Определение границ области статической устойчивости выполняется с помощью расчетов установившихся режимов, начиная с заведомо устойчивого, при таком изменении параметров, которое приводит к предельному режиму. В реальной энергосистеме утяжеление режима по активной мощности, вызванное любой причиной (командой диспетчера или возникшее самопроизвольно – из-за изменения нагрузки или возникновения аварийного небаланса мощности), сопровождается некоторым изменением частоты. Отклонение частоты в свою очередь – приводит к изменению перетоков мощности вследствие изменения мощности нагрузки (в соответствии с ее регулирующим эффектом по частоте) и изменения мощности генераторов (в соответствии со статизмом регуляторов скорости турбин). Попытка учета этих факторов в их взаимодействии приводит к необходимости подробного моделирования процессов при изменении частоты в системе и выполнения весьма трудоемких расчетов по специальным программам. Все это крайне усложнило бы методику выполнения расчетов статической устойчивости, недопустимо увеличило бы объем расчетов. Поэтому к расчетам утяжеления режимов с учетом процессов при изменении частоты прибегают только тогда, когда в этом есть действительная необходимость.

Области устойчивости строятся в координатах только активных мощностей, когда напряжения в энергосистеме при утяжелениях ее режимов изменяются мало или однозначно определяются заданными перетоками мощности. Если же вариации напряжения, возможные в различных режимах, приводят к существенным изменениям предельных мощностей, то напряжения в контролируемых точках включаются в число учитываемых координат или строится несколько областей устойчивости для разных уровней напряжения.

Расчеты статической устойчивости в послеаварийных режимах, вызванных возникновением значительных аварийных небалансов мощности, могут во многих случаях также производиться при неизменной частоте. При этом (если это необходимо) влияние изменения частоты на потокораспределение может быть учтено приближенно путем принудительного изменения балансов мощностей частей энергосистемы, разделяемых рассматриваемым сечением, на величину, пропорциональную крутизне их частотных характеристик.

При достаточных резервах реактивной мощности почти безразлично, осуществляется ли утяжеление режима перераспределением генерации или нагрузки. Для таких случаев рекомендована следующая процедура:

1) увеличение генерации в одной части энергосистемы с соответствующим (равным с точностью до изменения потерь) уменьшением генерации в другой части;

2) если на загружаемых генераторах достигнуты ограничения по располагаемой активной мощности, то дальнейшее утяжеление осуществляется уменьшением нагрузки в той же части энергосистемы;

3) если генераторы разгружены до практически реализуемого минимума, то осуществляется увеличение нагрузки.

При изменениях нагрузки предполагается, что отношение Р н /Q н остается неизменным, что соответствует наличию однотипных приемников.

Если при утяжелении режима реактивные мощности генераторов достигают ограничений по Q гmin , Q г max , то два указанных способа утяжеления режима - изменением Р г и Р н - становятся неравнозначными. Увеличению активной нагрузки соответствует рост потребляемой реактивной мощности; это приводит к снижению напряжения. При том же направлении утяжеления, но с уменьшением активной мощности генераторов, возрастает их располагаемая реактивная мощность, что способствует повышению напряжения. Следовательно, во втором случае значения Р пр могут оказаться выше.

Запас статической устойчивости для данного режима работы энергосистемы определяется его близостью к границе области устойчивости, которая может быть обусловлена апериодическим или колебательным нарушением устойчивости. Запас статической устойчивости характеризуется коэффициентами запаса по активной мощности в сечениях энергосистемы и по напряжению в узлах нагрузки. Коэффициент запаса статической устойчивости по активной мощности определяется для всех сечений схемы энергосистемы, в которых необходима количественная проверка достаточности запаса. Неучет какого-либо из опасных сечений может привести к нарушению устойчивости энергосистемы при достижении перетоком в этом неконтролируемом сечении предельного значения.

Значение максимально допустимого перетока , при котором в контролируемом сечении обеспечивается требуемый минимальный запас статической устойчивости К р, может быть определено исходя из (6.1):

. (7.8)

Запас статической устойчивости по напряжению вводится для обеспечения статической устойчивости нагрузки. Для определения запаса по напряжению какого-либо узла нагрузки в данном режиме напряжение U в этом режиме сравнивается с критическим напряжением в том же узле U кр по выражению (6.2). Значение критического напряжения определяется свойствами нагрузки, главным образом загрузкой двигателей и протяженностью линий электропередачи, входящих в узел нагрузки. При определении коэффициента запаса по напряжению можно полагать, что критическое напряжение в узлах нагрузки при номинальных напряжениях до 110-220 кВ составляет 75% напряжения в рассматриваемом узле при нормальном режиме энергосистемы в том же сезоне и при том же времени суток, для которых определяется К U .

Область максимально допустимых режимов, рассчитанная для требуемого значения К р , может иметь дополнительные эксплуатационные ограничения по токам, уровням напряжения и пр. Особое внимание обращается на токи генераторов, поскольку утяжеление режима вплоть до предельного выполняется при предельно допустимых кратностях перегрузки по токам статора и ротора, допустимых для кратковременных, обычно двадцатиминутных режимов. Максимально допустимые режимы рассматриваются как длительные.