Байеровская схема цветных светофильтров матрицы названа так в честь доктора Брайса Э. Байера (Bryce Bayer), научного сотрудника компании Kodak, кoтoрый в 1976 году запатентовал свою систему фильтров.

Фильтр Байера состоит из четырех светофильтров, которые расположены в следующем порядке: 1-й ряд - R-G, 2-й ряд - G-B, см. рис.1.

Рис.1. Байеровская схема расположения светофильтров.

Байеровская схема расположения цветных светофильтров в матрице.

Эту схему называют GRGB (зеленый - красный - зеленый - синий) или RGBG (чтобы подчеркнуть диагональное расположение красного и синего фильтров). Такая схема расположения фильтров называется аддитивной Байеровской схемой .

Фильтр Байера содержит 25% красных светофильтров, 25% – синих и 50% – зеленых.

Получается, что зеленых светофильтров больше, чем красных и синих. В чем причина такого расположения фильтров? Дело в том, что человеческое зрение более восприимчиво к зеленому цвету, пoэтoмy увеличение числа элементов чувствительных к этому цвету, а соответственно увеличение чувствительности матрицы в этой области спектра соответствует особенностям человеческого зрения. Второй причиной является тот факт что и ПЗС-элементы матрицы тaкжe более чувствительны к зеленому цвету.

В результате матрица выглядит кaк мозаика, состоящая из отдельных цветов, а кaк же получается цветная картина?

Для получения цветного изображения необходимо в каждом пикселе установить цвет, соответствующий действительности. Этим занимается электроника фотоаппарата, которая производит интерполяцию цветов. (Интерполяция известна в математике, где она используется для получения величин, значения, которых не определены, а получаются вычислением некого среднего значения из сравнения c рядом расположенными).

Как работает алгоритм интерполяции в расчете цвета конкретной ячейки? Возьмем к примеру ячейку c зеленым светофильтром. В такой ячейке получается информация только о яркости зеленой составляющей света. Однако в соседних пикселах, окружающих данный зеленый имеется пара пикселей синего цвета и пара - красного. Вычисляются средние значения каждого из этих цветов и считается, что эти средние значения соответствуют реальным величинам каждой составляющей света для данной ячейки. (В действительности эти величины если и будут отличаться от реальных то весьма незначительно, для глаза совершенно незаметно.) Затем вычисленные значения цветов красного и синего добавляются к зеленому и получается реальный цвет данного пиксела.

Однако если при расчете интерполяции использовать только близлежащие элементы, то такой расчет оказывается недостаточно точным и приводит к искажениям изображения в виде цветного муара. В идеале для расчета необходимо учитывать более 10 точек. Но при этом резко возрастают требования к процессору фотокамеры и к увеличению объема запоминающего устройства (ОЗУ).

Для того, чтобы уменьшить объем вычислительных ресурсов фотокамеры, была разработана так называемая модифицированная Байеровская схема. В этой схеме в качестве опорной группы используются не 4 элемента, а 12 или 24 (см. рис. 2) . Расположены эти элементы псевдослучайным образом, что уменьшает склонность к диагональному муару.

Рис.2. Модифицированная Байеровская схема расположения светофильтров.

Правда в этом случае расположение элементов должно храниться в памяти вычислительного устройства и использоваться при восстановлении цвета.

Кроме описанных Байеровских схем используется тaкжe субтрактивная Байеровская схема. Она использует цветовую модель CMYG (голубой-пурпурный-желтый-зеленый). В данном случае к обычной модели CMYK добавлен еще зеленый цвет по причинам описанным выше (повышенная чувствительность глаза к зеленому цвету и более высокая чувствительность ПЗС-элемента).

В некоторых случаях в этой схеме половину зеленых элементов заменяют сине-зелеными, отличающимися более темным оттенком, чем голубой (cyan) цвет.

Причины применения таких схем Байеровских фильтров заключаются в технологии создания светофильтра в матрице. А фильтры эти создаются путем напыления тонких пленок нa поверхность пиксела. Пленки создаются из CMYK красителей. Для создания фильтра RGB-модели необходимо напылять по две пленки: для создания красного светофильтра необходимо использовать красители пурпурный и желтый, для создания синего - пурпурный и голубой, для зеленого - желтый и голубой (См. рис.3)

Рис.3. Цветовая модель CMYK.

Использование модели CMYK позволяет обходиться однoй пленкой, что пoвышaeт светопроницаемость фильтра и спoсoбствyeт повышению чувствительности матрицы. Правда в данном случае повышается сложность расчета цветов, получаемых такими матрицами, кроме того следует учесть, что c помощью RGB-модели мoжнo получить больше оттенков, чем в модели CMYK.

Для лучшего понимания того, что же такое фильтр Байера, просмотрите рисунки, представленные ниже.

Из всeгo сказанного выше становится ясно, что в отличие от пленочной фотографии, где изображение получается в результате объективных физико-химических процессов, протекающих в пленке, фотобумаге и т.д., цифровая фотография является плодом обработки цифровыми устройствами, то есть продуктом электроники.

Фильтр Байера состоит из 25 % красных элементов, 25 % синих и 50 % зелёных элементов, расположенных как показано на рисунке.

Исторически это самый первый из массивов цветных фильтров. Назван по имени его создателя, доктора Брайса Э. Байера (англ. Bryce Bayer ), сотрудника компании Kodak , запатентовавшего предложенный им фильтр в 1976 г. Для отличия от других разновидностей его называют GRGB , RGBG , или (если надо подчеркнуть диагональное расположение красного и синего пикселов) RGGB .

Принцип работы

Матрица является устройством, воспринимающим спроецированное на него изображение. Поскольку полупроводниковые фотоприёмники примерно одинаково чувствительны ко всем цветам видимого спектра, для воспринятия цветного изображения каждый фотоприемник накрывается светофильтром одного из первичных цветов: красного, зелёного, синего (цветовая модель RGB).

Вследствие использования фильтров каждый фотоприемник воспринимает лишь 1/3 цветовой информации участка изображения, а 2/3 отсекается фильтром. Для получения остальных цветовых компонент используются значения из соседних ячеек. Недостающие компоненты цвета рассчитываются процессором камеры на основании данных из соседних ячеек в результате интерполяции (по алгоритму demosaicing) Таким образом, в формировании конечного значения цветного пиксела участвует 9 или более фотодиодов матрицы.

В классическом фильтре Байера применяются светофильтры трёх основных цветов в следующем порядке:

G R
B G

При этом фотодиодов зелёного цвета в каждой ячейке в два раза больше, чем фотодиодов других цветов, в результате разрешающая способность такой структуры максимальна в зелёной области спектра, что соответствует особенностям человеческого зрения.

Изменения в структуре расположения

Для снижения заметности артефактов дебайеризации были разработаны модифицированные фильтры Байера, содержащие изменения, «разбавляющие» однородную периодическую структуру «неправильным» расположением части цветных пикселей. Вместо минимального 4-х пиксельного элемента матрицы повторяется 12- или 24-пиксельный. Однако они не нашли массового применения из-за значительного роста необходимой вычислительной мощности для обработки полученного изображения.

Пример применения

Сфотографируем исходный объект (для наглядности его часть увеличена):

При этом получаются три цветовые составляющие:

Таким образом, мы получили изображение, каждый пиксель которого содержит только одну цветовую составляющую одной из предметных точек, спроецированных на него объективом. И только 4 предметных точки, рядом расположенных и спроецированных объективом на блок пикселей RGGB, приближенно формируют полный набор RGB 1-й усредненной предметной точки. Далее, процессор камеры должен, используя специальные математические методы интерполяции, рассчитать для каждой точки недостающие цветовые составляющие. В результате получается следующее изображение:

Как видно на картинке, это изображение получилось более размытым, чем исходное. Такой эффект связан с потерей части информации в результате работы фильтра Байера. Для исправления процессор фотоаппарата должен повысить чёткость изображения. Процесс искусственного повышения чёткости называется Sharpening . Дополнительно, в этот момент процессор может применить и другие операции: изменить контрастность, яркость, подавлять цифровой шум и т. д. в зависимости от модели аппарата. Получение более чётких изображений в первую очередь достигается увеличением количества пикселей сенсора, что уменьшает его размытость. Так как вычислительная мощность процессора фотоаппарата ограничена, многие фотографы предпочитают делать эти операции вручную на персональном компьютере. Чем дешевле фотоаппарат, тем меньше возможностей повлиять на эти функции. В профессиональных фотокамерах функции коррекции изображения отсутствуют совсем, либо их можно выключить.

Недостатки

История, аналоги

Фильтр Байера и расположение световоспринимающих элементов в одной плоскости ведут своё происхождение от растрового способа цветной фотографии .

В душе Пьера теперь не происходило ничего подобного тому, что происходило в ней в подобных же обстоятельствах во время его сватовства с Элен.
Он не повторял, как тогда, с болезненным стыдом слов, сказанных им, не говорил себе: «Ах, зачем я не сказал этого, и зачем, зачем я сказал тогда „je vous aime“?» [я люблю вас] Теперь, напротив, каждое слово ее, свое он повторял в своем воображении со всеми подробностями лица, улыбки и ничего не хотел ни убавить, ни прибавить: хотел только повторять. Сомнений в том, хорошо ли, или дурно то, что он предпринял, – теперь не было и тени. Одно только страшное сомнение иногда приходило ему в голову. Не во сне ли все это? Не ошиблась ли княжна Марья? Не слишком ли я горд и самонадеян? Я верю; а вдруг, что и должно случиться, княжна Марья скажет ей, а она улыбнется и ответит: «Как странно! Он, верно, ошибся. Разве он не знает, что он человек, просто человек, а я?.. Я совсем другое, высшее».
Только это сомнение часто приходило Пьеру. Планов он тоже не делал теперь никаких. Ему казалось так невероятно предстоящее счастье, что стоило этому совершиться, и уж дальше ничего не могло быть. Все кончалось.
Радостное, неожиданное сумасшествие, к которому Пьер считал себя неспособным, овладело им. Весь смысл жизни, не для него одного, но для всего мира, казался ему заключающимся только в его любви и в возможности ее любви к нему. Иногда все люди казались ему занятыми только одним – его будущим счастьем. Ему казалось иногда, что все они радуются так же, как и он сам, и только стараются скрыть эту радость, притворяясь занятыми другими интересами. В каждом слове и движении он видел намеки на свое счастие. Он часто удивлял людей, встречавшихся с ним, своими значительными, выражавшими тайное согласие, счастливыми взглядами и улыбками. Но когда он понимал, что люди могли не знать про его счастье, он от всей души жалел их и испытывал желание как нибудь объяснить им, что все то, чем они заняты, есть совершенный вздор и пустяки, не стоящие внимания.
Когда ему предлагали служить или когда обсуждали какие нибудь общие, государственные дела и войну, предполагая, что от такого или такого исхода такого то события зависит счастие всех людей, он слушал с кроткой соболезнующею улыбкой и удивлял говоривших с ним людей своими странными замечаниями. Но как те люди, которые казались Пьеру понимающими настоящий смысл жизни, то есть его чувство, так и те несчастные, которые, очевидно, не понимали этого, – все люди в этот период времени представлялись ему в таком ярком свете сиявшего в нем чувства, что без малейшего усилия, он сразу, встречаясь с каким бы то ни было человеком, видел в нем все, что было хорошего и достойного любви.
Рассматривая дела и бумаги своей покойной жены, он к ее памяти не испытывал никакого чувства, кроме жалости в том, что она не знала того счастья, которое он знал теперь. Князь Василий, особенно гордый теперь получением нового места и звезды, представлялся ему трогательным, добрым и жалким стариком.

В настоящее время для получения цветной фотографии свет от объекта запоминается как сумма минимум трех цветов - красного, зелёного и синего, цветовая модель RGB. Так как по своей природе фотодетекторы матрицы чувствительны во всем видимом диапазоне спектра, то над каждым матрицы размещается цветной одного из трёх основных цветов - красного (R), зелёного (G) и синего (B). Таким образом, каждая ячейка матрицы воспринимает только 1/3 часть приходящего , а другие 2/3 рассчитываются процессором камеры на основе данных соседних ячеек. Этот процесс называется . В классическом фильтре Байера применяются светофильтры трёх основных цветов в следующем порядке:

При этом получаются три цветовые составляющие:

Таким образом, мы получили изображение, каждый пиксель которого содержит только одну цветовую составляющую. Далее, процессор камеры должен, используя специальные математические методы интерполяции, рассчитать для каждой точки недостающие цветовые составляющие. В результате получается следующее изображение:

Как видно на картинке, это изображение получилось более размытым, чем исходное. Такой эффект связан с потерей части информации в результате работы фильтра Байера. Для исправления процессор фотоаппарата должен повысить чёткость изображения. Процесс искусственного повышения чёткости называется Sharpening . Дополнительно, в этот момент процессор может применить и другие операции: изменить контрастность, яркость, подавлять и т. д. в зависимости от модели аппарата. Так как вычислительная мощность процессора фотоаппарата ограничена, многие фотографы предпочитают делать эти операции вручную на персональном компьютере. Чем дешевле фотоаппарат, тем меньше возможностей повлиять на эти функции. В профессиональных фотокамерах они отсутствуют совсем, либо их можно выключить.

Последние модели профессиональных и полупрофессиональных цифровых фотоаппаратов позволяют записывать изображения в т. н. «сыром» RAW-формате, когда изображение не подвергается внутри камеры вообще никакой обработке, а в записываются данные, полученные напрямую с матрицы, т. е. процесс интерполяции, повышение чёткости, подавление шума и другие операции с изображением выполняются на компьютере, обладающем намного большей вычислительной мощностью и возможностями ручного управления параметрами преобразований.

Альтернативы, достоинства, недостатки

Альтернативой фильтру Байера являются три матрицы с системой дихроичных зеркал или дихроичных призм. Зеркала раскладывают свет на составляющие (красный, зелёный, синий), после чего каждая из составляющих идёт на свою матрицу. Такая конструкция применяется в некоторых , но не встречается в фотоаппаратах.

Достоинства фильтра Байера:

  • простота и компактность;
  • к трёхматричной системе невозможно присоединить ;
  • для обеспечения сходного качества изображения нужно меньше пикселей. В частности, трёхмегапиксельная камера с фильтром Байера даёт заметно лучшее изображение, чем камера с тремя матрицами по 1 Mpx;
  • в трёхматричной схеме есть проблема сведения цветов.

Достоинства трёх матриц:

  • лучше передача цветовых переходов, полное отсутствие цветного ;
  • выше светочувствительность.

Также иногда применяются CYGM-фильтры:

C Y
G M

Такой фильтр даёт бо́льшую светочувствительность, но худшую цветопередачу.

Проблемы, присущие фильтрам Байера, призвано решить новое поколение цифровых светочувствительных матриц - компании , в которых каждый пиксель состоит из трёх слоев, каждый из которых воспринимает свой цвет. Однако, в настоящее время (начало 2005 года) эти матрицы, в силу присущих им других технических недостатков (например, высокого уровня ), занимают незначительную часть рынка цифровой фототехники.

, видеокамер и сканеров . Фильтр Байера состоит из 25 % красных элементов, 25 % синих и 50 % зелёных элементов, расположенных как показано на рисунке.

Исторически это самый первый из массивов цветных фильтров. Назван по имени его создателя, доктора Брайса Э. Байера (англ. Bryce Bayer ), сотрудника компании Kodak , запатентовавшего предложенный им фильтр в 1976 г. Для отличия от других разновидностей его называют GRGB , RGBG , или (если надо подчеркнуть диагональное расположение красного и синего пикселов) RGGB .

Принцип работы

Матрица является устройством, воспринимающим спроецированное на него изображение. Поскольку полупроводниковые фотоприёмники примерно одинаково чувствительны ко всем цветам видимого спектра, для воспринятия цветного изображения каждый фотоприемник накрывается светофильтром одного из первичных цветов: красного, зелёного, синего (цветовая модель RGB).

Вследствие использования фильтров каждый фотоприемник воспринимает лишь 1/3 цветовой информации участка изображения, а 2/3 отсекается фильтром. Для получения остальных цветовых компонентов используются значения из соседних ячеек. Недостающие компоненты цвета рассчитываются процессором камеры на основании данных из соседних ячеек в результате интерполяции (по алгоритму demosaicing). Таким образом, в формировании конечного значения цветного пикселя участвует 9 или более фотодиодов матрицы.

В классическом фильтре Байера применяются светофильтры трёх основных цветов в следующем порядке:

G R
B G

При этом фотодиодов зелёного цвета в каждой ячейке в два раза больше, чем фотодиодов других цветов, в результате разрешающая способность такой структуры максимальна в зелёной области спектра, что соответствует [ ] особенностям человеческого зрения.

Изменения в структуре расположения

Для снижения заметности артефактов дебайеризации были разработаны модифицированные фильтры Байера, содержащие изменения, «разбавляющие» однородную периодическую структуру «неправильным» расположением части цветных пикселей. Вместо минимального 4-пиксельного элемента матрицы повторяется 12- или 24-пиксельный. Однако они не нашли массового применения из-за значительного роста необходимой вычислительной мощности для обработки полученного изображения.

Пример применения

Сфотографируем исходный объект (для наглядности его часть увеличена):

При этом получаются три цветовые составляющие:

Таким образом, мы получили изображение, каждый пиксель которого содержит только одну цветовую составляющую одной из предметных точек, спроецированных на него объективом. И только 4 предметных точки, рядом расположенных и спроецированных объективом на блок пикселей RGGB, приближенно формируют полный набор RGB 1-й усредненной предметной точки. Далее, процессор камеры должен, используя специальные математические методы интерполяции, рассчитать для каждой точки недостающие цветовые составляющие. В результате получается следующее изображение:

Как видно на картинке, это изображение получилось более размытым, чем исходное. Такой эффект связан с потерей части информации в результате работы фильтра Байера. Для исправления процессор фотоаппарата должен повысить чёткость изображения. Процесс искусственного повышения чёткости называется Sharpening . Дополнительно, в этот момент процессор может применить и другие операции: изменить контрастность, яркость, подавлять цифровой шум и т. д. в зависимости от модели аппарата. Получение более чётких изображений в первую очередь достигается увеличением количества пикселей сенсора, что уменьшает его размытость. Так как вычислительная мощность процессора фотоаппарата ограничена, многие фотографы предпочитают делать эти операции вручную на персональном компьютере. Чем дешевле фотоаппарат, тем меньше возможностей повлиять на эти функции. В профессиональных фотокамерах функции коррекции изображения отсутствуют совсем либо их можно выключить.