Своим названием поток векторного поля обязан задачам гидродинамики о потоке жидкости. Поток векторного поля может быть вычислен в виде поверхностного интеграла , который выражает общее количество жидкости, протекающей в единицу времени через некоторую поверхность в направлении вектора скорости течения жидкости в данной точке. Понятие потока векторного поля обобщается также на магнетический поток, поток электричества, поток тепла через заданную поверхность и другие. Поток векторного поля может быть вычислен в виде поверхностного интеграла как первого, так и второго рода и далее мы дадим его вывод через эти интегралы.

Пусть в некоторой области пространства задано векторное поле

и поверхность σ , в каждой точке M которой определён единичный вектор нормали . Пусть также направляющие косинусы этого вектора - непрерывные функции координат x , y , z точки M .

Определение потока векторного поля . Потоком W поля вектора через поверхность σ называется поверхностный интеграл

Обозначим как a n проекцию вектора на на единичный вектор . Тогда поток можем записать как поверхностный интеграл первого рода

Учитывая, что

поток векторного поля можно вычислить и как поверхностный интеграл второго рода

.

Направление и интенсивность потока векторного поля

Поток векторного поля зависит от местоположения поверхности σ . Если поверхность размещена так, что во всех её точках вектор поля образует с вектором нормали поверхности острый угол, то проекции вектора a n положительны и, таким образом поток W также положителен (рисунок ниже). Если же поверхность размещена так, что во всех её точках вектор образует с вектором нормали поверхности тупой угол, то поток W отрицателен.

Через каждую точку поверхности проходит одна векторная линия, поэтому поверхность σ пересекает бесконечное множество векторных линий. Однако условно можно принять, что поверхность σ пересекает некоторое конечное число векторных линий. Поэтому можно считать, что поток векторного поля - это число векторных линий, пересекающих поверхность σ . Чем интенсивнее поток векторного поля, тем более плотно расположены векторные линии и в результате получается бОльший поток жидкости.

Если поток векторного поля - поле скорости частиц текущей жидкости через поверхность σ , то поверхностный интеграл равен количеству жидкости, протекающей в единицу времени через поверхность σ . Если рассматривать магнетическое поле, которое характеризуется вектором магнетической индукции , то поверхностный интеграл называется магнетическим потоком через поверхность σ и равен общему количеству линий магнетической индукции, пересекающих поверхность σ . В случае электростатического поля интеграл выражает число линий электрической силы, пересекающих поверхность σ . Этот интеграл называется потоком вектора интенсивности электростатического поля через поверхнсть σ . В теории теплопроводности рассматривается стационарный поток тепла через поверхность σ . Если k - коэффициент теплопроводности, а u (M ) - температура в данной области, то поток тепла, протекающего через поверхность σ в единицу времени, определяет интеграл .

Вычисление потока векторного поля: примеры

Пример 1. Вычислить поток векторного поля через верхнюю сторону треугольника, образованного пересечением плоскости с координатными плоскостями. Решить задачу двумя способами: 1) через поверхностный интеграл первого рода; 2) через поверхностный интеграл второго рода.

1) Поверхностью σ является треугольник ABC , а её проекцией на ось xOy - треугольник AOB .

Координатами вектора нормали данной поверхности являются коэффициенты при переменных в уравнении плоскости:

Длина вектора нормали:

.

Единичный вектор нормали:

.

Таким образом,

Из выражения единичного вектора нормали следует, что направляющий косинус . Тогда .

Теперь можем выразить поток векторного поля в виде поверхностного интеграла первого рода и начать решать его:

Выразим переменную "зет":

Продолжаем вычислять интеграл и, таким образом, поток векторного поля:

Получили ответ: поток векторного поля равен 64.

2) Выражая поток векторного поля через поверхностный интеграл второго рода, получаем

.

Представим этот интеграл в виде суммы трёх интегралов и каждый вычислим отдельно. Учитывая, что проекция поверхности на ось yOz является треугольник OCB , который ограничивают прямые y = 0 , z = 0 , y + 3z = 6 или y = 6 − 3z и в точках поверхности 2x = 6 − y − 3 , получаем первый интеграл и вычисляем его:

Проекцией поверхности на ось xOz является треугольник OAC , который ограничен прямыми x = 0 , z = 0 , 2x + 3z = 6 или . По этим данным получаем второй интеграл, который сразу решаем:

Проекцией поверхности на ось xOy является треугольник OAB , который ограничен прямыми x = 0 , y = 0 , 2x + y = 6 . Получаем третий интеграл и решаем его:

Осталось только сложить все три интеграла:

Получили ответ: поток векторного поля равен 64. Как видим, он совпадает с ответом, полученным в первом случае.

Пример 2. Вычислить поток векторного поля через верхнюю сторону треугольника, образованного пересечением плоскости с координатными плоскостями. Решить задачу двумя способами: 1) через поверхностный интеграл первого рода; 2) через поверхностный интеграл второго рода.

Решение. Данная поверхность представляет собой треугольник ABC , изображённый на рисунке ниже.

1) Коэффициенты при x , y и z из уравнения плоскости являются координатами вектора нормали плоскости, которые нужно взять с противоположным знаком (так как вектор нормали верхней стороны треугольника образует с осью Oz острый угол, так что третья координата вектора нормали плоскости должна быть положительной). Таким образом, вектор нормали запишется в координатах так.

Итак, на примерах мы показали, что, если силовые линии однородного электрического поля напряженностью пронизывают некоторую площадкуS , топоток вектора напряженности (число силовых линий через площадку) будет определяться формулой

где E n – произведение векторана нормальк данной площадке (рисунок 2.5).

Рисунок 2.5

Полное число силовых линий, проходящих через поверхность S , называется потоком вектора напряженности Ф Е через эту поверхность.

Элементарный поток вектора напряженности через площадку dS (рис. 5) определится соотношением:

где
– проекция
на направление нормали.

В векторной форме можно записать
– скалярное произведение двух векторов, где вектор
.

Таким образом, поток вектора есть скаляр, который в зависимости от величины угла α может быть как положительным, так и отрицательным .

Полный поток вектора напряженности через любую площадку S можно определить тогда
, а поток через замкнутую поверхность, окружающую заряд или заряженное тело равен
.

Так как напряженность поля, созданного в любой точке пространства зависит от величины заряда, создающего это поле, то поток вектора напряженности электростатического поля через любую площадку, находящуюся в этом поле также зависит от величины заряда.

Рассмотрим примеры, изображенные на рисунках 2.6 и 2.7.

Рисунок 2.6 Рисунок 2.7

Для рисунка 2.6 – поверхность А 1 окружает положительный заряд и поток здесь направлен наружу, т.е.
ПоверхностьА 2 – окружает отрицательный заряд, здесь
и направлен внутрь. Общий поток через поверхностьА равен нулю.

Для рисунка 2.7 – поток будет не равен нулю, если суммарный заряд внутри поверхности не равен нулю. Для этой конфигурации поток через поверхность А отрицательный.

Таким образом, поток вектора напряженности зависит от заряда.

2.3. Теорема Остроградского – Гаусса (теорема Гаусса)

К.Ф. Гаусс (1777–1855) выдающийся немецкий математик, астроном и физик в 1839г. предложил теорему, которая устанавливает связь потока вектора напряженности электрического поля череззамкнутую поверхность со значением зарядаq , находящегося внутри этой поверхности.Эта теорема выведена математически для векторного поля любой природы русским математиком М.В. Остроградским (1801-1862), а затем независимо от него применительно к электростатическому полю – К.Гауссом.

Теорема Остроградского – Гаусса (теорема Гаусса): поток вектора напряженности электрического поля через замкнутую поверхность в вакууме равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на :

.

Докажем эту теорему. Пусть поле создается точечным зарядом q . Окружим заряд замкнутой поверхностьюS произвольной формы. Разобьем замкнутую поверхность на элементарные площадкиdS , к каждой из которых проведем вектор нормали.

Элементарный поток вектора напряженности через площадкуdS (рис. 2.8) определится соотношением:

где
–проекция
на направление нормали. Тогда
, где
- элементарный телесный угол, под которым элемент
виден из места положения заряда. Вычислим поток вектора напряженности через замкнутую поверхностьS от точечного зарядаq , находящегося внутри этой поверхности.

,

так как
, то

.

Как видно, поток вектора напряженности выходящий из поверхности не зависит от формы поверхности, охватывающей заряд и пропорционален величине заряда.

Если заряд находится вне замкнутой поверхности, то суммарный поток через любые элементарные площадки dS 1 иdS 2 , находящиеся внутри телесного углаd Ω(рис. 2.9) равен сумме потоков напряженности выходящего из этой поверхности (положительный поток) и входящего в нее (отрицательный поток).

Тогда , следовательно, поток напряженности электрического поля через любую поверхностьS , не охватывающую заряды равен нулю, т.е.Ф Е =0.

Пусть внутри замкнутой поверхности имеется зарядов, тогда алгебраическим суммированием (согласно принципу суперпозиции) находим, что общий поток вектора напряженности через замкнутую поверхность равен
.

Теорема доказана.

Таким образом теорему Гаусса можно сформулировать следующим образом: поток вектора напряженности электрического поля через замкнутую поверхность в вакууме равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на :

(1),

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью , то теорема Гаусса имеет вид:

(2)

где интеграл справа берется по объему V, охватываемому поверхностьюS .

Необходимо обратить внимание на следующее обстоятельство: в то время как само поле зависит от конфигурации всех зарядов, поток
сквозь произвольную замкнутую поверхность определяется только алгебраической суммой зарядов внутри поверхностиS . Это значит, чтоесли передвинуть заряды внутри замкнутой поверхности , тоизменится всюду , и на поверхностиS , апоток вектора через эту поверхность останется прежним .

Таким образом, чтобы рассчитать поле, созданное какой-то конфигурацией зарядов в данной точке, нужно через эту точку провести замкнутую поверхность произвольной формы и рассчитать поток вектора напряженности через эту поверхность. Так как по т еореме Гаусса поток вектора напряженности электрического поля через замкнутую поверхность в вакууме равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на , то, зная величину заряда, находящегося внутри замкнутой поверхности можно найти напряженность поля в интересующей нас точке пространства.

Рассмотрим примеры применения теоремы Гаусса.



Укажем некоторые способы вычисления потока вектора через незамкнутые поверхности. 1. . Пусть поверхность 5 однозначно проектируется на область Dxy плоскости хОу. В этом случае поверхность S можно задать уравнением вида Орт п° нормали к поверхности S находится по формуле Если в формуле (1) берется знак« то угол 7 между осью Oz и нормалью острый; если же знак то угол 7 - тупой. Так как элемент площади этой поверхности равен то вычисление потока П через выбранную сторону поверхности 5 сводится к вычи-слениюдвойного интеграла по формуле Символ Поток вектора через незамкнутую поверхность метод проектирования на одну из координатных плоскостей Метод проектирования на все координатные плоскости Метод введения криволинейных координат на поверхности Поток вектора через замкнутую поверхность. Теорема Гаусса-Остроградского означает, что при вычислении в подынтегральной функции надо вместо z всюду поставить f(x} у). Пример 1. Найти поток вектора через часть поверхности параболоида z = s2 + y2, отсеченной плоскостью z = 2. По отношению к области, ограниченной параболоидом, берется внешняя нормаль (рис. 15). Данная поверхность проектируется на круг плоскости хОу с центром в начале координат радиуса. Находим орт п° нормали к параболоиду: Согласно условию задачи вектор п° образует с осью Oz тупой угол 7, поэтому перед дробью следует взять знак минус. Таким образом, Находим скалярное произведение, значит, Согласно формуле (3) Вводя полярные координаты где получаем Если поверхность 5 проектируется однозначно на область плоскости yOz, то ее можно задать уравнением х = г). В этом случае имеем Наконец, если поверхность S проектируется однозначно на область Dxz плоскости xOzy то ее можно задать уравнением и тогда Знак « + » перед дробью в формуле (10) означает, чтоугол /3 между осью Оу и вектором нормали п° - острый, а знак «-», что угол /3 - тупой. Замечание. Для нахождения потока вектора через поверхность 5, заданную уравнением г = /(х,у), методом проектирования на координатную плоскость хОу, не обязательно находить орт п° нормали, а можно брать вектор Тогда формула (2) для вычисления потока П примет вид: Аналогичные формулы получаются для потоков через поверхности, задэнные уравнениями Пример 2. Вычислить поток вектора а = хг\ через внешнюю сторону параболоида ограниченного плоскостью Имеем Так как угол 7 - острый, следует выбрать знак « + ». Отсюда Искомый поток вычисляется так: Переходя к полярным координатам, получим Метод проектирования на все координатные плоскости. Пусть поверхность S однозначно проектируется на все три координатные плоскости. Обозначим через Dzy, Dxz, Dyz проекции 5 на плоскости хОу, xOz, yOz соответственно. В этом случае уравнение F{x} у, z) = 0 поверхности S однозначно разрешимо относительно каждого из аргументов, т. е. Тогда погок вектора к через поверхность S, единичный вектор нормали к которой равен можно записать так: Известно, что причем знак в каждой из формул (14) выбирается таким, каков знак на поверхности S. Подставляя соотношения (12) и (14) в формулу (13), получаем, что Пример 3. Вычислить поток векторного поля через треугольник, ограниченный плоскостями 4 Имеем так что Значит, перед всеми интегралами в формуле (15) следует взять знак « + ». Полагая получим Вычислим первый интеграл в правой части формулы (16). Область Dvz -треугольник ВОС в плоскости yOz, уравнение стороны. Имеем Аналогично получим. Значит, искомый поток равен 3. Метод введения криволинейных координат на поверхности. Если поверхность 5 является частью кругового цилиндра или сферы, при вычислении потока удобно, не применяя проектирования на координатные плоскости, ввести на поверхности криволинейные координаты. А. Поверхность 5 является частью кругового цилиндра ограниченного поверхностями будем иметь Элемент площади поверхности выражается так: и поток вектора а через внешнюю сторону поверхности 5 вычисляется по формуле: где 4. Найти поток вектора через внешнюю сторону поверхности цилиндра ограниченной плоскостями Так как то скалярное произведение (а, п°) на цилиндре равно: Тогда по формуле (18) получим В. Поверхность 5 является частью сфсры офаничснной коническими поверхностями, уравнения которых в сферических координатах имеют вид и полуплоскостями Точки данной сферы описываются соотношениями где Поэтому элемент площади В этом случае поток векторного поля а через внешнюю часть поверхности 5 вычисляется по формуле где Пример 5. Найти поток вектора через внешнюю часть сферы Положим Тогда скалярное произведение выразится так: По формуле (21) получим Замечание. Здесь мы воспользовались формулой Поток вектора через замкнутую поверхность. Теорема Гаусса-Остроградского Теорема 4. Если в некоторой области G пространства R3 координаты вектора непрерывны и имеют непрерывные частные производные, то поток вектора а через любую замкнутую кусочно-гладкую поверхность S, лежащую в области G, равен тройному интегралу от дх ду dz по области V, ограниченной поверхностью S: Здесь - орт внешней нормали к поверхности, а символ означает поток через замкнутую поверхность 5. Эта формула называется формулой Гаусса-Остроградского. Рассмотрим сначала векгор а, имеющий только одну компоненту а = R(x, у, z)k, и предположим, что гладкая поверхность 5 пересекается каждой прямой, параллельной оси Oz, не более чем в двух точках. Тогда поверхность 5 разбивается на две части 5| и 52, однозначно проектирующиеся на некоторую область D плоскости хОу (рис.21). Внешняя нормаль к поверхности 52 образует острый угол 7 с осью Oz, а внешняя нормаль к поверхности 51 образует тупой угол с осью Oz. Поэтому cos так что на 52 имеем 7. В силу аддитивности потока имеем Пусть da - элемент площади на поверхности S. Тогда ~ элемент площади области D. Сведем интегралы по поверхности к двойным интегралам по области D плоскости хОу, на которую проектируются поверхности Si и S2. Пусть S2 описывается уравнением - уравнением z = z\(x}y). Тогда Так как приращение непрерывно дифференцируемой фунмции можно представить как интеграл от ее производной то для функции R(x, у, z) будем иметь Пользуясь этим, получаем из формулы (3) Поток вектора через незамкнутую поверхность метод проектирования на одну из координатных плоскостей Метод проектирования на все координатные плоскости Метод введения криволинейных координат на поверхности Поток вектора через замкнутую поверхность. Теорема Гаусса-Остроградского Если поверхность S содержит часть цилиндрической поверхности с образующими, параллельными оси Oz (рис. 22), то на этой части поверхности (Як, п°) = 0 и интеграл / da по ней равен нулю. Поэтому формула (4) остается справедливой и для поверхностей, содержащих указанные цилиндрические части. Формула (4) переносится и на случай, когда поверхность S пересекается вертикальной прямой более, чем в двух точках (рис. 23). Разрежем область V на части, поверхность каждой из которых пересекается вертикальной прямой не более чем в двух точках, и обозначим через Sp поверхность разреза. Пусть S\ и S2 - те части поверхности 5, на которые она разбивается разрезом 5Р, a V\ и Vj - соответствующие части области V, ограниченные поверхностями. Здесь Sp означает, что вектор нормали к разрезу Sp направлен вверх (образует с осью Oz острый угол), a Sp - что этот вектор нормали направлен вниз (образует с осью Oz тупой угол). Имеем: Складывая полученные равенства и пользуясь аддитивностью потока и тройною интеграла, получим (интегралы по разрезу взаимно уничтожаются). Рассмотрим, наконец, вектор Для каждой компоненты Лк мы можем написать формулу, аналогичную формуле (4) (все компоненты равноправны). Получим Складывая эти равенства и пользуясь линейностью потока и тройного интеграла, получаем формулу Гаусса-Остро градского Пример 1. Вычислить поток век-гора через замкнутую поверхность по определению, 2) по формуле Остроградского. 4 1) Поток вектора а равен сумме на поверхности Si), на поверхности S2 К так как Перейдем на цилиндре к криволинейным координатам Тогда 2) По формуле Гаусса-Остроградского имеем Пример 2. Вычислить поток радиус-вектора через сферу радиуса R с центром 8 начале координат: 1) по определению; 2) по формуле Остроградского. Так как для сферы и поэтому 2) Сначала находим Отсюда Пример 3. Вычислить поток вектора через замкнугую поверхность S, заданную условиями: 1) по определению; 2) по формуле Острогрздя ого (рис.25). Имеем Значит, Поэтому Итак, Имеем Поэтому Переходя к цилиндрическим координатам и замечая,на поверхности 5, имеем Замечание. При вычислении потока через незамкнутую поверхность часто бывает удобно подходящим образом дополнить седо замкнутой и воспользоваться формулой Гаусса-Ос гроградского. Пример 4. Вычислить поток вектора Заданная поверхность S есть конус с осыо Оу (рис.26). Замкнем этот конус куском £ плоскости у - I. Тогда, обозначая через П| искомый поток, а через Н2 поток по поверхности будем иметь где V - объем конуса, ограниченного поверхностями S Поток вектора через незамкнутую поверхность метод проектирования на одну из координатных плоскостей Метод проектирования на все координатные плоскости Метод введения криволинейных координат на поверхности Поток вектора через замкнутую поверхность. Теорема Гаусса-Остроградского Так как на поверхности Е выполняется равенство у = 1. Следовательно, ITj

Пусть векторное поле образовано вектором .

Для наглядности будем считать - вектором скорости некоторого потока жидкости, движущейся стационарно. Представим, что некоторая поверхность S находиться в этом потоке и пропускает жидкость. Требуется вычислить, какое количество жидкости протекает через поверхность S.

единичный вектор нормали к рассматриваемой стороне поверхности S.

Потоком вектора через поверхность S называется интеграл П=- (этот интеграл ещё называют поверхностным интегралом II-го рода).(- скалярное произведение)

Поток П вектора есть скалярная величина. Величина равна объему жидкости, которая протекает через поверхность S за единицу времени. В общем случае, поток поля вектора пропорционален числу векторных линий, пронизывающих поверхность.

Т.О. если мы рассматриваем графическое изображение векторного поля, то можно судить о величине потока через одинаковые площадки по густоте векторных линий – там, где линии расположены ближе друг к другу, там больше и величина потока.

Особый интерес представляет случай, когда поверхность замкнута и ограничивает некоторый объём V . Тогда поток вектора записывается в виде

Если векторное поле - поле скоростей текущей жидкости, то величина потока П через замкнутую поверхность дает разность между количеством жидкости, вытекающей из области V и втекающей в неё за единицу времени.

Если П>0 , то из области V вытекает больше жидкости, чем в неё втекает. Это значит, что внутри области имеются дополнительные источники. Если П<0 , то в нутрии области V имеются стоки, поглощающие избыток жидкости.

Можно сказать, что источники – точки, откуда векторные линии начинаются, а стоки – точки, где векторные линии кончаются. Так в электростатическом поле источником является положительный заряд, стоком отрицательный заряд магнита.

Если П=0 , то из области V вытекает столько же жидкости, сколько в неё втекает в единицу времени; внутри области либо нет ни источников ни стоков, либо они таковы, что их действие взаимно компенсируется.

Дивергенция - численная характеристика плотности источника или стока поля в данной точке.

- предел отношения потока поля через некоторую замкнутую поверхность к объёму, ограниченному этой поверхностью, когда поверхность S стягивается в точку М , называется дивергенцией поля в точке М .

Если то в точке М иметься источник поля плотности

Если то в точке М сток плотности

Если то в точке М нет источников и нет стоков.

Дивергенция характеризирует мощность (интенсивность) источника или стока.

Формула для вычисления дивергенции:

Пример: вычислить дивергенцию вектора в т. М(1;2;3)