Магнитная лента

Катушка магнитной ленты

Магни́тная ле́нта - носитель информации в виде гибкой ленты, покрытой тонким магнитным слоем. Информация на магнитной ленте фиксируется посредством магнитной записи. Устройства для записи звука и видео на магнитную ленту называются соответственно магнитофон и видеомагнитофон . Устройства для хранения компьютерных данных на магнитной ленте называется стример .

Магнитная лента произвела революцию в вещании и записи. Вместо прямых эфиров в телевизионном и радиовещании стало возможным производить предварительную запись программ для последующего воспроизведения. Первые многодорожечные магнитофоны позволяли производить запись на несколько раздельных дорожек от различных источников, а затем впоследствии сводить их в конечную запись с наложением необходимых эффектов. Также развитию компьютерной техники послужила возможность сохранения данных на длительный период с возможностью быстрого доступа к ним.

Звукозапись

Магнитная лента была разработана в 1930-е годы в Германии при сотрудничестве двух крупных корпораций: химического концерна BASF и электронной компании AEG при содействии немецкой телерадиовещательной компании RRG.

Видеозапись

Видеокассета VHS

Первый в мире видеомагнитофон был представлен фирмой Ampex 14 апреля 1956 года. Небольшая компания, основанная русским эмигрантом Александром Матвеевичем Понятовым в Калифорнии, смогла сделать настоящий прорыв в технологии видеозаписи изобретя поперечно-строчную видеозапись и применив систему с вращающимися головками. Они использовали ленту шириной 2 дюйма (50,8 мм), которая наматывалась на бобины - так называемый формат Q (Quadruplex). 30 ноября 1956 года – Си-Би-Эс впервые использовала "Ампэкс" для отсроченного выпуска в эфир программы новостей. Видеомагнитофоны произвели настоящую технологическую революцию на телецентрах.

В 1982 году Sony выпустила систему Betacam . Частью этой системы была видеокамера , которая впервые в одном устройстве объединяла и телевизионную камеру и записывающее устройство. Между камерой и видеомагнитофоном не было кабелей, таким образом, видеокамера давала значительную свободу оператору. В Betacam используется 1/2" кассеты. Он быстро стал стандартом для производства теленовостей и для студийного видеомонтажа .

В 1986 году Sony представила первый цифровой формат видеозаписи , стандартизованный SMPTE , это положило началу эры цифровой видеозаписи. Наиболее распространенным бытовым форматом цифровой видеозаписи стал формат , представленный в 1995 году .

Хранение данных

Кассета QIC-80

Магнитная лента была впервые использована для записи компьютерных данных в 1951 году в компании Eckert-Mauchly Computer Corporation на ЭВМ UNIVAC I. В качестве носителя использовалась тонкая полоска металла шириной 12,65 мм, состоящая из никелированной бронзы (называемая Vicalloy). Плотность записи была 128 символов на дюйм (198 микрометров / символ) на восемь дорожек.

В 1964 году семейства IBM System/360 , в фирме IBM был принят стандарт 9-дорожечной ленты с линейной записью, который впоследствии распространился также в системах других производителей и широко использовался до 1980-х годов.

В домашних персональных компьютерах 1970-х и начала 1980-х годов (вплоть до середины 1990-х) в качестве основного внешнего запоминающего устройства во многих случаях использовался обычный бытовой магнитофон и компакт-кассета.

В 1989 году компаниями Hewlett-Packard и Sony на базе аудиоформата DAT был разработан формат хранения данных DDS (англ. Digital Data Storage ).

В 1990-е годы для систем резервного копирования персональных компьютеров были популярны стандарты QIC-40 и QIC-80, использовавшие небольшие кассеты физической ёмкостью 40 и 80 Мбайт соответственно.

Примечания

Ссылки

  • Владимир Островский Истоки и триумф магнитной звукозаписи // «625» : журнал. - 1998. - № 3.
  • Валерий Самохин, Наталия Терехова Формату VHS - 30! // "625" : журнал. - 2006. - № 8.

Wikimedia Foundation . 2010 .

Верно ли, что магнитная лента с рабочим слоем из двуокиси хрома быстрее изнашивает магнитные головки с сердечником из пермаллоя?

Действительно, хромдиоксидный рабочий слой обладает более высо-кой твердостью, чем гамма-окисла железа и оказывает повышенное абразивное на головку. С одной стороны, более твердость его позволяет добиваться идеального полирования с более высокой гладкостью, чем у гамма-окисла железа. Кроме этого, надо принимать так называемый период приработки, в течение которого абразивность ленты проявляется наи-большим образом, после чего абразивность резко снижается (рабочая поверх-ность ленты как бы полируется) и дальнейший износ сердечника головки про-исходит очень медленно.

Проведенные испытания различных лент показали, что если для лент с ра-бочим слоем из гамма-окисла железа приработки продолжается 5 - 7 проходов ленты длиной 525 м, то у хромдиоксидной ленты он обычно прекра-щается уже после второго прохода. Поэтому магнитная лента с рабочим сло-ем из двуокиси хрома, имеющая большую степень начальной полировки, при скорости движения 4,76 см/с изнашивает сердечник головки ничуть не -же, чем лента с рабочим слоем из гамма-окисла железа.

Чтобы уменьшить абразивность ленты, можно искусственно провести ее приработку. Для этого надо взять полоску из стали марки 20 - 40 шириной 3,5 мм, хорошо отжечь ее, согнуть корпусу универсальной головки, накле-ить внутри кусочек байки и, надев полоску на головку, провести несколько проходов ленты в обоих направлениях. После этого абразивность ленты замет-но снижается.

Можно ли ленту с рабочим слоем из двуокиси хрома использовать в магнитофонах, рассчитанных на работу с лентой, рабочий слой которой из гамма-окисла железа?

Хромдиоксидная лента требует больших токов подмагничивания и сти-рания, а также увеличенного тока записи и измененной коррекции АЧХ в вы-сокочастотной части рабочего диапазона по сравнению с лентой с рабочие слоем из гамма-окисла железа. Чтобы магнитофон мог работать с лентами, рабочие слои которых выполнены из разных магнитных порошков, в схему вво» дят переключатель, изменяющий при переходе с одной ленты на другую токи записи, подмагничивания и стирания, а также изменяющий коррекцию АЧХ. В некоторых простых магнитофонах такой переключатель изменяет только токв подмагничивания и стирания, что не позволяет использовать все положитель-ные свойства хромдиоксидной ленты. В магнитофонах, не имеющих такого пе-реключателя, пользоваться хромдиоксидной лентой нецелесообразно.

Существуют ли еще какие-либо магнитные ленты повышенного каче-ства?

Тенденция улучшения качественных показателей кассетных магнито-фонов потребовала создания лент, способных при низкой скорости движения обеспечивать высокие параметры аппаратов. Одной из первых таких лент бы-ла лента с рабочим слоем из порошка гамма-окисла железа более мелкозер-нистой структуры, имеющая улучшенную полировжу рабочей поверхности. 3а счет лучшего прилегания ленты к головке и более мелкой структуры порошка рабочего слоя динамический диапазон фонограммы на такой ленте на 2 - 4 дБ лучше, чем на обычной. Лучше на ней записываются и воспроизводятся верх-ние звуковые частоты, что еще более повышает качество фонограммы. (Зару-бежные кассеты с такой лентой снабжались надписью «Low noise» - малый ). Добавим еще, что ее использование целесообразно только в кассетных магнитофонах при низкой скорости движения, а твердость поверхности рабо-чего слоя позволяет добиться почти идеального его полирования и, следователь-но, лучшего прилегания к головке и большей отдачи на высоких частотах.

Сравнительно недавно получила распространение лента с рабочим слоем из гамма-окисла железа с присадкой кобальта, которую называют кобаль–тированной. Основное преимущество такой ленты - более уровень за-писи. При ее использовании становится возможным увеличить намагниченность ленты от 250 до 320 нВб/м в катушечных магнитофонах и от 160 до 250 нВб/м - в кассетных. К таким лентам относятся и отечественные ленты типов А4309-6Б, А4409-6Б и А4205-ЗБ.

Одной из разновидностей лент с рабочим слоем из гамма-окисла железа является лента, способная обеспечить повышенный динамический диапазон фо-нограммы и несколько больший уровень записи высоких частот. Улучшение -раметров ленты достигнуто за счет уменьшения размеров феррочастиц рабоче-го слоя (0,4 мкм вместо 1 мкм в обычной ленте), высокой плотности и равномерного распределения их в рабочем слое. За рубежом такая лента получила название «Super Dynamic» (SD).

Последняя новинка - так называемая «металлическая» лента, рабочий слой одного из вариантов которой выполнен на основе порошкообразного чис-того железа. «Металлическая» лента имеет более высокую коэрцитивную силу, чем хромдиоксидная, и требует еще больших токов подмагничивания и стира-ния. Так, например, для такой ленты подмагничивания должен быть при-мерно на 6 дБ больше, чем для хромдиоксидной, и на 9 дБ больше, чем для ленты с рабочим слоем из гамма-окисла железа. Для «металлической» ленты при скорости движения 4,76 см/с уровень намагниченности на частоте 12 кГц практически на 12 дБ выше, чем для обычной ленты. Отечественная промыш-ленность пока что такой ленты не выпускает.

Влияет скорость движения магнитной ленты на качество записи (воспроизведения)?

Влияет. Чтобы объяснить это, надо вспомнить, что записи К прямо пропорциональна поступательной скорости V носителя записи ленты и обратно пропорциональна частоте записи f (см. с. 4). Следует также напомнить, что э. д. с. головки воспроизведения зависит от длины за-писанных колебаний и уменьшается по мере приближения длины волны запи-си к эффективной ширине рабочего зазора головки, а когда длина волны записи станет равна ширине рабочего зазора - э. д. с. головки воспроизведения будет равна нулю. Это носит название «щелевых потерь» и описывается так называемой «щелевой функцией».

Практически установлено, что минимальная длина волны эффективно вос-производимых колебаний должна быть в два раза больше эффективной шири-ны рабочего зазора ГВ. Поясним это примером. Допустим, мы имеем магнито- со скоростью движения ленты 9,53 см/с, в котором установлена ГВ с ге-ометрической шириной рабочего зазора 3 мкм. Так как эффективная ширина рабочего зазора l обычно на 20 - 25% больше геометрической ширины, то l=3-1,25=3,75 мкм. Заменяя длину волны записи удвоенной эффективной ши-риной рабочего зазора, определим верхнюю частоту рабочего диапазона f= =V/2l=95 300/7,5=12 707 Гц. Такой примерно верхний рабочего диа-пазона частот (12500 Гц) установлен нормативными документами. При тех же условиях на скорости 19,05 см/с возможна запись и воспроизведение частот до 25400 Гц, а на скорости 4,76 см/с - до 6347 Гц. Надо учитывать и то об-стоятельство, что по мере улучшения качественных показателей лент и магнит-ных головок рабочий записываемых и воспроизводимых частот не-прерывно расширяется.

Известно, что рабочий зазор магнитной головки характеризуется его шириной, глубиной и длиной. А каково влияние глубины и длины рабочего зазора на запись и воспроизведение звука?

Влияние глубины и длины рабочего зазора (о влиянии ширины рас-сказано в предыдущем ответе) магнитной головки (рис. 3) не столь явно и за-частую не учитывается, так как радиолюбители пользуются готовыми голов-ками с известными параметрами.

Длина рабочего зазора, что то же самое, ширина сердечника головки, определяется шириной дорожки записи. Использование в современных магнитофонах четырехдорожечной записи привело к уменьшению ширины сердечни-ка до 1 и 0,66 мм при ширине магнитной ленты соответственно 6,25 и 3,81 мм, а это, в свою очередь, отразилось на остаточном магнитном потоке фонограм-мы, понизив его по сравнению с двухдорожечной записью. В этих условиях: уменьшение ширины рабочего зазора приводит к ухудшению отношения сигнал-шум и снижению динамического диапазона фоно-граммы. Один из путей борьбы с этим - повыше-ние эффективности ГЗ и отдачи ГВ за счет умень-шения глубины рабочего зазора.

Рис. 3. Рабочий зазор маг-нитной головки и его параметры

Эффективность ГЗ определяется сечением сер-дечника в зоне рабочего зазора головни. Чем мень-ше сечение сердечника, тем выше эффективность ГЗ, которая определяет ток записи, необходимый для создания около рабочего зазора ГЗ требуемого магнитного поля записи. С повышением эффектив-ности ГЗ ток записи может быть снижен, что важно для магнитофонов с пи-танием от автономных источников тока и особенно кассетных магнитофонов..

Отдача ГВ - это э. . с., индуцируемая в обмотке при воспроизведении фо-нограммы. Электродвижущая ГВ пропорциональна скорости изменения магнитного потока в сердечнике ГВ и зависит от остаточного магнитного -ка фонограммы и параметров магнитной цепи ГВ. Для эффективного замыка-ния магнитного потока фонограммы через сердечник ГВ, а не через рабочий-зазор необходимо, чтобы магнитное сопротивление рабочего зазора ГВ было значительно больше сопротивления сердечника. При заданной ширине рабоче-го зазора это достигается уменьшением его глубины. В современных ГВ и ГУ катушечных магнитофонов глубина достигает 0,15 - 0,25 мм, а в кассетных« - около 0,1 мм.

Уменьшение глубины зазора влечет за собой уменьшение долговечности головки из-за стирания рабочей поверхности головки рабочим слоем магнитной ленты. Однако современные ленты с основой из полиэтилентерефталата и вы-сокой степенью полировки рабочей поверхности позволяют строить лентопро-тяжные механизмы с силой прижима ленты к головке около 4 - 6 Н (400 - 600 г) в катушечных магнитофонах и около 2 Н (200 г) - в кассетных и по-лучать головки до 1000 ч и более.

Чем вызвано увеличение номинального значения магнитного потока короткого замыкания до 320 нВб/м в катушечных магнитофонах и до 250 нВб/м в кассетных?

Поток короткого замыкания фонограммы характеризует количествен» но полезный эффект записи и представляет собой через сер-дечник ГВ с нулевым магнитным сопротивлением. Нормированное значение уровня записи называется номинальным. Нетрудно показать, что уровень за-писи в этих условиях в большой степени зависит от качества магнитной лен-ты. С появлением магнитных лент с улучшенными свойствами и особенно вы« сококоэрцитивных лент записи может быть увеличен. Внедрение но-вых магнитных лент типов А4409-6Б и А4205-ЗБ позволило увеличить номи-нальное значение потока короткого замыкания до 320 нВб/м для скорости 19,05 см/с в катушечных магнитофонах и до 250 нВб/м - для скорости 4,76 см/с в кассетных. Это позволяет разработчикам магнитофонов расширить -мический диапазон записи, уменьшить коэффициент нелинейных искажений и улучшить ряд других параметров магнитофона.

Какие еще требования предъявляются к магнитным лентам?

В современных магнитофонах, когда ширина дорожки записи стала меньше 1 мм, а геометрическая ширина рабочего зазора головки приближает-ся к 1 мкм, для достижения высококачественных показателей должна исполь-зоваться магнитная , позволяющая обеспечить наилучший между рабочим слоем ленты и головкой.

Для обеспечения этого необходима высокая эластичность материала ос-новы ленты. Все вновь разрабатываемые ленты, особенно для кассетных магни-тофонов, изготавливают поэтому с основой из полиэтилентерефталата (торго-вое название « »). Такую основу имеют новые ленты типов А4309-6Б, А4409-6Б, А4205-ЗБ и др.

Другая особенность лент заключается в высокой степени полирования ра-бочего слоя. При хорошо отполированной поверхности рабочего слоя замет-но улучшается контакт между лентой и головкой, уменьшается износ головок, улучшаются запись и воспроизведение верхних частот из-за уменьшения кон-тактных потерь, а также повышается отношение сигнал-шум.

Еще одно специфическое качество - отсутствие дефектов рабочего слоя. Известно, что собственный шум ленты определяется составом, равномерностью и однородностью магнитного материала рабочего слоя. Попадание в рабочий слой посторонних вкраплений или появление в нем микропузырьков приводит к выпадению сигнала и, как , - к потере информации. Это особенно заметно на музыкальных записях.

Что должен показывать индикатор уровня сигнала?

В бытовой аппаратуре магнитной записи звука с помощью встроен-иого индикатора осуществляется постоянный контроль за уровнем сигнала, по-даваемого на запись. Так как большинство магнитофонов имеют универсаль-ный усилитель, индикатор уровня сигнала включают на его выходе. При раз-Дельных усилителях записи и воспроизведения и раздельных головках встроен-ные индикаторы позволяют контролировать как сигнал, подаваемый на запись, так и уже записанный сигнал, осуществляя тем самым контроль сквозного -нала. При этих условиях индикатор должен показывать значения кон-тролируемых сигналов, причем максимально допустимый сигнал должен соот-ветствовать номинальному уровню записи.

Для магнитной звукозаписи и видеозаписи в качестве носителя применяют ферромагнитную ленту, состоящую из основы, на которую нанесен слой ферромагнитного вещества (рабочий слой). В качестве основы ленты применяют диацетилцеллюлозу , триацетилцеллюлозу , лавсан. Наилучшим материалом для основы является лавсан (полиэтилентерефталат). Для изготовления рабочего слоя магнитных лепт применяют гамма-окисел железа, феррит кобальта, двуокись хрома и др. Наибольшее распространение в современных лентах получил гамма-окисел железа. В настоящее время применяется порошок гамма-окисла железа с частицами игольчатой формы и размерами 0,1-0,5 мкм. Объемная концентрация магнитного порошка в рабочем слое у разных лент составляет 30-45%.

Для звукозаписи выпускают большое количество типов магнитных лент. Общепринятого обозначения лент пока нет, и изготовители обозначают их по-разному. В СССР тип ленты ранее обозначался порядковым номером разработки (например, тип 2, тип 6, тип 10). Согласно ГОСТ 17204-71 «Ленты магнитные. Система обозначения типов» с 1972 г, введена новая система обозначения. По этой системе типы лент обозначают комбинацией из пяти элементов.

Первый элемент - буквенный, обозначающий назначение ленты: А - звукозапись; Т - видеозапись; В - вычислительная техника;. И - точнаязапись.

Второй элемент - цифровой (от 0 до 9), обозначающий материал основы: 2 - диацетилцеллюлоза (ДАЦ); 3 - триацетилцеллюлоза ; 4 - полиэтилентерефталат.

Третий элемент - цифровой (от 1 до 9), обозначающий толщину ленты: 2--18 мкм, 3-27 мкм; 4-37 мкм; 6-55 мкм; 9 - свыше100 мкм.

Четвертый элемент - цифровой (от 01 до 99), обозначающий номертехнологической разработки.

Пятый элемент - численное значение номинальной ширины ленты в миллиметрах.

После пятого элемента применяется дополнительный буквенный индекс: П -д ля перфорированных лент; Р -для лент, используемых в радиовещании; Б - для лент к бытовым магнитофонам.

Согласно рекомендации Международной электротехнической комиссии (МЭК) от 1959 г. по ГОСТ 8303-76 «Ленты магнитные. Основные размеры» ширина лент принята равной 6,25 ± 0,05 мм. В последнее время выпускают ленты шириной 3,81 мм, которые применяют в кассетных магнитофонах. Толщина ленты по ГОСТ 8303-76 55 +0 -5 , 37 +0 -5 , 27 +0 -2 и18 +0 -2 мкм.

Магнитные ленты оценивают по следующим показателям: физико-механическим, определяющим свойства лент при механических и климатиче­ских воздействиях; магнитным, определяющим свойства в магнитном поле, рабочим, характеризующим чувствительность магнитной ленты к воздействиям при записи и искажения сигнала при записи и воспроизведении.

К физико-механическим показателям лент относят следующие :

нагрузка, соответствующая пределу текучести, она, характеризует прочность ленты при статическом нагружении ;

относительное удлинение под нагрузкой, т, е. изменение длины ленты при заданной статической нагрузке;

работа ударного разрыва, т. е. прочность ленты при динамическом нагружении ;

остаточное удлинение после ударной нагрузки характеризует необратимые изменения длины ленты после динамического нагружения ;

абразивность , т. е. степень износа лентой магнитных головок и других неподвижных деталей лентопротяжного механизма, с которыми соприкасается лента в процессе движения;

сабельность - деформация ленты по длине (вызывается в основном вытягиванием края ленты при резке); это приводит к ухудшению контакта ленты с магнитными головками и перекосам ленты относительно магнитных головок.

В табл. 16 приведены физико-механические показатели различных лент .

Магнитные свойства лент зависят от магнитных свойств исходного порошка, объемной концентрации порошка в рабочем слое и степени ориентации порошка в нем и характеризуются коэрцитивной силой (Н с), остаточным магнитным потоком насыщения, остаточной намагниченностью насыщения (I r ) или максимальной остаточной индукцией r )

и относительной начальной магнитной проницаемостью (μ ). Основные показатели магнитных свойств различных лент приведены в табл. 17.


К рабочим показателям относят электроакустические, т. е. чувствительность, частотную характеристику, нелинейные искажения, шум ленты, уровень копирэффекта, уровень оптимального подмагничивания. На практике рабочие показатели ленты определяют сравнением специально отобранного типового носителя записи с испытуемым.

Чувствительность ленты характеризует отношение величины остаточного магнитного потока к низкочастотному полю головки записи. Относительная чувствительность - отношение (дБ) остаточного магнитного поля при записи сигнала с частотой 400 Гц к остаточному потоку на типовой ленте в том же режиме записи. Чем выше чувствительность ленты, тем меньше должно быть усиление усилителя записи.

Частотная характеристика - разность (дБ) между отдачей типовой и испытуемой лент на частоте 10 кГц при заданной скорости записи. Частотная характеристика ленты зависит от ее магнитных свойств, толщины рабочего слоя, однородности частиц, качества поверхности рабочего слоя и от режима подмагничивания.

Нелинейные искажения оцениваются по третьей гармонике. Коэффициент третьей гармоники равен отношению напряжения третьей гармоники к напряжению первой гармоники сигнала с частотой 400 Гц на выходе усилителя воспроизведения. Это абсолютная характеристика, определяющая нелинейные искажения сквозного тракта, включающего усилитель записи, магнитную ленту и усилитель воспроизведения.

Относительный уровень модуляционного шума (шум ленты) равен отношению (дБ) напряжения шума ленты, намагниченной постоянным током, к максимальному значению напряжения сигнала, измеренных на выходе усилителя воспроизведения.

Уровень копирэффекта определяется при частоте сигнала записи 400 Гц и времени хранения записи 24 ч. Он равен отношению (дБ) наибольшего сигнала копии к максимальному сигналу записи.

Оптимальным подмагничиванием называют подмагничивание, при котором чувствительность магнитной ленты максимальна. Для экспериментального определения уровня оптимального подмагничивания снимают характеристику подмагничивания - зависимость отдачи ленты от тока высокочастотного подмагничивания при постоянном токе записи. Координата вершины полученной кривой определяет уровень оптимального подмагничивания. На практике измеряют относительное значение уровня оптимального подмагничивания, равное выраженному в децибелах отношению уровня оптимального подмагничивания испытываемой ленты к оптимальному подмагничиванию типовой ленты.

Электроакустические показатели зависят от толщины рабочего слоя и объемной концентрации порошка. С увеличением толщины рабочего слоя ленты при прочих равных условиях увеличивается чувствительность, снижаются нелинейные искажения и шум намагниченной ленты, ухудшается частотная характеристика и увеличивается уровень копирэффекта.

С увеличением объемной концентрации порошка в рабочем слое при прочих равных условиях улучшается чувствительность, частотная характеристика, снижаются нелинейные искажения и шум намагниченной ленты, повышается уровень копирэффекта. Уровень оптимального подмагничивания с увеличением концентрации порошка уменьшается, а с увеличением толщины рабочего слоя увеличивается. Стремятся к возможно большему увеличению объемной концентрации порошка и уменьшению рабочего слоя ленты.

Электроакустические показатели магнитных лент приведены в табл. 18. Значения тока высокочастотного подмагничивания (ВЧП), относительной чувствительности, частотной характеристики лент, изготовляемых в СССР , приведены относительно типовой ленты типа 2. В последнее время выпущена новая типовая лента А4403-6 толщиной 37 мкм.

Лучшими магнитными лентами для магнитофонов являются следующие :

для студийных магнитофонов при скорости 38,1 см/с и стандартном уровне записи PER 525 (стерео), SPR 50 LH , LGR 30 P ;

для студийных магнитофонов при увеличенном уровне записи PER 555 и LR 56 P ;

для студийных магнитофонов при скорости 19,05 см/с LPR 35 LH ;

для катушечных бытовых магнитофонов PES 35 LH , SD ;

для кассетных бытовых магнитофонов UD 35, HE 35.