Встречаются случаи, когда пользователь готов на некоторое снижение величин более важных критериев, чтобы повысить величину менее важных. В таких ситуациях можно воспользоваться методом уступок . Идею этого метода можно изложить следующим образом.

Метод последовательных уступок. Согласно этому методу локальные критерии предварительно ранжируются по важности. Затем ищется наилучшее решение по наиболее важному критерию. На следующем шаге ищется решение наилучшее по следующему по важности критерию, причем допускается потеря в значении первого критерия не более чем на некоторую обусловленную величину, т.е. делается уступка по первому критерию. На третьем шаге оптимизируется решение по третьему критерию, при заданных уступках по первому и второму и т.д., пока не будет рассмотрен последний по важности критерий. При решении многокритериальных задач методом последовательных уступок вначале нужно определить важность частных критериев, т.е. расположить частные критерии в порядке убывания важности. Таким образом, главным считается критерий F 1 , менее важным F 2 , . . . , F m . Минимизируется первый по важности критерий и определяется его наименьшее значение F 1 min . Затем назначается величина допустимого снижения уступки D 1 ³0 критерия F 1 и ищется наименьшее значение критерия F 2 при условии, что значение F 1 должно быть не больше, чем F 1 min +D 1 . Снова назначается уступка D 2 ³0, но уже по второму критерию, которая вместе с первой используется при нахождении условного минимума F 3 и т.д. Наконец, минимизируется последний по важности критерий F m при условии, что значения каждого критерия F i из m-1 предыдущих должны быть не больше соответствующей величины F i min +D i .Получаемое в итоге решение считается оптимальным.

Таким образом, оптимальным считается всякое решение, являющимся решением последней задачи из следующей последовательности задач

1) Найти F 1 min =min F 1 (X)

2) Найти F 2 min .=min F 2 (X) (1)

F 1 £ F 1 min +D 1

m) Найти F m min .=min F m (X)

F i £ F imin +D i

i=1,2, . . . ,m-1

Величины уступок выбирают в пределах инженерной точности, т.е. 5-10% от наименьшего значения критерия.

Пример. Пусть в области D={0;4} заданы два критерия F 1 (x)=(x-1) 2 +1 F 2 (x)=(x-2) 2 +2, которые нужно минимизировать (рис.1). Критерий F 1 важнее критерия F 2 (F 1 предпочтительнее F 2).

Рис.1. Графики функций F 1 и F 2

1. Согласно алгоритму минимизируем первый по важности критерий, и определяется его наименьшее значение F 1 min .Формулируем задачу оптимизации

найти min F 1 (x)= min[(x-1) 2 +1]

при ограничениях

Минимум для первого критерия достигается в точке x 1 opt =1 и равен F 1 (x 1 opt)=1


2. Затем назначается величина уступки D 1 =0.1 критерия F 1 и ищется наименьшее значение критерия F 2 при условии, что значение F 1 должно быть не больше, чем F 1 min +D 1 . Таким образом, мы получили следующую задачу оптимизации

minF 2 (x)=min[(x-2) 2 +2]

при ограничениях

(x-1) 2 +1£1+0.1

Для решения воспользуемся методом множителей Лагранжа. В результате получим безусловную задачу оптимизации

Ф(x, λ)= (x-2) 2 +2+ λ((x-1) 2 -0.1).

Находим частные производные и приравниваем их к нулю. В результате получим систему уравнений

Решая эту систему, получим x 2 opt =1.32.

Согласно алгоритму, решение, полученное на последнем этапе, и будет считаться оптимальным, т.е. x opt =1.32.

Решим данную задачу, используя систему MathCad.

f(x):=(x-2) 2 +2 целевая функция

x:=1 начальное приближение

Методы последовательной оптимизации

Недостатки свёртывания нескольких критериев заставляют искать другие подходы к решению задач многокритериального выбора. В данной лекции мы будем рассматривать методы последовательной оптимизации.

К методам последовательной оптимизации относят метод последовательных уступок и как частный случай данного метода – метод главного критерия , лексикографический критерий и метод равенства частных критериев .

Метод главного критерия

Существует один, часто применяемый способ свести многокритериальную задачу к однокритериальной - это выделить один (главный, основной) критерий F 1 и стремиться его обратить в максимум (минимум), а на остальные F 2 , F 3 , . . Fm частные критерии наложить только некоторые ограничения, потребовав, чтобы они были не меньше (больше) каких-то заданных величин. Таким образом, идея метода главного критерия заключается в том, что частные критерии обычно неравнозначны между собой (одни из них более важны, чем другие) и это позволяет выделит главный критерий, а остальные (критерии) рассматривать как дополнительные, сопутствующие. Например, при оптимизации плана работы предприятия можно потребовать, чтобы прибыль была максимальна, план по ассортименту – выполнен или перевыполнен, а себестоимость продукции – не выше заданной. При таком подходе все показатели, кроме одного – главного, переводятся в разряд ограничений. Такое различие позволяет сформулировать задачу многокритериальной оптимизации как задачу нахождения условного экстремума основного (главного) критерия:

Метод последовательных уступок

Встречаются случаи, когда пользователь готов на некоторое снижение величин более важных критериев, чтобы повысить величину менее важных. В таких ситуациях можно воспользоваться методом уступок . Идею этого метода можно изложить следующим образом.

Метод последовательных уступок. Согласно этому методу локальные критерии предварительно ранжируются по важности. Затем ищется наилучшее решение по наиболее важному критерию. На следующем шаге ищется решение наилучшее по следующему по важности критерию, причем допускается потеря в значении первого критерия не более чем на некоторую обусловленную величину, т.е. делается уступка по первому критерию. На третьем шаге оптимизируется решение по третьему кри­терию, при заданных уступках по первому и второму и т.д., пока не будет рассмотрен последний по важности критерий.

При решении многокритериальных задач методом последовательных уступок вначале нужно определить важность частных критериев, т.е. расположить частные критерии в порядке убывания важности. Таким образом, главным считается критерий F 1 , менее важным F 2 , . . . , F m . Минимизируется первый по важности критерий и определяется его наименьшее значение F 1 min . Затем назначается величина допустимого снижения уступки  1 0 критерия F 1 и ищется наименьшее значение критерия F 2 при условии, что значение F 1 должно быть не больше, чем F 1 min + 1 . Снова назначается уступка  2 0, но уже по второму критерию, которая вместе с первой используется при нахождении условного минимума F 3 и т.д. Наконец, минимизируется последний по важности критерий F m при условии, что значения каждого критерия F i из m-1 предыдущих должны быть не больше соответствующей величины F i min + i .Получаемое в итоге решение считается оптимальным.

Таким образом, оптимальным считается всякое решение, являющимся решением последней задачи из следующей последовательности задач

1) Найти F 1 min =min F 1 (X)

2) Найти F 2 min .=min F 2 (X) (1)

F 1  F 1 min + 1

m) Найти F m min .=min F m (X)

F i  F imin + i

i=1,2, . . . ,m-1

Величины уступок выбирают в пределах инженерной точности, т.е. 5-10% от наименьшего значения критерия.

Пример. Пусть в области D={0;4} заданы два критерия F 1 (x)=(x-1) 2 +1 F 2 (x)=(x-2) 2 +2, которые нужно минимизировать (рис.1). Критерий F 1 важнее критерия F 2 (F 1 предпочтительнее F 2).

Рис.1. Графики функций F 1 и F 2

1. Согласно алгоритму минимизируем первый по важности критерий, и определяется его наименьшее значение F 1 min Формулируем задачу оптимизации

найти min F 1 (x)= min

при ограничениях

Минимум для первого критерия достигается в точке x 1 opt =1 и равен F 1 (x 1 opt)=1

2. Затем назначается величина уступки  1 =0.1 критерия F 1 и ищется наименьшее значение критерия F 2 при условии, что значение F 1 должно быть не больше, чем F 1 min + 1 . Таким образом, мы получили следующую задачу оптимизации

minF 2 (x)=min[(x-2) 2 +2]

при ограничениях

(x-1) 2 +1 1+0.1

Для решения воспользуемся методом множителей Лагранжа. В результате получим безусловную задачу оптимизации

Ф(x, λ)= (x-2) 2 +2+ λ((x-1) 2 -0.1).

Находим частные производные и приравниваем их к нулю. В результате получим систему уравнений

Решая эту систему, получим x 2 opt =1.32.

Согласно алгоритму, решение, полученное на последнем этапе и будет считается оптимальным, т.е. x opt =1.32.

Решим данную задачу, используя систему MathCad.

f(x):=(x-2) 2 +2 целевая функция

x:=1 начальное приближение

ограничения

≤x≤4

p:=Minimize(f,x) p=1.316.

Ответ: . x opt =1.32.

Зам. Метод последовательных уступок целесообразно применять для решения тех инженерных задач, в которых все частные критерии упорядочены по степени важности, причём каждый критерий настолько более важен, чем последующий, что можно ограничиться учётом только попарной связи критериев и выбирать величину допустимого снижения очередного критерия с учётом поведения лишь одного следующего критерия.

Недостатком метода являются трудности с назначением и согласованием величин уступок, возрастающие с ростом размерности векторного критерия, а также необходимость формированиянеизменного для всей задачи априорного ранжирования критериев.

Как видим, в методе уступок предполагается, что разница в важности критериев не слишком велика. Можно предположить, что величина уступок как-то связана с нашим ощущением этой разницы.

Лексикографический критерий

Противоположным крайним случаем является ситуация, в которой разница между упорядоченными критериями настолько велика, что следующий в этом ряду критерий рассматривается только в том случае, сравниваемые альтернативы неразличимы по старшим критериям. Ни о каких уступках при этом не может быть и речи. В этой ситуации выбор довольно часто заканчивается на первом же шаге, а до последнего критерия дело обычно не доходит (точнее он “изобретается” в том чрезвычайно редком экзотическом случае, когда принятые ранее критерии не выделили единственной альтернативы). Такой выбор получил название лексикографического упорядочивания альтернатив, поскольку этот метод используется при упорядочивании слов в различных словарях (предпочтительность определяется алфавитным рангом очередной буквы в данном слове).

Метод равенства частных критериев

Критерии работают на принципе компромисса, основанного на идее равномерности. Основываясь на идее равномерного компромисса, стараются найти такие значения переменных X, при которых нормированные значения всех частных критериев становятся равными между собой, т.е.

f i (X)=K , i=1, 2, . . ., m (3)

или в другой форме f 1 (X)= f 2 (X)= …=f m (X). .

С учётом весовых коэффициентов важности частных критериев выражение (1) запишется в виде

 i f i (X)=K, i=1, 2, . . ., m (4).

Зам. При большом числе частных критериев из-за сложности взаимосвязей иногда трудно добиться выполнения соотношений (3). (4).

Пример. Применим метод равенства частных критериев для определения оптимальных параметров переносного автомата. Будем считать, что частные критерии одинаковы по важности, тогда

,
.

Выразим F 2 через F 1 . Получим
или
и подставим в уравнение для массы автомата
Сделаем замену
Получим квадратное уравнение 1.6x 2 +c·x-4=0. Решаем это уравнение и выбираем, положительный корень x=1.024.Учитывая замену, получим L=1.05 м. Таким образом, получим следующие значения оптимальных параметров: N opt =46, L opt =1.05м, V opt =152 м/сек (K=0.697).

Чтобы получить более полную характеристику достоинств и недостатков проектируемого объекта, нужно ввести больше критериев качества в рассмотрение. Как результат, задачи проектирования сложных систем всегда многокритериальные, так как при выборе наилучшего варианта приходится учитывать много различных требований, предъявленных к системе .

С привычной точки зрения задача со многими критериями решения не имеет, но к счастью это не так, всегда есть возможность одновременного удовлетворения всех заданных условий . А так, как практически любая подобная ситуация допускает разные компромиссные разрешения, то и подходы к их поиску многочисленны и весьма разнообразны.

Перечислим некоторые из подходов к решению задач многокритериальной оптимизации:

1. Метод уступок – лицо, принимающее решения подводится к выбору решения путем постепенного ослабления первоначальных требований, как правило, одновременно невыполнимых.

2. Метод идеальной точки – в области допустимых значений неизвестных ищется такая их совокупность, которая способна обеспечить набор значений критериев, в том или ином смысле ближайший к наилучшему варианту.

3. Метод свертывая – лицо, принимающее решения сводит многокритериальную задачу к задаче с одним критерием.

Ниже, рассмотрим подробно этих методов решения задачи многокритериальной оптимизации .

2.1. Метод последовательных уступок

Метод последовательных уступок решения многокритериальных задач применяется в случае, когда частные критерии могут быть упорядочены в порядке убывающей важности . Предположим, что все критерии максимизируются и пронумерованы в порядке убывания их важности. Вначале определяется максимальное значение , первого по важности критерия в области допустимых решений, решив задачу

Затем назначается, исходя из практических соображений и принятой точности, величина допустимого отклонения (экономически оправданной уступки) критерияи отыскивается максимальное значение второго критерияпри условии, что значение первого должно отклоняться от максимального не более чем на величину допустимой уступки, т.е. решается задача

Снова назначается величина уступки по второму критерию, которая вместе с первой используется при нахождении условного экстремума третьего частного критерия и т.д. Наконец, выявляется экстремальное значение последнего по важности критерияпри условии, что значение каждого из первыхчастных критериев отличается от экстремального не более чем на величину допустимой уступки. Получаемое на последнем этапе решение считается оптимальным.

Существенным недостатком метода последовательных уступок является то, что решение, полученное этим методом, может оказаться неоптимальным по Парето .

Рассмотрим пример, математическая модель трехкритериальной задачи имеет вид :

Уступка по первому критерию , а по второму.

Открываем электронную книгу Excel и, как и для решения однокритериальной задачи определяем ячейки под переменные . Для этого в ячейку А2 вводим подпись «Переменные», а соседние три ячейки В2, С2 и D2 вводим значения переменных. Это могут быть произвольные числа, например единицы или нули, далее они будут оптимизироваться.

рис. 2.1. Определение переменных значений

В третьей строке задаем целевые функции. В А3 вводим подпись «Целевые», а в В3 формулой «=2*B2+C2-3*D2» задаем первую целевую функцию . Аналогично в С3 и D3 вводим вторуюи третьюцелевую функцию, вводя в С3 «=B2+3*C2-2*D2», а в D3 «=-B2+2*C2+4*D2».

рис.2.2. Определение целевых значений

Ячейка А5 будем называть «Ограничения».

Левые части ограничений распишем от B5:D7, правые части записываем в диапазонF5:F7. Вводим в Е5 формулу «=B5*$B$2+C5*$C$2+D5*$D$2», номера столбцов и номера строк ряда переменных зафиксировано, далее воспользуемся автозаполнением, чтобы заполнить ячейки Е6 и Е7.

рис.2.3. Определение ограничений

Предварительные действия завершены. Вызываем надстройку «Поиск решения» в меню «Данные».

На первом этапе оптимизируем первую целевую функцию. После открытия окна «Поиск решения» в поле «Оптимизировать целевую функцию» ставим курсор и делаем ссылку на ячейку «В3», щелкая по ней мышью. В окне появится $B$3. В связи с тем, что целевая функция максимизируется, далее нужно проверить, что флажок ниже поля стоит напротив надписи «Максимум».

После ставим курсор в поле «Изменяя ячейки переменных» и обводим ячейки с переменными В2, С2 и D2, выделяя ячейки с переменными. В поле появиться $B$2:$D$2.

В нижней части окна находится поле «Ограничения». Для того, чтобы ввести ограничения, нажимаем кнопку «Добавить», откроется окно «Добавление ограничения». В левом поле «Ссылка на ячейки» вводят ссылку на левую часть первого ограничения – ячейку «Е5», в центральном окне определяем знак«»и в правом «Ограничения» выбираем соответствующую правую часть первого ограничения –«F5». Нажимаем «ОК», видим, что ограничение появилось в окне. Нажимаем вновь «Добавить», вводим «E6» «» и «F6». Вновь нажимаем «Добавить», вводим «E7» «≤» и «F7».

Для ввода дополнительных ограничений вновь нажимаем «Добавить», ставим курсор в левое поле и обводим ячейки В2, С2 и D2 (результат $B$2:$D$2) в среднем окне ставим «» и в правом число 0.

рис. 2.4. Параметры поиска решения

рис.2.5. Результат полученного решения

На втором этапе оптимизируется вторая целевая функция. Однако, первую, в соответствие с методом последовательных уступок, можно ухудшить первый критерий на величину не более, чем . По этой причине, на втором шаге, значения в ячейке В3 (где хранится первая целевая функция, которая максимизируется) может быть значение, не меньшее, чем 24,8 (=28,8-4). Для удобства, можно записать «Уступок» в сторонке.

Вызываем надстройку «Поиск решения», видно, что все прежние данные остались введенными. Меняем ссылку на целевую функцию. Ставим курсор в поле «Оптимизировать целевую функцию» и щелкаем по ячейке С3, в которой находится ссылка на вторую целевую функцию. Так, как вторая целевая минимизируется, то ставим флажок в поле напротив надписи «Минимум». Вводим дополнительное ограничение, связанное с уступкой по первому критерию. Переводим курсор в поле «Ограничения» и нажимаем кнопку «Добавить», правее поля. В появившемся окне «Добавление ограничения» в трех окнах (слева на право) вводим данные «В3», «≥», «С9».

Результат – переменные равны 10,2; 4,4; 0. Вторая целевая функция равна 23,4 (ячейка С3). Первая равна своему минимальному значению 24,8 (ячейка В3).

рис.2.6. Определение уступка

На третьем этапе делаем уступку по второму критерию. Величина уступки равна . Так, как вторая функция минимизируется, то ее значение не должно превышать 23,4+5=28,4. Вызываем надстройку «Поиск решения». Меняем ссылку на целевую функцию. Ставим курсор в поле «Оптимизировать целевую функцию» и щелкаем по ячейке D3, в которой находится ссылка на третью целевую функцию. Так, как третья целевая максимизируется, то ставим флажок в поле напротив надписи «Максимум». Вводим дополнительное ограничение, связанное с уступкой по второму критерию. Переводим курсор в поле «Ограничения» и нажимаем кнопку «Добавить». В появившемся окне «Добавление ограничения», вводим данные «С3», «≤», «С10».

Результат – переменные равны 10,76; 6,62; 1,11. Целевые функции равны, соответственно, 24,8; 28,4 и 6,93. Это окончательный ответ. Все дополнительные условия соблюдены.

рис.2.7. Окончательный результат решения по методу последовательного уступка

В начале показатели ранжируются по важности. Но их упорядочение носит чисто качественный характер, т.е. никаких количественных оценок важностей не производится. Затем выбирается первый, самый важный, показатель и находится оптимальная по нему альтернатива. После этого назначается уступка, т.е. интервал, в котором могут варьироваться значения первого показателя. Другими словами, определяется насколько первый показатель может отличатся от своего оптимального значения.

Потом производится оптимизация по второму показателю. При этом оптимальное значение второго показателя ищется при допустимой уступке первого. Далее определяется уступка по второму показателю и т.д. В качестве оптимальной по векторному критерию принимается альтернатива вычисленная в конце многоэтапной оптимизации.

В этом методе скаляризация векторного критерия непосредственно не производится. Возможность использования регулярных методов оптимизации обеспечивается за счет процедуры последовательного применения скалярных показателей в качестве критериев оптимизации. От оптимизации по главному критерию этот способ принципиально отличается тем, что в процессе оптимизации участвуют все компоненты векторного критерия.

Оптимальность по Парето.

Прежде чем рассматривать данный метод, определим понятие доминирования

Альтернатива А1 доминирует над альтернативой А2, если по всем показателям (локальным критериям) А1 не уступает А2, а хотя бы по одному из них лучше.

Данный метод, рассматривая все множество альтернатив, отбрасывает те из них, которые доминируются хотя бы одной альтернативой. Таким образом, создается множество недоминируемых альтернатив . Оно называется Парето оптимальным , и именно из него следует выбирать решение. Итак, поиск решений по принципу Парето-оптимальности дает множество допустимых решений, а не одно единственное..

Для выбора наилучшей альтернативы можно использовать один из рассмотренных выше методов скаляризации, или привлечь дополнительную неформальную информацию о ценности вариантов решений, составляющих Парето-оптимальное множество. Держателем такой информации обычно является лицо, принимающее решения (ЛПР). Именно ЛПР, рассматривая и анализируя недоминируемые альтернативы, выбирает ту из них, которая с его точки зрения является оптимальной (точнее рациональной). Если число элементов Парето-оптимального множества сравнительно невелико, то такой выбор ЛПР может и должен произвести. В противном случае вновь в полной мере возникают все трудности оптимизации и ранжирования по векторному критерию. Однако тот факт, что ЛПР подключен к решению задачи в качестве носителя неформальной информации, позволяет поставить вопрос о ее формализации с тем, чтобы, с одной стороны, помочь ЛПР разобраться в своих оценках и,с другой стороны, использовать ее в формализованной процедуре принятия решений. Это можно сделать на основе понятий полезности альтернатив или их относительной предпочтительности.

Полезность

Полезность является индивидуальной оценкой качества альтернатив определяемой ЛПР. Она отображает его систему ценностей на полном множестве альтернатив (можно на реализуемом). Полезность принято измерять в числовой шкале. Обычно в 0-1 или в 0-100. Это дает возможность количественно оценить во сколько или на сколько одно решение полезнее другого с точки зрения ЛПР. Таким образом, назначение полезностей альтернатив можно рассматривать как еще один способ скаляризации векторного критерия.

Содержание понятия полезности легко проиллюстрировать на следующем примере (см. рис.1). Пусть некоторому лицу (по нашей терминологии это ЛПР) предлагается купить билет для участия в лотерее с выигрышем в 100 у.е. Билеты четырех типов. По билету первого типа вероятность выигрыша равна 0,25, второго - 0,5, третьего - 0,75 и четвертого -1. Нетрудно убедиться, что математические ожидания выигрышей по каждому типу билетов соответственны равны: 25, 50, 75 и 100 у.е. Согласно общепринятой логике справедливая цена лотерейного билета равна математическому ожиданию выигрыша по нему (прямая 1). Поэтому названные суммы можно рассматривать как объективные полезности билетов. Однако индивидуальные особенности ЛПР могут вносить свои коррективы. Если оно склонно к риску, то вполне может заплатить за билет больше его объективной стоимости в надежде выиграть 100 у.е. Причем, если риск связан с небольшими затратами, то его можно увеличивать. Эта ситуация отражена на рис.1 кривой 2. Если же ЛПР склонно к осторожности и ему даже объективная цена билета кажется чрезмерной, то его оценка полезности участия в лотерее будет соответствовать кривой 3. Наконец, если ЛПР готов рисковать, когда затраты невелики, и проявляет осторожность, когда возрастают, его функция полезности выражается кривой 4.

Вопросы организации процедур назначения полезностей, их свойства и операции над ними рассматриваются в специальном разделе исследования операций «теории полезности».

Предпочтения

Предпочтения определяются в шкале отношений, Обычно используется бинарная шкала. ЛПР сопоставляет попарно совокупности значений показателей (альтернативы) и определяет какая из них предпочтительней или же они равноценны. Таким образом, на множестве альтернатив вводится отношение не строгого порядка, что отвечает их не строгому ранжированию. Многомерная скалярная функция, формализующая это ранжирование, называется функцией предпочтений (ФП) и на ее основе возможно проводить оптимизацию и ранжирование модельно реализуемых альтернатив. Процедуру вычисления ФП можно также рассматривать как способ скаляризации векторного критерия. Более подробно формализация предпочтений в форме ФП будет рассмотрена ниже при описании системы поддержки решений DSS/UTES.

Резюме

Во-первых,следует иметь в ввиду, что в разделе рассмотрены далеко не все методы скаляризации векторного критерия. Это относится в первую очередь к таким достаточно распространенным подходам как лексикографические методы, методы основанные на построении кривых безразличия, методы группы «Электра» и т.п (см. например).

Во-вторых, общим свойством всех рассмотренных подходов, как, впрочем, и не рассмотренных, является их зависимость от субъективизма ЛПР. Это проявляется в том, что выбор метода и назначение его необходимых внутренних параметров осуществляется (или, по крайне мере, должно осуществляться) либо непосредственно ЛПР, либо с его участием. Это положение приобретает принципиальный характер, когда речь идет о принятии решений с помощью СППР (системы поддержки принятия решений). Метод скаляризации в СППР может быть «прописан», и если система для ЛПР не прозрачна, то нет никакой уверенности в том, что он отвечает подходу ЛПР. Поэтому ЛПР необходимо понимать основные достоинства и недостатки различных методов скаляризации векторного критерия. Кратко рассмотрим их.

Критерий среднего взвешенного. Достоинства

1. Простота формализации

2. Ясный физический смысл

3. Учет индивидуальных представлений ЛПР о задаче при назначении весовых коэффициентов (важностей)

4. Наличие простой формальной процедуры (метод парных сравнений), облегчающей процесс назначения весовых коэффициентов

Недостатки:

Не учет нелинейной зависимости весовых коэффициентов от значений показателей: важности вводятся один раз и остаются постоянными величинами.

Метод идеальной точки. Достоинства:

1. Компоненты векторного критерия рассматриваются в совокупности (без применения сверток)

2. Четкая формальная постановка

Недостатки:

1. Неявная взаимная компенсация показателей, которая становится неконтролируемой при большом их числе.

2. Произвольный выбор метрики

3. Непредставимость расстояния между двумя точками n-мерного пространства (при n>3).

Метод последовательных уступок. Достоинства:

2. Учет всех компонент векторного критерия

Недостатки:

1. Необходимость предварительного ранжирования показателей по важности

2 Трудность определения величин уступок

3. Практическая не реализуемость при большом числе показателей

Оптимальность по Парето. Достоинства:

1. Метод математически строг и понятен пользователю.

2. Выделяет множество допустимых решений.,

3. Дает возможность ЛПР сосредоточить анализ решений на более узком множестве и выбрать субъективно оптимальное решение.

Недостатки:

1. Применимость метода ограничена мощностью Парето-оптимального множества (для непосредственного выбора решения количество его элементов не должно превышать 7-10). Если у недоминируемого множества большая мощность, то метод трудно выполним без привлечения одного из рассмотренных выше способов.

Свертка по полезности, свертка по предпочтениям. Хотя оба метода можно рассматривать как способ скаляризации векторного критерия, по существу это способы выявления неформальной информации, которой обладает ЛПР. Информации основанной на знаниях, опыте, интуиции и сложившейся на этой основе системе ценностей ЛПР. Внешне они просты для пользователя, однако это далеко не так. Выявление и формализация системы ценностей ЛПР, выражаемой в виде предпочтений или полезностей требует организации достаточно сложных процедур Одна из таких процедур будет показана ниже на примере СППР DSS/UTES.


Похожая информация.


Метод условной оптимизации.

Этот метод, также как и метод суперкритерия, предполагает, что критерии не равнозначны. Мы можем выбрать самый значимый для нас критерий, но не можем оценить вес каждого критерия численно (не можем сказать, сколько рублей стоит 1 час). В этом случае в качестве единственного критерия мы оставляем самый значимый для нас критерий, а остальные критерии считаем ограничениями (условиями). Далее различают два случая введения ограничений: типа равенств и типа неравенств. Первый случай проще осуществляется технически, но менее адекватен реальности. Второй более адекватен реальности, но труднее осуществляется технически.

Пример . Как и в предыдущем примере будем выбирать лучший подарок по двум критериям: q 1 - цена подарка, главный критерий; q 2 - время, затрачиваемое на его приобретение. Допустим, что цена первого, второго и третьего соответственно 300 руб., 350 руб. и 400 руб.; время, затрачиваемое на их приобретение, 2 часа, 1 час и 30 мин.

Рассмотрим случай ограничений типа равенств . Зададим ограничение по времени (так как это не главный для нас критерий): время, затрачиваемое на приобретение подарка q 2 = 1 час. 20 мин. Выберем теперь из всех подарков такие, у которых q 2 = 1 час. 20 мин. Видим, что таких подарков в нашем списке нет. Таким образом, далее мы осуществляем выбор на пустом множестве альтернатив. Это значит, что мы отвергли все предложенные альтернативы.

Естественно, что в реальных ситуациях принятия решений ограничения типа равенств встречаются не часто. Более адекватный случай – ограничения типа неравенств . Зададим в нашем примере ограничения типа неравенств. Будем считать, что нам надо купить подарок не ровно за 1 час. 20 мин. (как это было в ограничении типа равенств), а не более, чем за 1 час 20 мин., т.е. 0 мин. #q 2 #1 час 20 мин. Выбираем из всего множества подарков те, которые покупаются не более, чем за 1 час 20 мин. В это множество вошли второй и третий подарок. Теперь мы выбираем из них наилучший на основании только главного критерия – цены. Наилучшим будет второй подарок, т.к. у него меньшая цена (350 руб.)

Достоинства метода:

Не вводится никаких новых критериев;

Выявляется только самый значимый критерий, но численные значения весов не определяются.

Недостатки метода:

Ограничения типа равенств часто являются неадекватными реальным ситуациям принятия решений;

С ограничениями типа неравенств часто технически сложно решать задачу принятия решений.

На практике при решении многокритериальных задач выбора при неравнозначных критериях часто пользуются методом уступок. Как и в методе условной оптимизации, выбирают главный критерий. Далее задают значение вспомогательного критерия. После этого при фиксированном значении вспомогательного критерия ищут альтернативу с оптимальным значением главного критерия. Если значение главного критерия удовлетворяет лицо, принимающее решение, то найденная альтернатива принимается. Если значение главного критерия не удовлетворяет лицо, принимающее решение, то он пытается «уступить», т.е. снизить значение второстепенного критерия в надежде получить выигрыш в значении главного критерия. Если при сделанной уступке лицо, принимающее решение не выигрывает в значении главного критерия, то он либо продолжает процесс уступок, либо принимает какое-то решение из предыдущих, либо отвергает все альтернативы.



Поясним суть этого метода на рисунке. Пусть q 1 (x) - главный критерий. Зафиксируем значение второстепенного критерия q 2 (x) = C 2 1 . При данном фиксированном значении этого критерия (на рисунке это нижняя из горизонтальных прямых) найдем альтернативу с минимальным значением критерия q 1 (x). Это точка x 1 *1 . Предположим, что значение главного критерия q 1 (x 1 *1) нас не удовлетворяет.

Мы делаем уступку в значении второстепенного критерия q 2 (x), полагая его значение q 2 (x) = C 2 2 > C 2 1 . Далее при этом значении критерия q 2 (x) (на рисунке это средняя из горизонтальных прямых) найдем альтернативу с минимальным значением критерия q 1 (x). Это точка x 1 *2 . Предположим, что значение главного критерия q 1 (x 1 *1) нас не удовлетворяет.

Мы готовы сделать еще уступку в значении второстепенного критерия q 2 (x), полагая его значение q 2 (x) = C 2 3 > C 2 2 . Далее при этом значении критерия q 2 (x) (на рисунке это верхняя из горизонтальных прямых) найдем альтернативу с минимальным значением критерия q 1 (x). Это точка x 1 *3 . Значение главного критерия q 1 (x 1 *3) = Q нас теперь удовлетворяет. На этом процесс поиска решения прекращается. Найденная альтернатива x 1 *3 считается принятой.

Пример . Выбираем лучший подарок по двум критериям: q 1 - цена подарка, главный критерий; q 2 - время, затрачиваемое на его приобретение. Допустим, что цена первого, второго и третьего подарков соответственно 300 руб., 350 руб. и 400 руб.; время, затрачиваемое на их приобретение 2 часа, 1 час и 30 мин.

Зафиксируем значение второстепенного критерия q 2 (x) = 20 мин. При этом значении второго критерия выберем подарок с наименьшей ценой. Это множество пусто. Такое положение нас не удовлетворяет. Сделаем уступку по времени. Положим q 2 (x) = 30 мин. При этом значении второго критерия выберем подарок с наименьшей ценой. Это подарок третий. Посмотрим значение главного критерия – цену. Допустим, что его цена 400 руб. нас не устраивает. Вновь делаем уступку по времени. Положим q 2 (x) = 1 час. При этом значении второго критерия выберем подарок с наименьшей ценой. Это подарок второй. Посмотрим значение главного критерия – цену. Допустим, что его цена 350 руб. нас устраивает, т.е. мы считаем цену нашей уступки по времени (30 мин.) адекватной цене нашего выигрыша в главном критерии (50 руб.). Тогда процесс выбора окончен. Мы выбираем второй подарок.

Достоинства метода:

Идея метода уступок крайне проста;

Метод прост в реализации.

Недостатки метода:

Метод не гарантирует, что за достаточно большое число шагов найдётся удовлетворяющее решение. Это возможно из-за того, что цена уступок не будет адекватной цене нашего выигрыша.