Нефть до настоящего времени является незаменимым полезным ископаемым, применяемым во многих сферах человеческой деятельности. Даже не смотря на успешные попытки найти ей альтернативу, нефть все равно остается очень востребованным продуктом. Это приводит к тому, что извлечение нефтяных запасов из земных недр осуществляется колоссальными темпами, в связи с чем, залежи нефти очень быстро сокращаются, при этом, не успевая заново образоваться. Таким образом, на смену обычной нефти, которую также называют легкой, приходит более тяжелая нефть.

Стоит отметить, что абсолютно все запасы нефти в мире классифицируются согласно ее плотности. Таким образом, нефть принято разделять на следующие типы:

  1. Суперлегкая нефть. Отличается своей малой плотностью, которая менее 0,780 г/см3 и градусами АРІ, превышающими 50.
  2. Сверхлегкая. Плотность данного типа находится в диапазоне от 0,781 до 0,820 г/см3. Градусы АРІ сосавляют 41,1 - 50,0.
  3. Легкая. Имеет плотность в пределах 0,821 - 0,870 г/см3. Ее градусы АРI - 31,1 - 41,0.
  4. Средняя нефть. Ее плотность составляет 0,871 - 0,920 г/см3, а градусы АРI - 22,3 - 31,0
  5. Тяжелая нефть. Плотность колеблется от 0,921 до 1,000 г/см3. Градусы АРI - 10,0 - 22,2.
  6. Сверхтяжелая нефть имеет плотность, превышающую 1,000 г/см3. Также она отличается своей вязкостью, которая меньше 10 000 мПа*с.
  7. Природный битум. Плотность более 1,000 г/см3. Вязкость более 10 000 мПа*с.

Стоит отметить, что градусы АРI двух последних видов нефти составляют менее 10.

Традиционно, добывается легкая нефть. Однако, как было сказано выше, ее запасы постепенно истощаются, и в этом случае, ей на смену приходит более тяжелая нефть или высоковязкая нефть.

Так, тяжелой нефтью называется нефть, имеющая очень высокую плотность, а также обладающая такими физическими свойствами, которые не позволяют доставить ее из земных недр на дневную поверхность с помощью традиционных методов. Когда речь идет о тяжелой (высоковязкой) нефти, как правило, подразумевается вся нефть, имеющая плотность свыше 0,920 г/см3, наряду с природными битумами.

Все тяжелые нефти и природные битумы отличаются наличием в своем составе достаточно большого количества смолисто-асфальтовых веществ, а также азотосодержащих, хлорсодержащих, кислородосодержащих, серосодержащих соединений и металлов.

Залежи высоковязкой нефти располагаются, как правило, в местах пересечений геологических бассейнов. Такая нефть образовывается из легкой нефти в результате разрушения низкомолекулярных ее компонентов бактериями, а также путем вымывания водой и испарением.

По некоторым данным, на сегодняшний день земные недра содержат запасы высоковязкой нефти, которые в несколько раз превышают запасы легкой. Согласно предоставленным данным Институтом Мировых Ресурсов, наибольшие месторождения высоковязкой нефти расположены на территории Канады и Венесуэлы.

Стоит отметить, что в связи с физическими свойствами такой нефти, ее добыча, транспортировка и переработка вызывает массу сложностей. Тяжелую нефть невозможно добывать теми же методами, которые применяются для добычи легкой нефти. Для этого используют различные иные методы, связанные, в первую очередь, с понижением плотности полезного ископаемого. Ведь более жидкая нефть гораздо легче движется по нефтепроводу.

Разжижить тяжелую нефть можно следующими способами:

  1. Добавлением к высоковязкой нефти углеводородов или более легкой нефти. Несомненно, это существенно облегчает как саму нефть, так и ее текучесть, а соответственно, и процесс добычи. Однако, данный способ имеет два больших недостатка. Первый из них заключается в дополнительных расходах, а второй состоит в отсутствии постоянной доступности легких нефтяных фракций.
  2. Нагреванием трубопровода, по которому нефть поступает на дневную поверхность. Для осуществления данного способа трубопровод по всей своей длине оборудуется специальной техникой. Недостаток данного метода состоит в достаточно большой потере нефти во время добычи (до 20%). Это связано с тем, что эта часть нефти используется для работы нагревательного оборудования, установленного вдоль трубопровода.
  3. Подмешиванием в нефть воды и эмульгаторов с целью получения текучей водной эмульсии. Однако, данный метод рациональный только в том случае, если используется эмульгатор невысокой стоимости, который при этом способен образовывать стабильные эмульсии. Если в образованной эмульсии содержание нефти не превышает 50%, то метод считается нерациональным, поскольку энергетические затраты во время ее извлечения вырастают ровно в половину. В качестве эмульгаторов могут быть использованы сульфатные или карбоксилированные этоксилаты. Однако, они отличаются своей дороговизной, а также дефицитом, что, в свою очередь, влияет на стоимость нефти, добытой таким способом, в сторону увеличения.
  4. Подмешиванием в тяжелую нефть водного раствора диспергатора, в результате чего образовываются эмульгирующие соединения, состоящие из этоксилированых алкилфенолов. Суть данного способа состоит в нагнетании раствора в скважину, где и происходит его соединение с нефтью, залегающей на глубине значительно большей от места нахождения откачивающего насоса. Работа насоса создает колебания, которые способствуют смешиванию нефти с дисператором, а также подачи нефти по трубопроводу на дневную поверхность. Стоит отметить, что на смешивания никоим образом не имеет влияние размер и твердость частиц, из которых состоит нефтепродукт.
  5. Подачей в призабойную пластовую область разижителя. Однако, этот способ также является затратным, поскольку закачку разжижителя необходимо периодически повторять. Однако, если разжижитель утяжеленный, то во время закачки происходит его проникновение на глубину, которая значительно ниже уровня насоса. Таким образом, получается вытеснение утяжеленным разжижителем нефти, как более легкого продукта. В составе такого разжижителя находится хлоркальциевая вода, смесь двух ПАВ, а также гидрооись щелочных металлов. Метод отличается улучшением работы глубинных насосов, повышение коэффициента подачи нефтяного сырья, снижением давления на устье скважины. Кроме этого, его использование не связано с применением дополнительного оборудования.
  6. Внутрипластовым горением. Данный метод является принципиально новым. Его суть заключается в использовании энергии, которая образуется в результате горения сырья прямо в пласте во время закачки в него воздушного пространства. Он применяется как для добычи высоковязкой нефти, так и для извлечения легкой. Стоит сказать, что метод уже неоднократно был использован на некоторых месторождениях и зарекомендовал себя очень удачно.

Для осуществления добычи высоковязкой нефти последним методом, необходимо в скважину напустить воздух, тем самым спровоцировав окислительный процесс с повышением температуры. Благодаря этому происходит испарение воды, которая превращаясь в пар, образовывает нефтяной вал. Именно он и вытесняет наружу через трубу образующиеся газы вместе с нефтью.

Различают три типа внутрипластового горения: сухое, влажное и сверхвлажное. Самым популярным является влажное горение, поскольку оно продвигает фронт горения, снижает расход воздуха, а также уменьшает концентрацию нефти, которая сжигается в пласте.

Таким образом, стоит сказать, что не смотря на дополнительные затраты, добыча высоковязкой нефти в некоторых регионах набирает свою популярность. В тоже время, очень много внимания уделяется методам, благодаря которым возможно повысить нефтеотдачу трудно-извлекаемых запасов.

19 марта 2014 г. под председательством И.Д. Грачёва состоялось заседание Комитета Государственной Думы по энергетике на тему: «Высоковязкие нефти и природные битумы: проблемы и повышение эффективности разведки и разработки месторождений». На заседании было уделено особое внимание вопросам ресурсной базы, современным методам увеличения нефтеотдачи и технологиям добычи, трудноизвлекаемым запасам нефти в России, законодательству, стимулирующему разработку трудноизвлекаемых запасов нефти, и др. По итогам заседания были выработаны РЕКОМЕНДАЦИИ органам исполнительной и законодательной власти Российской Федерации.

Заслушав и обсудив выступления первого заместителя председателя КомитетаГосударственной Думы по энергетике В.М. Тарасюка и участников расширенного заседания, Комитет Государственной Думы по энергетике

отмечает следующее.

Ресурсная база. За последнее десятилетие в структуре российских запасов существенно возросла доля трудноизвлекаемых, в том числе тяжелых высоковязких нефтей и природных битумов. При этом добыча такого сырья растет значительно медленнее, чем его доля в общем объеме запасов. Этот дисбаланс, особенно характерный для старых добывающих регионов, ведет к сокращению ресурсной базы и ухудшению ее качества.

Мировые ресурсы тяжелых и битуминозных нефтей значительно превышают запасы легких нефтей и оцениваются в количестве 750 млрд тонн. Наиболее крупными запасами располагают Канада (386 млрд тонн, из которых 25 млрд тонн извлекаемые) и Венесуэла (335 млрд тонн, из них 70 млрд тонн извлекаемые), значительные запасы также имеют Мексика, США, Россия, Кувейт и Китай. На территории Российской Федерации основная часть ресурсов тяжелых нефтей и природных битумов приурочена к месторождениям Волго–Уральской, Тимано–Печорской и Западно–Сибирской нефтегазоносных провинций, их геологические ресурсы по разным оценкам составляют 30–75 млрд. тонн. Вопрос освоения ресурсов таких нефтей особенно актуален сейчас, в связи со снижением в последнее время объемов прироста запасов кондиционных нефтей.

Тяжелые нефти и природные битумы характеризуются высоким содержанием ароматических углеводородов, смолистоасфальтеновых веществ, высокой концентрацией металлов и сернистых соединений, высокими значениями плотности и вязкости, повышенной коксуемостью, что приводит к высокой себестоимости добычи, практически невозможной транспортировке по существующим нефтепроводам и нерентабельной, по классическим схемам, нефтепереработке.

Добыча тяжелых высоковязких нефтей при помощи технологий для обычных нефтей ведет к низкой нефтеотдаче и потере ценных попутных компонентов, что оборачивается недополученной прибылью и наносит вред экологии. Доведение исходного сырья до требуемого качества достигается разбавлением более легкой нефтью или переработкой до получения так называемой синтетической нефти. Иногда для транспортировки тяжелых высоковязких нефтей строятся специальные трубопроводы с подогревом, что также увеличивает издержки производства.

Большинство российских НПЗ не рассчитаны на переработку тяжелых высоковязких нефтей. Некоторые тяжёлые высоковязкие нефти могут быть переработаны на НПЗ в смеси с обычными нефтями по традиционным технологиям. Другие такие нефти могут перерабатываться только на специализированных предприятиях, выпускающих ограниченный ассортимент нефтепродуктов. Решение вопроса рациональной переработки тяжёлых высоковязких нефтей затруднено тем, что данные по их свойствам и составу весьма неполны, разноречивы и не носят системного характера. Отсутствие информации затрудняет привлечение новых инвесторов к решению вопроса переработки новых для них видов сырья.

Экономически целесообразной и возможной добыча тяжелых высоковязких нефтей и природных битумов представляется только благодаря развитию и применению эффективных технологий их переработки с получением товарных нефтепродуктов с высоким отличием рыночной цены от себестоимости. Что позволит окупить дорогостоящие технологии их добычи, многократно превышающие аналогичные затраты при добычи кондиционных нефтей.

Технологии добычи. На сегодняшний день известно достаточно много технологий извлечения тяжелых нефтей и природных битумов, которые на практике доказали свою эффективность: это циклическая закачка пара (Cyclic Steam Stimulation – CSS), парогравитационный метод дренирования (Steam–Assisted Gravity Drainage – SAGD), холодная добыча (Cold heavy–oil production with sand – CHOPS), извлечение растворителями в парообразном состоянии (Vapor Extraction – VAPEX), процесс с добавлением растворителя (Solvent Aided Process – SAP), комбинации внутрипластового горения и добычи нефти из горизонтальной скважины (Toe to Heel Air Injection – THAI), новая технология CAPRI (CAtalytic upgrading PRocess In–situ) на базе THAI, предполагающая использование катализаторов окисления.

Канадские природные битумы. В 2011 г. более 43% от мировой добычи нетрадиционной нефти составили канадские природные битумы, объем производства которых достиг 80 млн т. Основными районами добычи в Канаде являются месторождения Atabaska, Gold Lake, Peace River на территории провинции Альберта.

В настоящее время используются разнообразные методы разработки месторождений природных битумов, применимость которых обусловливается геологическим строением и условиями залегания пластов, физико–химическими свойствами пластового флюида, состоянием и запасами углеводородного сырья, климатогеографическими условиями, наличием инфраструктуры и другими факторами. Наиболее популярными являются добыча карьерным способом и тепловые методы добычи.

При карьерном методе разработки насыщенная битумом порода извлекается открытым способом, в связи с чем возможность применения этого метода ограничивается глубиной залегания пластов до 75 м. Карьерным способом могут быть добыты менее 40% запасов канадских природных битумов. После извлечения породы требуется проведение дополнительных работ по получению из нее синтетических углеводородов (на установках апгрейдерах).

Наиболее перспективным тепловым методом разработки месторождений канадских природных битумов считается технология SAGD, разработанная британской нефтегазовой компанией BP (Beyond petroleum, до мая 2001 г. компания носила название British Petroleum). Технология SAGD предусматривает бурение двух горизонтальных скважин, расположенных параллельно одна над другой, через нефтенасыщенные толщины вблизи подошвы пласта. Пар, получаемый при помощи природного газа, нагнетается в одну из скважин, которая проходит примерно в 5 м выше добывающей скважины. Пар нагревает и снижает вязкость битума, который вместе с конденсированным паром стекает в добывающую скважину. Поскольку нефть всегда находится в контакте с высокотемпературной паровой камерой, потери тепла минимальны, что делает этот способ разработки экономически выгодным.

Согласно прогнозу МЭА, Канада в перспективе будет одним из драйверов роста добычи нетрадиционной нефти. В период 2011–2035 гг. добыча канадских битуминозных песков вырастет в 2,7 раза, что позволит компенсировать падающую добычу традиционной нефти в стране. При условии решения экологических проблем и обеспечения необходимой трубопроводной инфраструктурой предполагается, что канадская нефть будет экспортироваться на рынок США и азиатские рынки.

Сверхтяжелая нефть Венесуэлы. Проекты добычи венесуэльской сверхтяжелой нефти, реализуемые в районе Пояса Ориноко, обеспечивают в настоящее время порядка 30 млн тонн нефти, что составляет около 16 процентов мировой добычи нетрадиционной нефти. При добыче венесуэльской нефти используются вертикальные и многозабойные горизонтальные скважины, а также термические методы (например SAGD и CSS). Нефть с проектов поставляется трубопроводом на побережье Мексиканского залива, где на заводах–апргрейдерах она перерабатывается в синтетическую нефть, которая отгружается, в основном, на экспорт.

Приоритетом властей Венесуэлы и государственной нефтегазовой компании PDVSA является реализация ряда масштабных проектов по добыче сверхтяжелой нефти в районах Junin и Carabobo (Пояс Ориноко). Проведенная в 2010 г. переоценка ресурсной базы Пояса Ориноко, увеличила запасы Венесуэлы более чем на 40 процентов (по сравнению с 2009 г.). Из–за неразвитости транспортной, энергетической и телекоммуникационной инфраструктур, по–видимому, будет отложен запуск новых проектов.

С учетом изложенного, Венесуэлу по праву можно считать крупнейшим мировым драйвером роста добычи нетрадиционных углеводородов в долгосрочной перспективе. По оценкам МЭА, в период 2011–2035 гг. добыча сверхтяжелой нефти в Венесуэле увеличится в 3,5 раза.

Кроме Венесуэлы и Канады, сверхтяжелые нефти и природные битумы добываются или планируются к добыче в ближайшей перспективе в США, Китае, России, Казахстане, Индонезии, Бразилии, Конго, Мадагаскаре, Эквадоре и др. Однако кроме Канады и Венесуэлы заметный рост добычи в перспективе, по оценкам МЭА, могут показать только Китай и Россия. В России в добыче тяжелых высоковязких нефтей доминируют тепловые технологии, аналогичные SAGD (на Ярегском и Ашальчинском месторождениях в Республике Коми) и закачка теплоносителя (в т.ч. пара) в пласт. Следует подчеркнуть, что аналогичные технологии в России появились ранее западных, то есть указанные технологии являются аналогами российских технологий.

Трудноизвлекаемая нефть в России. По данным World Energy Council, геологические запасы сверхвязкой нефти и природных битумов в России составляют 55 млрд. тонн. Извлекаемые запасы высоковязкой нефти (более 30 мПас) на начало 2013 года в целом по Российской Федерации составляют по категории АВС1 –1980,291 млн.тонн или 10,99%, в том числе на месторождениях:

В Северо–Западном федеральном округе – 436,037 млн.тонн (2,42%);

В Южном– 7,708 млн.тонн (0,04%);

В Северо–Кавказском – 1,948 млн.тонн (0,01%);

В Приволжском – 844,297 млн.тонн (4,68%);

В Уральском – 651,590 млн.тонн (3,62%);

В Сибирском – 3,544 млн.тонн (0,02%);

В Дальневосточном – 7,487 млн.т (0,04%);

На шельфе Российской Федерации – 27,680 млн.тонн (0,15%).

Следует отметить, что в 2012 году разведанные извлекаемые запасы высоковязкой нефти в целом по Российской Федерации увеличились на 58,053 млн.тонн или 3,02 процента. К категории сверхвязких нефтей в России принято относить нефть вязкостью в пластовых условиях более 200 мПа*с. Для целей налогообложения нефть с вязкостью выше 200 мПас относится к категории сверхвязкой, которая представляет собой нечто среднее между тяжелыми высоковязкими нефтями и природными битумами.

Месторождение сверхвязкой нефти и природных битумов в России сосредоточены, главным образом, в Волго–Уральской (Татарстан, Удмуртия, Башкортостан, Самарская область и Пермский край), Восточно–Сибирской (Тунгусский бассейн) и Тимано–Печорской нефтегазоносных провинциях.

Природные битумы России. В настоящее время в России ряд нефтегазовых компаний реализуют пилотные проекты по добыче природных битумов. Наиболее активно осуществляется разработка месторождений сверхвязких нефтей и битумов в Республике Татарстан, для которой действует в соответствии пп.9 п.1.ст.342 Налогового кодекса Российской Федерации нулевая ставка НДПИ и льготная экспортная пошлина на сверхвязкую нефть. Всего c начала разработки на месторождениях ОАО «Татнефть» добыто более 300 тыс. тонн сверхвязкой нефти.

Испытания технологий по добыче сверхвязкой нефти были начаты Татнефтью на Мордово–Кармальском месторождении еще в 1978 г. методами внутрипластового горения, парогазового воздействия, высокочастотного прогрева с использованием вертикальных скважин. С 2006 г. начат пилотный проект на Ашальчинском месторождении по испытанию модифицированной технологии SAGD, причем в 2011 г. на месторождении было добыто 41,5 тыс. тонн нефти. Татнефть также будет строить завод по промысловой переработке сверхвязкой нефти мощностью 300 тыс. т/год.

С целью стимулирования разработки трудноизвлекаемых запасов нефти были установлены пониженные ставки НДПИ в зависимости от категории сложности и пониженные ставки экспортной пошлины для сверхвязкой нефти. Вступивший в силу Федеральный закон от 23.07.2013 №213-ФЗ «О внесении изменений в главы 25 и 26 части второй Налогового кодекса Российской Федерации и статью 31 закона Российской Федерации «О таможенном тарифе» законодательно закрепил стимулирование вовлечения в разработку новых запасов трудноизвлекаемой нефти.

Однако ограничения по выработанности запасов (степень выработанности запасов залежи углеводородного сырья не превышала более 3%) в целях применения дифференцированной ставки НДПИ в отношении трудноизвлекаемой нефти исключили возможность применения льгот для проектов, уже находящихся в разработке.

Особенностью реализации инвестиционных проектов по разработке трудноизвлекаемых запасов нефти является требование непрерывного использования дорогостоящих технологий и современных методов увеличения нефтеотдачи пластов, которые оценивается в 3-4 раза дороже добычи нефти из традиционных залежей. Без постоянного увеличения количества и поиска новых методов разработка данных объектов практически невозможна. В итоге, при действующей системе налогообложения, экономические результаты деятельности от дальнейшей разработки настоящих трудноизвлекаемых залежей не достигают положительных значений.

В настоящее время в Государственную Думу поступил законопроект №414175-6 «О внесении изменений в статью 342-2 части второй Налогового кодекса Российской Федерации», согласно которому нулевая ставка НДПИ распространяется на месторождения трудноизвлекаемых запасов нефти со степенью выработанности до 10 процентов. Реализация данной налоговой льготы будет способствовать сохранению и увеличению объемов добычи нефти, извлекаемой из залежей трудноизвлекаемых запасов, за счет экономически оправданного использования инновационных технологий при реализации инвестиционных проектов по уже разрабатываемым сложнопостроенным запасам недр.

Ожидаемый бюджетный и мультипликативный эффект от принятия закона о дифференциации налога на добычу полезных ископаемых за весь период разработки трудноизвлекаемой нефти в перспективе до 2032 года составит порядка 2 трлн. руб. при дополнительной добыче порядка 326 млн. тонн нефти.

Высоковязкая нефть в России. Лукойл разрабатывает ресурсы высоковязкой нефти Ярегского и Усинского месторождений (Республика Коми) с использованием термических методов повышения нефтеотдачи (технологии SAGD, CSS). Суммарная добыча нефти на месторождениях составляет более 3 млн т/год. Компания ОАО «РИТЕК» проводит испытания технологии забойного парогазового воздействия, созданной для целей разработки запасов высоковязкой нефти, на своих месторождениях.

О попутных цветных металлах. В России тяжелые нефти относят к альтернативным источникам углеводородного сырья, поскольку они отличаются от обычных нефтей не только повышенной плотностью, но и компонентным составом. Кроме углеводородов тяжелые нефти содержат нафтеновые кислоты, сульфокислоты, простые и сложные эфиры, а также редкие цветные металлы в кондиционных концентрациях. В настоящее время отсутствуют эффективные технологии извлечения титана и его соединений, которые содержатся, например, в ярегской нефти. Примечательно, что в России нет ни одного предприятия по выпуску диоксида титана, а значительные потребности в титановых концентратах и пигментах, вырабатываемых на их основе, при наличии отечественных запасов сырья покрываются за счет импорта.

Извлечением из тяжелых высоковязких нефтей попутных компонентов пренебрегают и в других регионах – в частности, в Волго–Уральской нефтегазовой провинции. Тяжелые нефти здешних месторождений наиболее богаты металлами и суммарно содержат более 100 тыс. тонн извлекаемых запасов окиси ванадия и 4,6 тыс. тонн никеля. Рекордные показатели пятиокиси ванадия содержатся в месторождениях Ульяновской области: Зимницком – 659–1954 г/т, Кондаковском – 1922 г/т, Филипповском и Северо–Филипповском – 1130–1219 г/т.

Ванадий и никель, извлекаемые из тяжелой высоковязкой нефти, качественно превосходят аналоги, получаемые из руды. Поэтому развитые страны предпочитают использовать именно «нефтяной» металл в инновационных технологиях, где требуется более высокая чистота, чем в литейном производстве. Например, Канада и Япония полностью получают ванадий из тяжелых высоковязких нефтей, в США более 80% ванадия извлекается из нефти. С 2003 года спрос на ванадий начал расти опережающими темпами, и эта тенденция, видимо, сохранится.

В тяжелых высоковязких нефтях содержатся и такие уникальные компоненты, как нафтеновые кислоты, сульфокислоты, простые и сложные эфиры, которые можно извлечь при переработке по специальной схеме. Стоимость этих компонентов в объеме товарной продукции, получаемой в результате переработки, может превосходить стоимость нефтепродуктов. Таким образом, для повышения экономической эффективности освоения тяжелых высоковязких нефтей необходимы современные технологии, позволяющие расширить ассортимент товарной продукции, получаемой при добыче и переработке этого сырья.

Создание новых эффективных технологий подготовки и переработки тяжелого нетрадиционного углеводородного сырья является актуальной задачей, решение которой позволит значительно улучшить воспроизводство сырьевой базы России за счет экономически рентабельного вовлечения в разработку месторождений высоковязких нефтей и природных битумов.

О коэффициенте извлечения нефти. За последние 30 лет в России средний проектный коэффициент извлечения нефти (далее – КИН) снизился с 40–41 до 33–34%, что связано с ухудшением структуры запасов, т.е. увеличением числа месторождений с трудноизвлекаемыми запасами, включая объекты с аномальными нефтями. Для разработки большинства подобных месторождений в мировой практике широко применяются современные технологии, которые можно использовать в самых сложных геологических условиях. К ним относятся тепловые, газовые, химические, микробиологические методы, их различные модификации и комбинации.

В России практически все месторождения, независимо от особенностей их геологической характеристики, разрабатываются с применением традиционных технологий: с заводнением или на естественном режиме. В то же время очевидно, что применение заводнения неэффективно на целом ряде месторождений с карбонатными, трещиновато–пористыми коллекторами, аномальными нефтями. На многих из них КИН составляет менее 15–20%.

Характерен пример разработки двух соседних пермо–карбоновых залежей Возейского и Усинского месторождений, представленных трещиноватым карбонатным коллектором. Ожидаемый конечный КИН пермо–карбоновой залежи Возейского месторождения, содержащей легкую нефть и разрабатываемой с заводнением, не превысит 15%. В то же время КИН пермо–карбоновой залежи Усинского месторождения, имеющей более сложное и неоднородное строение коллектора и содержащей нефть вязкостью 700 мПа*с, при тепловом воздействии составит не менее 30%. Это объясняется тем, что при закачке в трещиноватый пласт холодной воды низкопроницаемые интервалы, включающие основные запасы нефти, оказываются блокированными водой, заполнившей высокопроницаемые каналы, и их практически невозможно вовлечь в разработку. Для таких объектов необходимы технологии, позволяющие эффективно воздействовать на низкопроницаемые коллекторы. К ним относятся тепловые методы. При закачке в пласт теплоносителя, который также прорывается по высокопроницаемым зонам, менее проницаемые участки коллектора прогреваются за счет теплопроводности и вовлекаются в разработку. В связи с этим в качестве перспективных объектов для применения тепловых методов могут рассматриваться также залежи легкой нефти, приуроченные к карбонатным и трещиновато–пористым коллекторам, особенно с гидрофобной характеристикой.

Показателен опыт других стран, например США, где средний проектный КИН при значительно худшей структуре запасов составляет 41 процент благодаря широкому применению новых технологий. Из 360 проектов по современным методам увеличения нефтеотдачи (МУН), реализуемых в мире в 2008 году, 166 проектов (46%) приходится на тепловые методы, в основном паротепловые, причем 70 проектов (42%) применяется в США. Результаты анализа показывают, что тепловые методы эффективно используются в широком диапазоне вязкостей нефти (20–50000 мПа*с) в крайне неоднородных трещиноватых коллекторах. В последнее время в разных странах мира за счет тепловых методов ежегодно добывается около 80 млн. т нефти, что составляет 65%всей мировой добычи с применением МУН.

Актуальность проблемы освоения высоковязких нефтей для Республики Коми обусловлена тем, что их запасы составляют около 50% всех разведанных запасов нефти. Только на Ярегском и Усинском месторождениях, находящихся в разработке, остаточные геологические запасы аномально вязкой нефти составляют около 1 млрд. тонн. В настоящее время Республика Коми – единственный район в стране, где в широком промышленном масштабе десятки лет добывается аномально вязкая нефть с применением современных тепловых методов. На 01.01.13 г. здесь добыто 88 млн. тонн нефти, в том числе около 34 млн. тонн за счет закачки в пласты пара. Из 2,5 млн. тонн ежегодной добычи высоковязкой нефти около 1 млн. т обеспечивают тепловые методы.

В процессе эксплуатации указанных месторождений накоплен большой промысловый опыт освоения новых технологий и технических средств для добычи высоковязких нефтей в различных геолого–промысловых условиях: разработан уникальный термошахтный метод, позволивший повысить КИН от 5 до 55–60%; впервые в стране освоены технология и технические средства для закачки пара с температурой более 300оС на глубину до 1400 м на Усинском месторождении. Однако, несмотря на эти достижения, приходится констатировать, что потенциал огромных ресурсов высоковязкой нефти используется недостаточно: объемы закачки пара и добычи нефти последние десять лет практически не увеличиваются, а темпы отбора нефти составляют всего 0,6% начальных извлекаемых запасов.

Причины снижения нефтеотдачи. Сложилась ситуация когда нефтяные компании (обеспеченные запасами) на практике не заинтересованы в применении современных методов увеличения нефтеотдачи (далее – МУН), а вместо этого используют методы выборочной интенсификации добычи нефти из активных запасов, в том числе и в том случае если они ведут к снижению проектной нефтеотдачи. Исследователи справедливо отмечают, что в период высоких цен на нефть большинство добывающих компаний в России, стремясь получить сверхприбыль, вели интенсивный отбор углеводородов из высокодебитного фонда скважин, что привело к переводу значительной части извлекаемых запасов в трудноизвлекаемые и, следовательно, к огромным потерям углеводородов. Дополнительная добыча за счет применения современных МУН в России стабильно снижается и её объем в общей добыче нефти практически не заметен.

Очевидно, что добыча на месторождениях с трудноизвлекаемыми запасами с применением современных МУН требует дополнительных затрат и наоборот, отказ от них и разработка доступных месторождений – снижает себестоимость сырья, что устраивает компании, акционеров и инвесторов, т.к. обеспечивает прибыль. При этом, образуются т.н. нерентабельные скважины, понятие широко используемое в литературе и деловом обороте, но отсутствующее в российском законодательстве.

Следует признать декларативность требований статьи 23 Федерального закона «О недрах» о наиболее полном извлечении запасов из недр, поскольку отсутствует проработанный правовой механизм их реализации. Поэтому отечественные недропользователи оставляют нерентабельные скважины без разработки (что позволяет действующее законодательство), что снижает нефтеотдачу, увеличивает долю трудноизвлекаемых запасов. Увеличение нефтеотдачи и на этой основе увеличение извлекаемых запасов – это задача государства. В условиях разногласия интересов государства и недропользователей по данной проблеме эффективность нефтедобычи определяется разработкой новых современных МУН, внедрение которых обеспечит воспроизводство сырьевой базы, стабильное развитие отрасли, а отсюда – валютную и энергетическую безопасность России.

Разработка и внедрение эффективных МУН является стратегической задачей для всех нефтедобывающих стран. Решается она двумя путями: финансированием государственных программ промысловых испытаний и освоения современных МУН (США, Канада, Норвегия, Индонезия, Китай (программа «Повторное освоение старых месторождений»); правовым регулированием, направленным на стимулирование недропользователей к участию в реализации государственных программ.

За рубежом предпринимаемые в этих направлениях усилия приносят результаты. Новейшие исследования показывают, что за последние 15 лет на основе промышленного освоения современных МУН, мировые доказанные извлекаемые запасы увеличились в 1,4 раза – на 65 млрд. тонн, а проектная нефтеотдача приблизилась к 50 процентов (в США), что в 1,6 раза больше чем в России. Эти показатели достигнуты на фоне заметного ухудшения структуры запасов и увеличения доли трудноизвлекаемых и нетрадиционных ресурсов нефти.

В российской практике оба пути пока не работают. Государство не имеет четкой, научно обоснованной и концептуально выверенной политики управления рациональным использованием недр, способной за счет применения МУН препятствовать ухудшению структуры запасов. Без государственного регулирования этот процесс не инициируется.

Основные причины медленного освоения тяжелых высоковязких нефтей в России:

● отсутствие государственной программы изучения и освоения ресурсной базы трудноизвлекаемых запасов;

● отсутствие единого подхода к классификации трудноизвлекаемых запасов (в том числе тяжелые высоковязкие нефти) и, как следствие, весьма расплывчатые представления о величине их запасов и прогнозных ресурсов;

● практически полное прекращение фундаментальных исследований, направленных на разработку научной основы создания эффективных технологий добычи, средств и систем измерения количества добытых трудноизвлекаемых ресурсов, транспортировки и переработки тяжелых высоковязких нефтей;

● нехватка эффективных промышленных технологий и технических средств разработки тяжелых высоковязких нефтей, недостаточный объем опытно–проектных работ по испытанию новых технологий добычи;

● несовершенство налоговой политики, высокие затраты на добычу льготируемой нефти.

Деятельность Правительства Российской Федерации по стимулированию нефтедобывающих предприятий. Правительством Российской Федерации предлагается разработать комплексный подход к применению налоговых и таможенных льгот.

В настоящий момент началась работа по применению методики определения обоснованности применения особых формул расчета вывозной таможенной пошлины на нефть. Одновременно ведется работа по переходу на налогообложение добычи природных ресурсов на основе результатов финансово–хозяйственной деятельности организации (налог на финансовый результат). Это форма изъятия ренты применяется в налоговых системах ряда развитых нефтедобывающих стран, в частности в Норвегии и Великобритании и является наиболее эффективной с экономической точки зрения.

Переход на налог на финансовый результат российского нефтяного сектора мог бы помочь вовлечь значительную часть неэффективных и проблемных запасов нефти в разработку, что позволило бы в перспективе увеличить объемы добычи в Российской Федерации и, как следствие, налогооблагаемую базу.

Предлагается пересмотреть систему добычи углеводородов России, которая раньше с успехом использовалась, но сегодня уже не отвечает насущным задачам отрасли. По мнению Министра Минприроды России С.Е. Донского, теория, методология и технологии добычи были рассчитаны на скорейшее и относительно низкозатратное освоение нефтегазового потенциала. Происходящее сейчас смещение приоритетов в сторону наращивания и освоения трудноизвлекаемых запасов потребует новых подходов к проведению геологоразведки, классификации и оценке ресурсов.

Первый «пилотный» полигон для отработки нормативно–правовых и организационных решений планируется создать в Томской области, где сосредоточены крупные месторождения трудноизвлекаемых углеводородов.

В тоже время специалистами ОАО «Росгеология» обобщены предложения недропользователей и научных институтов Роснедр о создании федеральных полигонов для отработки технологий по добыче нетрадиционных ресурсов. Росгеология предложила создать восемь полигонов, специализированных на разные типы нетрадиционных и трудноизвлекаемых ресурсов с различными видами пластов коллекторов в Томской и Тюменской областях (нефть Баженовской свиты), республиках Башкортостан и Татарстан (нефть доманиковых отложений), Калининградской области (газ силурийских сланцев), Иркутской области (нефть и газ венд–кембрийских низкопроницаемых карбонатных коллекторов), на сахалинском шельфе (газогидраты) и в Арктике (юрско–меловые терригенные отложения).

Программа создания федеральных полигонов для отработки технологий по добыче трудноизвлекаемых запасов должна включать в себя создание государственных эталонных полигонов и мобильных эталонных установок для исследования и испытаний средств и методов измерения количества добываемых трудноизвлекаемых запасов, использование которых позволит повысить достоверность формирования государственного баланса полезных ископаемых в соответствии с требованиями Федерального Закона Российской Федерации от 23 июля 2013 года №213-ФЗ «О внесении изменений в главы 25 и 26 части второй Налогового кодекса Российской Федерации и статью 3.1 Закона Российской Федерации «О таможенном тарифе».

Данные объекты предполагается объединить в единую систему федеральных полигонов, на которых будут отрабатываться задачи создания рентабельных технологий освоения таких ресурсов. Комплексный подход позволит разработать технологические решения для наиболее доступных видов нетрадиционных и трудно извлекаемых ресурсов. Должны быть приняты законодательные, нормативные, стимулирующие меры, которые позволили бы заинтересовать участников в решениях задачи рентабельного освоения таких ресурсов.

В рамках проекта предполагается сотрудничество с государственными органами, региональными властями, недропользователями, которые работающими в регионах размещения полигонов недропользователями компаний «Газпром нефть», «Татнефть», «Башнефть», «Сургутнефтегаз», «Иркутская нефтяная компания», «Томскнефть», «ГАЗПРОМ», «ЛУКОЙЛ». Такая кооперация, учитывая заинтересованность недропользователя в результате, позволит находить оптимальные технологические решения.

В целях ускорения освоения месторождений тяжелых высоковязких нефтей и природных битумов, прежде всего, в европейской части страны , Комитет поддерживает действия Правительства Российской Федерации, направленные на:

● интенсификацию разведочных работ;

● внедрение эффективных технологий добычи;

● создание новых мощностей по переработке тяжелых высоковязких нефтей, позволяющих получать высокотехнологичные товары;

● предотвращение потерь ценных попутных компонентов, содержащихся в тяжелых высоковязких нефтях;

● решение экологических проблем, связанных с добычей и переработкой тяжелых высоковязких нефтей;

● государственное стимулирование освоения месторождений с трудноизвлекаемыми запасами, в том числе внедрения новых технологий нефтеотдачи.

Правительству Российской Федерации:

●рассмотреть возможность введения в законодательство Российской Федерации дефиниции «экономически трудноизвлекаемые запасы», определив ее как запасы, разработка которых не может быть проведена с рентабельностью выше ставки рефинансирования ЦБ;

● законодательно закрепить определения вязкой, высоковязкой, сверхвязкой нефти на основании предложений Минприроды России, РГУ нефти и газа имени И.М. Губкина и Государственной Комиссии по запасам (далее -ГКЗ);

● рассмотреть целесообразность создания при правительственной комиссии по вопросам ТЭКа и воспроизводства минерально-сырьевой базы рабочую группу по вопросам модернизации российского нефтегазового сектора;

● рассмотреть возможность создания общероссийского нефтяного института, включив в его состав Центральную Комиссию по разработке месторождений (ЦКР), ГКЗ и отраслевые научные институты;

● разработать проект федерального закона о малом бизнесе в нефтегазовом секторе;

● разработать комплекс мер по стимулированию применения методов увеличения нефтеотдачи пластов, включая законодательное закрепление предоставления налоговых льгот для предприятий и недропользователей, осуществляющих разработку «экономически трудноизвлекаемых запасов»

с применением инновационных технологий;

● разработать комплекс мер по стимулированию с помощью системы налогообложения замены экспорта сырой нефти экспортом продукции нефтепереработки с высокой добавленной стоимостью;

● рассмотреть возможность установления пониженных ставок налога на добычу полезных ископаемых в отношении нефти, добываемой на участках недр, содержащих запасы тяжелых высоковязких нефтей, с дифференциацией льготирования ставок в линейной зависимости от значения вязкости нефти, при вязкости нефти, равной 200 мПас, на уровне 100 процентов и при вязкости нефти, равной 30 мПас на уровне 0 процентов от законодательно установленной ставки налога на добычу;

● создать механизм преференций на импортное оборудование, необходимое при освоении трудноизвлекаемых нефтей;

● при создании в Российской Федерации федеральных полигонов для отработки технологий по добыче нетрадиционных ресурсов предусмотреть образование, например, на базе ОАО «Татнефть» Государственного эталонного Полигона для испытаний систем и средств измерения расхода и количества высоковязких нефтей, природного битума и попутного нефтяного газа;

● с целью сокращения затрат на транспортировку производить переработку высоковязкой нефти на предприятиях максимально приближенных к регионам ее добычи;

● в целях развития инновационных подходов к освоению месторождений высоковязких и сверхвязких нефтей и природных битумов, а также обеспечения квалифицированными кадрами всех уровней создать «Научно-образовательный кластер в сфере повышения эффективности разведки и разработки месторождений высоковязких нефтей и природных битумов».

Целесообразно развернуть данный кластер в регионе, где имеется промыслово-производственная и научно-образовательная база. Предлагается создание в Республике Татарстан пилотного варианта кластера в составе ОАО «ТАТНЕФТЬ», ТатНИПИнефть, Казанского Федерального Университета, Альметьевского государственного нефтяного института и Лениногорского нефтяного техникума. В перспективе к данному кластеру может быть подключена и область переработки тяжелого углеводородного сырья с привлечением ОАО «Нижнекамскнефтехим» и Казанского научно-исследовательского технологического университета КНИТУ (КХТИ);

● рассмотреть возможность разработки проекта федерального закона

«О высоковязкой нефти и природном битуме» с привлечением государственного финансирования за счет средств федерального бюджета для проведения научных исследований и организации начала производственных работ;

● рассмотреть возможность создания информационного банка данных о составе и свойствах тяжёлых высоковязких нефтей.

Правительству Российской Федерации, Государственной Думе Федерального Собрания Российской Федерации, руководителям и собственникам отраслевых компаний:

● принять меры по организации работ, направленных на приоритетное системное совершенствование механизмов и технологий управления в добывающих отраслях ТЭК;

● разработать меры, стимулирующие вовлечение в разработку запасов углеводородов, относимых к категории трудноизвлекаемых, в том числе разработать законодательные изменения, направленные на стимулирование недропользователей по расширенному применению методов увеличения нефтеотдачи пластов и повышению коэффициента нефтеизвлечения.

● привлечь внимание научной общественности к необходимости проведения фундаментальных исследований для решения проблем добычи высоковязких нефтей и природных битумов, их разработки и переработки;

● в целях защиты авторских прав россиян подготовить предложения по уточнению названий первоначально разработанных российскими учеными и исследователями технологий и методов в области разведки, добычи и освоении участков недр, содержащих запасы углеводородов, включая трудноизвлекаемых нефтей.

Государственной Думе Федерального Собрания Российской Федерации:

● ускорить рассмотрение проекта федерального закона №143912-6 «О государственном стратегическом планировании»;

● ускорить рассмотрение проекта федерального закона №414175-6 «О внесении изменений в статью 342-2 части второй Налогового кодекса Российской Федерации», разработанного с целью усиления мер налогового стимулирования реализации инвестиционных проектов по находящимся в разработке участкам недр, содержащих запасы трудноизвлекаемой нефти;

● считать проекты федеральных законов, направленные на законодательное принятие мер по стимулированию недропользователей к применению методов увеличения нефтеотдачи пластов и повышению коэффициента нефтеизвлечения при разработки запасов высоковязких нефтей и природных битумов, приоритетными и подлежащими первоочередному рассмотрению Государственной Думой.

Председатель
Комитета Государственной Думы по энергетике
И.Д. Грачёв

РАЗРАБОТКА МЕСТОРОЖДЕНИЙ ВЫСОКОВЯЗКИХ НЕФТЕЙ

Достаточно высокие значения нефтеотдачи пласта при разработке месторождений высоковязких нефтей могут быть достигнуты лишь при реализации тепловых методов повышения нефтеотдачи.

Вместе с тем, учитывая значительные затраты при реализации МУН, в последнее время был разработан и ряд новых технологий холодной добычи нефти. Нами на практических занятиях будут рассмотрены все существующие на сегодня технологии добычи высоковязкой нефти

В рамках данной лекции остановимся на тепловых методах разработки высоковязких нефтей.

Тепловые методы повышения нефтеотдачи.

Для повышения КИН месторождения ВВН целесообразно повышение температуры пласта. Вода обладает свойством переносить гораздо большее количество тепла, чем любая другая жидкость, в том же агрегатном состоянии. При температуре, не слишком близкой к критической, сухой пар переносит гораздо большее количество теплоты чем вода (в 3,5 раза при 20 атм, в 1,8-при 150 атм).

При непрерывном нагнетании теплоносителя (система нагнетательная-добывающая скважины) не вся подводимая тепловая энергия расходуется на увеличение нефтеотдачи. Некоторая, достаточно заметная её часть теряется из-за тепловых потерь:

При течении теплоносителя по участку обсадной трубы скважины, проходящему через верхние слои грунта;

в кровлю и подошву нефтяного пласта непосредственно в ходе нагнетания в пласт;

при повышение температуры нефтяного коллектора.

Использование только одной скважины попеременно в качестве нагнетательной и эксплуатационной значительно снижает отрицательное влияние перечисленных факторов на тепловую эффективность данного метода позволяя лучше использовать подводимую к месторождению тепловую энергию. Такой метод теплового воздействия называется циклическим. Как и при непрерывном нагнетании, в этом процессе теплоносителем обычно служит водяной пар.

При термическом воздействии на нефтяной пласт с помощью теплоносителя по профилю температур или по водонефтенасыщенности можно выделить несколько зон, где действуют различные физические механизмы.

Вытеснение нефти нагретой водой

Нагнетаемая в пласт вода охлаждается при контакте с несущей породой и имеющимися в пласте жидкостями. При достаточно установившемся процессе различают две основные рабочие зоны, нумерацию которых принято начинать от начала течения в направлении его развития. Однако для лучшего понимания начнём их описание в обратном порядке, как показано на рисунке 1.

В зоне 2 нефть вытесняется водой, температура которой равна температуре пласта. Нефтенасыщенность в заданной точке снижается с течением времени и при определённых условиях может достигнуть величины остаточного насыщения, зависящей от температуры в зоне 2.

В каждой точке зоны 1 температура непрерывно растёт, что обычно приводит к снижению остаточной нефтенасыщенности. Кроме того, расширение породы-коллектора и заполняющей его жидкости приводит к снижение (при неизменном насыщении) массы нефти, содержащейся в порах. Если нефть содержит легколетучие углеводороды, они могут быть вытеснены при помощи последовательных процессов испарения и конденсации – в этом случае в сравнительно узкой зоне может существовать состояние насыщения газовой фазы углеводородом.

Вытеснение нефти насыщенным водяным паром

Различают 3 основные зоны, пронумерованные в направлении течения теплоносителя (рисунок 2).

Зона 1 – в начале зоны конденсации сосуществует три фазы: вода, смесь жидких углеводородов и газ. Температура близка к постоянной, медленно снижается при удалении от границы ввода пара в соответствии с зависимостью температуры насыщения от давления. Нефтенасыщенность также изменяется за счёт гидродинамического вытеснения нефти из этой зоны или вследствие испарения легколетучих компонентов.

Зона 2 (конденсация) – в этой зоне пары воды и углеводородные фракции конденсируются при их контакте с холодным коллектором. Локальные температуры коллектора и наполняющих его фракций сильно отличаются, поэтому, строго говоря здесь нельзя пользоваться понятием эффективной теплопроводности. Это локальное нарушение теплового равновесия было обнаружено при экспериментально исследовании вытеснения воды водяным паром. В ходе эксперимента наблюдался переход воды в пар, хотя локальная средняя температура, измеренная термопарой, была заметно ниже температуры насыщения при поддерживаемом в эксперименте давлении (рисунок 3). Эта средняя температура является промежуточной между температурами твёрдого пористого тела и заполняющих его флюидов

Зона 3 – процессы в этой зоне аналогичны процессам, происходящим при вытеснении горячей водой. Однако объем, занимаемый единицей массы пара, гораздо больше, чем объём единицы массы воды; а так как объем зоны 1 (зоны пара) в ходе вытеснения возрастает, скорость воды в зоне 3 в данном случае значительно выше, чем при нагнетании внутрь залежи непосредственном воды той же температуры и с тем же массовым расходом.

Пароциклическое воздействие на скважину

Этот метод, используемый иногда наравне с методом непрерывного вытеснения нефти, включает три последовательные фазы, образующие цикл, который может быть повторён (рисунок 4).

Фаза нагнетания – развитие процесса в этой фазе, пар нагнетают в область залегания нефтяного пласта, идентично развитию процесса вытеснения.

Фаза ожидания – скважина закрыта. Привнесённая тепловая энергия переходит в пласт, пар конденсируется, отдавая своё тепло коллектору и нефти, находящейся в зоне нагнетания.

Фаза извлечения нефти – уровень добычи нефти после откачки части сконденсировавшейся воды заметно превышает уровень её добычи до нагнетания пара. В этот период (в отличие от процесса непрерывного вытеснения нефти) все текучие вещества – сначала сконденсировавшаяся вода, а затем нефть – нагреваются по мере приближения к нефтяной скважине. Часть поступившего к месторождению тепла возвращается обратно. Эффективность процесса зависит от существования в этой зоне повышенной температуры, максимум который достигается в непосредственной близости от скважины, т.е. в области, где тепловые потери при нагнетании пара наиболее существенны.

Таким образом, при одинаковом давлении на забое скважины уровень добычи (вследствие снижения вязкости добываемой нефти) после пароциклического воздействия превышает уровень добычи до него.

Что касается других составляющих энергетического баланса, отметим полное преобразование механической энергии, подведённой к месторождению вместе с паром в процессе конденсации, в тепловую.



При пароциклическом воздействии количество механической энергии слишком незначительно для повышения нефтедобычи. Механическая энергия для проталкивания нефти на каждой скважине обеспечивается соответствующими факторами (собственно тепловой энергией, нагнетанием и т.д.).

Естественно предположить, что при повторениях такого цикла добыча нефти возрастает от цикла к циклу (если не рассматривать влияние очистки и засорения скважины) прежде всего вследствие постепенного повышения средней температуры в окрестности скважины, лишь затем уровень добычи начинает снижаться в результате истощения месторождения. Однако такое положение, отчасти подтверждаемое некоторыми лабораторными исследованиями, не всегда согласуется с данными промысловых испытаний. В частности, это замечание относится к трём циклам, где необходимо учитывать влияние побочных эффектов.

Физические процессы, происходящие при вытеснении нефти теплоносителем

Повышение температуры пласта влечёт за собой:

1) Уменьшение вязкости нефти и соответственно, изменение подвижностей нефти и воды;

2) Тепловое расширение твёрдого тела и жидкостей;

3) Изменение межфазного натяжения на границе нефть-вода;

4) Изменение смачиваемости.

Относительное влияние различных факторов

При вытеснении нефти нагретой водой (в отсутствие испарения каждый из описанных выше факторов – снижение отношения вязкостей изменения относительных проницаемостей, а также термическое расширение – оказывает воздействие на процесс (рисунок 5). Снижение отношения вязкостей и остаточной нефтенасыщенности приводит к замедлению распространения фронта воды и тем самым к увеличению нефтедобычи до прорыва фронта воды.

Для добычи лёгкой нефти большое значение имеет термическое расширение. В этом случае отношение µ h / µ e очень слабо зависит от температуры и межфазные явления изменяются лишь в силу того, что натяжение на границе нефть-вода является убывающей функцией температуры.

Для тяжёлой нефти отношение µ h / µ e резко падает с ростом температуры, и смачиваемость стенок коллектора более существенно воздействует на вытеснение нефти. Тепловое расширение в этом случае значительно меньше влияет на эффективность процесса, в целом перспективного для нефти подобного типа.

Рисунок 1. Профиль температуры (б), паро- (в) и водонасыщенности (а) при одномерном вытеснении нефти водяным паром

Рисунок 2. Профиль температуры (б), паро- (в) и водонасыщенности (а) при одномерном вытеснении нефти водяным паром

Рисунок 3. Профили паронасыщенности (а) и температуры (б), наблюдаемые при вытеснении воды водяным паром

Рисунок 4. Схема двух циклов паротеплового воздействия на скважину


Рисунок 5. Влияние различных процессов на эффективность вытеснения нефти нагретой водой при отсутствии испарения

Фарманзаде А.Р. 1 , Карпунин Н.А. 2 , Хромых Л.Н. 3 , Евсенкова А.О. 4 , Аль-Гоби Г. 5

1 Аспирант, 2 студент, 3 доцент, 4 студент, 5 студент. 1,2,4,5 Национальный минерально-сырьевой университет «Горный», 3 Самарский государственный технический университет

ИССЛЕДОВАНИЕ РЕОЛОГИЧЕСКИХ СВОЙСТВ ВЫСОКОВЯЗКОЙ НЕФТИ ПЕЧЕРСКОГО МЕСТОРОЖДЕНИЯ

Аннотация

В статье изучены реологические свойства тяжелой нефти Печерского месторождения в широком температурном диапазоне. Основное внимание уделено изучению вязкой и упругой компонентам вязкости в зависимости от температуры для обоснования оптимальных условий разработки данного нефтяного месторождения.

Ключевые слова: высоковязкая нефть, битум, упругая компонента вязкости, вязкая компонента вязкости, реологические свойства.

Farmanzade A . R . 1 , Karpunin N . A . 2 , Khromykh L.N. 3 , Evsenkova A . O . 4 , Al Gobi G . 5

1 Postgraduate student, 2 student, 3 associate professor, 4 student, 5 student. 1,2,4,5 National Mineral Recourses University (University of Mines), 3 Samara State Technical University

THE INVESTIGATION RHEOLOGICAL PROPERTIES OF HEAVY OIL FIELD PECHORA

Abstract

There is the investigation of the rheological properties of heavy oil field Pechora in a wide temperatures range in this paper. Main attention is given to the study of the loss and storage modulus of the viscosity as a function of temperature for the recommendation of optimal conditions for development of this oil field.

Keywords: heavy oil, bitumen, storage modulus, loss modulus, rheological properties.

На сегодняшний день, в связи с неуклонным истощением запасов легких, маловязких нефтей, все большее значение приобретает необходимость введения в разработку месторождений трудноизвлекаемых запасов, таких как высоковязкие нефти и природные битумы, большая часть которых находится в Канаде, Венесуэле и России. В Российской Федерации более 70% высоковязких нефтей приурочены к 5 регионам: в Пермской области (более 31 %), в Татарстане (12,8 %), в Самарской области (9,7 %), в Башкортостане (8,6 %) и Тюменской области (8,3 %) .

Месторождения нефтей такого типа, как правило, характеризуются небольшими глубинами залегания нефтеносных пластов и, зачастую, низкой пластовой температурой, в то время как залегающие в них нефти или битумы обладают неньютоновскими свойствами , обусловленными большим содержанием парафинов асфальтенов и смол . При высоком содержании тяжелых компонентов в составе нефтей проявляются вязкоупругие свойства, которые впервые были обнаружены еще в 1970-х гг. .

Высокие значения вязкости таких нефтей в пластовых условиях являются причиной низких дебитов добывающих скважин, а иногда, и полного их отсутствия при попытках разработки месторождения на естественном режиме . В настоящее время термические методы воздействия на продуктивный пласт получили наибольшее распространение при разработке залежей таких углеводородов . Среди этих технологий стоит отметить циклическую (cyclic steam injection) и площадную закачку пара, как наиболее распространенные методы добычи и интенсификации притока в России и парогравитационное дренирование (SAGD – steam assisted gravity drainage), широко применяемое за рубежом .

Для изучения свойств высоковязкой нефти, залегающей в сложнопостроенном карбонатном коллекторе, было выбрано Печерское месторождение, располагающееся на берегу реки Волга, у села Печерское. Ранее на данном месторождении добывалась горная порода (известняки и доломиты), насыщенная тяжелой нефтью, для последующего извлечения из нее сырья для производства битумной мастики. Авторами были организованы полевые выходы на данное месторождение для сбора информации о строении залежи и образцов для изучения реологических свойств нефти и пустотного пространства пласта-коллектора.

В данной работе была изучена реологических свойств нефти от температуры. При этом использовался современный высокоточный ротационный вискозиметр с воздушными подшипниками.

Эксперимент по изучению зависимости динамической вязкости от температуры проводился следующим образом: на разогретую до 70°С площадку вискозиметра помещалась капля нефти объемом 1 мл, затем капля прижималась ротором, и температура повышалась до 110°С. На вискозиметре было задано значение угловой скорости 5 с -1 , после чего температура плавно опускалась до 50°С. Данная температура была предложена в качестве граничной для предотвращения излишней перегрузки двигателя вискозиметра.

Рис. 1 – Зависимость динамической вязкости высоковязкой нефти от температуры.

На представленном рисунке видно, что динамическая вязкость нефти может быть описана степенной функцией вида y=1177320551696170000x -7,24 с величиной достоверности аппроксимации R² = 0,99554. Нефть на всем интервале представленных температур является высоковязкой (вязкость при 110°С составляет 2003 мПа∙с, а при 50°С – 502343 мПа∙с). На данном этапе испытаний измерить вязкость нефти при пластовой температуре 20°С не было возможно из-за ограничения возможностей вискозиметра.

Для углубленного изучения реологических свойств данной нефти были проведены дополнительные специализированные динамические испытания по определению упругой и вязкой компонент вязкости. В ходе экспериментов было изучено влияние снижения температуры на упругую компоненту вязкости (динамический модуль сдвига, также называемый storage modulus) и вязкую компоненту вязкости (податливость или loss modulus) . Нефть Печерского месторождения, используемая для проведения исследований, в первом случае охлаждалась в выбранном интервале температур от 90ºС до 50ºС. Эксперимент проходил следующим образом: на разогретую до 70°С площадку вискозиметра помещалась капля нефти объемом 1 мл, затем капля прижималась ротором, и температура повышалась до 90°С, после чего плавно снижалась до 50°С с записью данных. Динамическая нагрузка была представлена осцилляционным движением ротора с частотой 1 Гц и нагрузкой 100 Па. Результаты представлены на рисунке 2.

Рис. 2 – Зависимость упругой (storage modulus) и вязкой (loss modulus) компонент вязкости высоковязкой нефти Печерского месторождения от температуры.

Анализируя представленные зависимости, возможно сделать следующие выводы: во-первых, как вязкая, так и упругая компоненты вязкости нефти уменьшаются с увеличением температуры и достигают относительно небольших значений при 80°С, что доказывает необходимость использования тепловой энергии при разработке данного месторождения. Во-вторых, заметно, что на исследованном интервале температур нефть обладает упругими свойствами, которые хоть и уменьшаются при увеличении температуры, но достигают значительных величин: 23,54 Па.

Исходя из результатов проведенных исследований, возможно сделать следующие выводы:

  1. Высоковязкая нефть Печерского месторождения характеризуется аномально высокой вязкостью: измеренная динамическая вязкость при 50°С составляет 502343 мПа∙с.
  2. Исходя из того, что вязкость нефти при повышении температуры от 50 до 110°С снижается с 502343 мПа∙с до 2000 мПа∙с для извлечения нефти из породы данного месторождения необходимо применение термического воздействия.
  3. Изученная нефть обладает сложными реологическими свойствами, обусловленными, вероятно, высоким содержанием асфальтенов и смол, характерным для приповерхностных месторождений Самарской области. Высокие значения вязкой и упругой компонент вязкости наблюдаются на всем интервале температур, при которых проводились динамические испытания, что несомненно окажет негативное влияние на процесс извлечения нефти из пласта-коллектора.
  4. Авторами работы запланированы дальнейшие испытания, направленные на обоснование эффективных технологий извлечения таких аномальных нефтей из продуктивных пластов, например, технологии с применением комплексного воздействия тепловыми агентами и растворителями.

Литература

  1. Девликамов В.В., Хабибуллин З.А., Кабиров М.М. Аномальные нефти. -М.: Недра, 1975. -168 с.
  2. Зиновьев А.М., Ковалев А.А., Максимкина Н.М., Ольховская В.А., Рощин П.В., Мардашов Д.В. Обоснование режима разработки залежи аномально вязкой нефти на основе комплексирования исходной геолого-промысловой информации//Вестник ЦКР Роснедра. -2014. -№3. -С. 15-23.
  3. Зиновьев А.М., Ольховская В.А., Ковалев А.А. Обоснование аналитической модели псевдоустановившегося притока нелинейно вязкопластичной нефти к вертикальной скважине//Вестник ЦКР Роснедра. -2013. -№2. -С. 40-45.
  4. Зиновьев А.М., Ольховская В.А., Максимкина Н.М. Проектирование систем разработки месторождений высоковязкой нефти с использованием модели неньютоновского течения и результатов исследования скважин на приток//Нефтепромысловое дело. -2013. -№1. -С. 4-14.
  5. Литвин В.Т., Рощин П.В. Изучение влияния растворителя «Нефрас С2-80/120» на реологические свойства парафинистой высоковязкой нефти Петрухновского месторождения//Материалы научной сессии ученых Альметьевского государственного нефтяного института. -2013. -Т.1. -№ 1. -С. 127-130.
  6. Полищук Ю.М., Ященко И.Г. Высоковязкие нефти: анализ пространственных и временных изменений физико-химических свойств // Электронный научный журнал «Нефтегазовое дело». 2005 №1. [Электронный ресурс]: http://ogbus.ru/authors/PolishukYu/PolishukYu_1.pdf (дата обращения 15.11.2015).
  7. Ольховская В.А., Сопронюк Н.Б., Токарев М.Г. Эффективность ввода в эксплуатацию небольших залежей нефти с неньютоновскими свойствами//Разработка, эксплуатация и обустройство нефтяных месторождений/Самара: Сборник научных трудов ООО «СамараНИПИнефть». -2010. -Вып.1. -С. 48-55.
  8. Ольховская В.А. Подземная гидромеханика. Фильтрация неньютоновской нефти. -М.: ОАО «ВНИИОЭНГ», 2011. -224 с.
  9. Рогачев М.К., Колонских А.В. Исследование вязкоупругих и тиксотропных свойств нефти Усинского месторождения//Нефтегазовое дело. -2009. -Т.7. -№1. -С.37-42.
  10. Рощин П.В. Обоснование комплексной технологии обработки призабойной зоны пласта на залежах высоковязких нефтей с трещинно-поровыми коллекторами: дис. канд. техн. наук. -СПб., 2014. -112 с.
  11. Рощин П.В., Петухов А.В., Васкес Карденас Л.К., Назаров А.Д., Хромых Л.Н. Исследование реологических свойств высоковязких и высокопарафинистых нефтей месторождений Самарской области. Нефтегазовая геология. Теория и практика. 2013. Т. 8. № 1. С. 12.
  12. Рощин П.В., Рогачев М.К., Васкес Карденас Л.К., Кузьмин М.И., Литвин В.Т., Зиновьев А.М. Исследование кернового материала Печерского месторождения природного битума с помощью рентгеновского компьютерного микротомографа SkyScan 1174V2. Международный научно-исследовательский журнал. 2013. № 8-2 (15). С. 45-48.
  13. Рузин Л.М. Технологические принципы разработки залежей аномально вязких нефтей и битумов / Л.М. Рузин, И.Ф. Чупров; Под ред. Н.Д. Цхадая. Ухта, 2007. 244 с.
  14. Petukhov A.V., Kuklin A.I., Petukhov A.A., Vasques Cardenas L.C., Roschin P.V. Origins and integrated exploration of sweet spots in carbonate and shale oil-gas bearing reservoirs of the Timan-Pechora basin. Society of Petroleum Engineers – European Unconventional Resources Conference and Exhibition 2014: Unlocking European Potential 2014. С. 295-305.
  15. Pierre C. et al. Composition and heavy oil rheology //Oil & Gas Science and Technology. – 2004. – Т. 59. – №. – С. 489-501.
  16. Roschin P.V., Zinoviev A.M., Struchkov I.A., Kalinin E.S., Dziwornu C.K. Solvent selection based on the study of the rheological properties of oil. Международный научно-исследовательский журнал. -2015. -№ 6-1 (37). -С. 120-122.

References

  1. Devlikamov V.V., Habibullin Z.A., Kabirov M.M. Anomal’nye nefti. -M.: Nedra, 1975. -168 s.
  2. Zinov’ev A.M., Kovalev A.A., Maksimkina N.M., Ol’hovskaja V.A., Roshhin P.V., Mardashov D.V. Obosnovanie rezhima razrabotki zalezhi anomal’no vjazkoj nefti na osnove kompleksirovanija ishodnoj geologo-promyslovoj informacii//Vestnik CKR Rosnedra. -2014. -№3. -S. 15-23.
  3. Zinov’ev A.M., Ol’hovskaja V.A., Kovalev A.A. Obosnovanie analiticheskoj modeli psevdoustanovivshegosja pritoka nelinejno vjazkoplastichnoj nefti k vertikal’noj skvazhine//Vestnik CKR Rosnedra. -2013. -№2. -S. 40-45.
  4. Zinov’ev A.M., Ol’hovskaja V.A., Maksimkina N.M. Proektirovanie sistem razrabotki mestorozhdenij vysokovjazkoj nefti s ispol’zovaniem modeli nen’jutonovskogo techenija i rezul’tatov issledovanija skvazhin na pritok//Neftepromyslovoe delo. -2013. -№1. -S. 4-14.
  5. Litvin V.T., Roshhin P.V. Izuchenie vlijanija rastvoritelja «Nefras S2-80/120» na reologicheskie svojstva parafinistoj vysokovjazkoj nefti Petruhnovskogo mestorozhdenija//Materialy nauchnoj sessii uchenyh Al’met’evskogo gosudarstvennogo neftjanogo instituta. -2013. -T.1. -№ 1. -S. 127-130.
  6. Polishhuk Ju.M., Jashhenko I.G. Vysokovjazkie nefti: analiz prostranstvennyh i vremennyh izmenenij fiziko-himicheskih svojstv // Jelektronnyj nauchnyj zhurnal «Neftegazovoe delo». 2005 №1. : http://ogbus.ru/authors/PolishukYu/PolishukYu_1.pdf (data obrashhenija 15.11.2015).
  7. Ol’hovskaja V.A., Sopronjuk N.B., Tokarev M.G. Jeffektivnost’ vvoda v jekspluataciju nebol’shih zalezhej nefti s nen’jutonovskimi svojstvami//Razrabotka, jekspluatacija i obustrojstvo neftjanyh mestorozhdenij/Samara: Sbornik nauchnyh trudov OOO «SamaraNIPIneft’». -2010. -Vyp.1. -S. 48-55.
  8. Ol’hovskaja V.A. Podzemnaja gidromehanika. Fil’tracija nen’jutonovskoj nefti. -M.: OAO «VNIIOJeNG», 2011. -224 s.
  9. Rogachev M.K., Kolonskih A.V. Issledovanie vjazkouprugih i tiksotropnyh svojstv nefti Usinskogo mestorozhdenija//Neftegazovoe delo. -2009. -T.7. -№1. -S.37-42.
  10. Roshhin P.V. Obosnovanie kompleksnoj tehnologii obrabotki prizabojnoj zony plasta na zalezhah vysokovjazkih neftej s treshhinno-porovymi kollektorami: dis. kand. tehn. nauk. -SPb., 2014. -112 s.
  11. Roshhin P.V., Petuhov A.V., Vaskes Kardenas L.K., Nazarov A.D., Hromyh L.N. Issledovanie reologicheskih svojstv vysokovjazkih i vysokoparafinistyh neftej mestorozhdenij Samarskoj oblasti. Neftegazovaja geologija. Teorija i praktika. 2013. T. 8. № 1. S. 12.
  12. Roshhin P.V., Rogachev M.K., Vaskes Kardenas L.K., Kuz’min M.I., Litvin V.T., Zinov’ev A.M. Issledovanie kernovogo materiala Pecherskogo mestorozhdenija prirodnogo bituma s pomoshh’ju rentgenovskogo komp’juternogo mikrotomografa SkyScan 1174V2. Mezhdunarodnyj nauchno-issledovatel’skij zhurnal. 2013. № 8-2 (15). S. 45-48.
  13. Ruzin L.M. Tehnologicheskie principy razrabotki zalezhej anomal’no vjazkih neftej i bitumov / L.M. Ruzin, I.F. Chuprov; Pod red. N.D. Chadaja. Uhta, 2007. 244 s.
  14. Petukhov A.V., Kuklin A.I., Petukhov A.A., Vasques Cardenas L.C., Roschin P.V. Origins and integrated exploration of sweet spots in carbonate and shale oil-gas bearing reservoirs of the Timan-Pechora basin. Society of Petroleum Engineers – European Unconventional Resources Conference and Exhibition 2014: Unlocking European Potential 2014. S. 295-305.
  15. Pierre C. et al. Composition and heavy oil rheology //Oil & Gas Science and Technology. – 2004. – T. 59. – №. 5. – S. 489-501.
  16. Roschin P. V. et al. Experimental investigation of heavy oil recovery from fractured-porous carbonate core samples by secondary surfactant-added injection//SPE Heavy Oil Conference-Canada. – Society of Petroleum Engineers, 2013.
  17. Roschin P.V., Zinoviev A.M., Struchkov I.A., Kalinin E.S., Dziwornu C.K. Solvent selection based on the study of the rheological properties of oil. Mezhdunarodnyj nauchno-issledovatel’skij zhurnal. -2015. -№ 6-1 (37). -S. 120-122.

Введение

Важнейшей составляющей сырьевой базы нефтяной отрасли не только России, но и ряда других нефтедобывающих стран мира являются запасы высоковязких тяжелых нефтей и природных битумов. По разным оценкам их запасы составляют от 790 млрд. т. до 1 трлн. т., что в 5–6 раз больше остаточных извлекаемых запасов нефтей малой и средней вязкости, составляющих примерно 162 млрд. тонн.

На сегодня высоковязкие нефти и битумы не самый востребованный вид углеводородного сырья, однако, в качестве альтернативы традиционной нефти и газу некоторые страны выбрали именно его. Особые перспективы применения связаны с внедрением технологий производства синтетической нефти. Синтетической является почти половина канадской нефти, устойчиво растут темпы добычи битумов и производства нефти на его основе в Венесуэле.

Геологические запасы высоковязкой нефти и битумов в России составляет от 6 до 75 млрд. тонн, однако их применение требует использования специальных дорогостоящих технологий, так как они сложны в переработке, из-за высокой вязкости их сложно перекачивать, они плохо протекают в скважине, и даже при больших запасах трудно отбирать большие дебиты. Высоковязкие нефти на рынке стоят дешевле, относятся к категории низкосортных, и особой охоты за ними, с целью получения больших прибылей пока нет, поэтому не многие российские компании готовы вкладывать значительные средства в разработку месторождений и переработку высоковязких нефтей.

К сожалению, пока добыча природных битумов и высоковязких нефтей убыточна. Как всякое новое перспективное производство, освоение ресурсов и организация переработки тяжелых нефтей требует на первых порах поддержки.

Необходимы срочные меры для стимулирования освоения месторождений высоковязких нефтей. Говоря о стимулировании этого направления, необходимо, на мой взгляд, отметить то, что оно имеет место быть, но к несчастью в той мере, которая не позволяет в полном объеме раскрываться такому важному вектору нефтяной отрасли, как промышленное освоение запасов тяжелых нефтей, включая, конечно, и создание соответствующей инфраструктуры по сбору, транспортировке и переработке этого вида углеводородов.

Относительно географии запасов высоковязких нефтей и природных битумов следует отметить то, что бассейны с данными углеводородами распространены в основном на европейской территории России: Волго-Уральский, Днепровско-Припятский, Прикаспийский и Тимано-Печорский. Исключение составляет Енисейско-Анабарский бассейн с высоковязкими нефтями, который находится в Восточной Сибири. На территории этих бассейнов содержится большое количество месторождений труднодобываемого сырья. Из них можно выделить наиболее известные, изученные и разрабатываемые месторождения, такие как: Усинское и Ярегское (республика Коми), Гремихинское, Мишкинское, Лиственское (Удмуртия), Южно-Карское, Зыбза-Глубокий Яр, Северо-Крымское (Краснодарский край), Ашальчинское и Мордово-Кармальское (Татария).

Выше указанные месторождения используются в качестве объектов опытно-промышленной разработки высоковязкой нефти и природных битумов.

Такие компании как ОАО «Лукойл», ОАО «РИТЭК», ОАО «Коминефть», ОАО «Удмуртнефть», ОАО «Северная нефть» ведут активные работы по изучению, совершенствованию и созданию технологий разработки залежей тяжелых нефтей. Изучаются и совершенствуются методы воздействия горячей водой, растворителями, щелочами, паром, кислотами, технологии сухого и влажного внутрипластового горения, комбинации методов.

В данной работе будут рассмотрены различные методы разработки месторождений с нефтью повышенной и высокой вязкости, а также некоторые методы разработки месторождений природных битумов. Следует отметить то, что методы разработки битумных месторождений могут существенно отличаться от методов разработки месторождений вязких нефтей, но в некоторых случаях методы могут быть применимы как к одним, так и к другим месторождениям. На выбор метода главным образом влияют геолого-физические свойства нефтесодержащих коллекторов и физические свойства насыщающего флюида.

Общие сведения о месторождениях высоковязких нефтей и природных битумов

По наиболее широко используемой в мировой практике классификации тяжелыми нефтями считаются углеводородные жидкости с плотностью 920–1000 кг/м 3 и вязкостью от 10 до 100 мПа·с, а природными битумами – слаботекучие или полутвердые смеси преимущественно углеводородного состава с плотностью более 1000 кг/ м 3 и вязкостью выше 10000 мПа·с. Промежуточную группу между битумами и тяжелыми нефтями образуют так называемые сверхтяжелые нефти с вязкостью от 100 до 10000 мПа·с и плотностью около или несколько более 1000 кг/м 3. Тяжелые и сверхтяжелые нефти многие авторы объединяют под общим названием – тяжелые нефти или высоковязкие нефти.

Вязкость в пластовых условиях для месторождений тяжелой нефти варьируется от относительно небольших значений 20 мПа·с до величин вязкости близких к значениям природного битума (9000 мПа·с). При этом большинство месторождений имеют вязкость в пределах 1000 мПа·с.

Обычно коллекторы месторождений тяжелых нефтей характеризуются довольно высокими емкостными свойствами. Значения пористости могут лежать в пределах от 20% до 45%. При этом для коллекторов характерна расчлененность и значительная неоднородность фильтрационных свойств (проницаемость может изменяться от сотых долей до нескольких единиц мкм 2).

Залежи тяжелых нефтей встречаются на всех диапазонах глубин от 300 метров до глубин свыше 1500 метров. При этом доля балансовых запасов высоковязких нефтей расположенных на глубинах свыше 1500 метров составляет только 5% всех запасов. Наиболее значимые по запасам месторождения расположены в диапазонах глубин 1000–1500 метров. Очень часто месторождения высоковязкой нефти представляют собой сложную многопластовую систему, в которой различные этажи нефтеносности имеют не только различные емкостно-фильтрационые свойства, но и отличные друг от друга свойства пластового флюида.

Основные месторождения природных битумов располагаются на внешних бортах мезозой-кайнозойских краевых прогибов, примыкающих к щитам и сводам древних платформ (Канадский, Гвианский щиты, Оленекский свод). Месторождения могут быть пластовые, жильные, штокверковые. Пластовые месторождения (до 60 м) охватывают, нередко, многие тысячи квадратных километров (Атабаска, Канада).

Жильные и штокверковые месторождения формируются на путях вертикальной миграции углеводородов по тектоническим трещинам, зонам региональных разрывов. Крупнейшие жильные тела в Турции (Харбол, Авгамасья) достигают длины 3,5 км при мощности 20 – 80 м и прослеживаются до глубины 500 м. Покровные залежи образуются за счет излившихся нефтей. Известны так называемые асфальтовые озера (Охинское на Сахалине, Пич-Лейк на о. Тринидад, Гуаноко в Венесуэле).

Природные битумы генетически представляют собой, в различной степени, дегазированные, потерявшие легкие фракции, вязкие, полутвердые естественные производные нефти (мальты, асфальты, асфальтиты). Кроме повышенного содержания асфальтено-смолистых компонентов (от 25 до 75% мас.), высокой плотности, аномальной вязкости, обусловливающие специфику добычи, транспорта и переработки, природные битумы отличаются от маловязких нефтей значительным содержанием серы и металлов, особенно пятиокиси ванадия V2O5 и никеля (Ni) в концентрациях, соизмеримых с содержанием металлов в промышленных рудных месторождениях в России и странах СНГ (V2O5 до 7800г/т) и за рубежом (V2O5 до 3500 г./т). Наиболее обогащены указанными компонентами природные битумы месторождений Волго-Уральской битумонефтегазоносной провинции. Так, в битумах (мальта-высокосмолистая нефть) содержание серы достигает 7,2% мас., aV2O5 и Niсоответственно 2000 г./т и 100 г./т. В асфальтитах Оренбуржья концентрация серы превышает 6% – 8% мас., aV2O5 и Ni соответственно 6500 г./т в 640 г./т. Таким образом, месторождения природных битумов необходимо рассматривать не только как источник мономинерального сырья для получения только нефти и продуктов её переработки, а, прежде всего с позиций поликомпонентного сырья.

В России основные перспективы поиска природных битумов, связаны с породами пермских отложений центральных районов Волго-Уральской битумонефтегазоносной провинции, т.е. как раз на той территории, где запасы обычной нефти выработаны в наибольшей мере по сравнению с другими нефтедобывающими регионами России. Почти 36% запасов битумов России находятся на территории Татарстана, который по этому показателю занимает ведущее место в стране. Большая часть скоплений битумов в пермских отложениях Татарии приурочена к пластам, залегающим на глубине от 50 до 400 м и охватывающим почти весь разрез пермской системы. Битумы тяжелые (плотность 962,6–1081 кг/м 3), высоковязкие (до десятков и сотен тысяч мПа·с), высокосмолистые (19,4–48,0%) и сернистые (1,7–8,0%).Битумная часть пермских отложений представляет собой сложнопостроенную толщу карбонатных и терригенных коллекторов, образующих природные резервуары с широким диапазоном коллекторских свойств. Другие регионы сосредоточения природных битумов представлены территориями Самарской, Оренбургской областей, Северного Сахалина, Северного Кавказа, Республики Коми и некоторыми областями Сибири.

Частный пример месторождений тяжелых нефтей. Месторождение Ярегское

Ярегское месторождение, в административном отношении, находится в центральном промышленном районе Республики Коми, с высокоразвитой инфраструктурой, в 18 км к юго-западу от города Ухты. Существующие на месторождении посёлки (Ярега, Первомайский, Нижний Доманик) соединены между собой и городом Ухта дорогой с асфальтобетонным покрытием. В пределах поселка Ярега находится железнодорожная станция Ярега, северной магистральной железной дороги Воркута-Москва. Ярегское нефтетитановое месторождение является потенциальной сырьевой базой для обеспечения рынка России продуктами переработки титановой руды и тяжелой нефти. Уникальность его состоит в том, что, кроме больших запасов нефти, оно содержит огромные запасы титановой руды – более 40% всех запасов титанового сырья России. Месторождение относится к Восточно-Тиманской нефтегазоносной области Тимано-Печорской нефтегазоносной провинции.

Тектоническая принадлежность: Ухтинская брахиантиклинальная складка. Типструктуры: брахиантиклиналь.

Приурочено к широкой пологой асимметричной антиклинальной складке в северозападной части Ухта-Ижемского вала на северо-восточном склоне Тиманской антеклизы. Присводовая часть антиклинали осложнена Ярегским. Южно-Ярегским, Лыаельским и Вежавожским локальными поднятиями. ПростиПромышленно нефтеносны отложения верхнего и среднего девона. ПростиКоллекторы трещинно-поровые, представлены кварцевыми песчаниками (толщина 26 м). Залежь пластовая сводовая на глубине 140–200 м, многочисленными дизъюнктивными нарушениями разбита на блоки. Нефть тяжелая, высокосмолистая, вязкая, парафинистая; плотность от 0,932 до 0,959 (г/см3). На 1.1.1997 г. добыто 17,7 млн. т нефти. В 1941 г. геолог В.А. Калюжный в песчаниках III-го пласта установил промышленное содержание титановых минералов. На Яреге строится горнообогатительный комплекс для добычи и химического обогащения кремнистотитанового концентрата. Месторождение разрабатывают ЗАО «Битран» и ООО «Комититан».

Дополнительные сведения по месторождению Ярегское

Опытная эксплуатация месторождения с 1935 г. До 1945 г. месторождение разрабатывалось обычным скважинным методом по треугольной сетке с расстояниями между скважинами 75–100 м. добыто 38.5 тыс. т нефти, нефтеотдача не превышала 2%. С конца 1939 г. разработка велась шахтным способом (3 шахты). Из рабочей галереи в надпластовом горизонте, расположенном на 20–30 м выше кровли продуктивного пласта, разбуривали залежь по плотной сетке скважин через 15–25 м. С 1954 г. отработка шахтных полей велась по уклонно-скважинной системе из рабочей галереи внутри продуктивного пласта. Длина скважин 40–280 м. расстояние между забоями 15–20 м. К 1972 г. добыто 7,4 млн. т. нефтеотдача менее 4%. С 1972 г. начата термошахтная эксплуатация с закачкой в продуктивные пласты теплоносителя через нагнетательные скважины из надпластовой галереи. Нефть отбиралась эксплуатационными скважинами из рабочей галереи продуктивного пласта. Кроме нефти в среднедевонских песчаниках обнаружены повышенные концентрации лейкоксена.

Сводный стратиграфический разрез Ярегского нефтяного месторождения

Карта нефтегазоносности Тимано-Печорской провинции


Существующие технологии разработки месторождений высоковязких нефтей и природных битумов

Существуют различные способы разработки залежей тяжелых нефтей и природных битумов, которые различаются технологическими и экономическими характеристиками. Применимость той или иной технологии разработки обуславливается геологическим строением и условиями залегания пластов, физико-химическими свойствами пластового флюида, состоянием и запасами углеводородного сырья, климатогеографическими условиями и т.д. Условно их можно подразделить на три, неравноценные по объему внедрения, группы: 1 – карьерный и шахтный способы разработки; 2 – так называемые «холодные» способы добычи; 3 – тепловые методы добычи.

Карьерный и шахтный способы разработки

Залежи природных битумов разрабатывают открытыми (карьерными или рудничными) и подземными (шахтными, шахтно-скважинными) методами.

Твердые битуминозные сланцы могут залегать почти у поверхности земли, однако глубина залегания битуминозных пород может достигать и до 750 м (месторождение Пис Ривер, Канада), а порой и более того. Как правило, глубина разработки не превышает 150–200 м., а зачастую разработка ведется и на меньших глубинах.

Добыча нефти карьерным методом состоит из двух основных операций: выемки нефтеносной породы и транспортировки на обогатительную фабрику с последующим извлечением нефти. При данном методе разработки капитальные и эксплуатационные расходы на месторождении относительно невелики, и после проведения дополнительных работ по получению из породы углеводородов, обеспечивается высокий коэффициент нефтеотдачи: от 65 до 85%. Для выемки породы применяют землеройные машины-экскаваторы, скреперы, бульдозеры и т.п.

Наиболее крупным в мире является месторождение битуминозных песков Атабаска в Канаде (провинция Альберта). Мощность песков до 90 м, глубина залегания до 600 м. Пески кварцевые с пористостью до 30%. Битумонасыщенность от 2 до 18%, в среднем 8%. Пески насыщены нефтью и содержат (%): силикатные смолы – 24%, асфальтены – 19%, серу – 5%, азот – 10%, кокс – 19%. Плотность битумов – 1020 кг/м 3 , запасы – 128 млрд. т. Добыча битуминозных песков ведется роторными экскаваторами (Рис. 1). Затем песчано-битумная масса подается транспортером на измельчительный пункт и экстракционный завод, расположенные около карьера. Обработка нефтеносной породы, т.е. отмыв нефти от частиц породы производится различными способами: аэрированной холодной водой, горячей водой, паром, химическими реагентами и даже методом пиролиза. После экстракции битума, отстоя и центрифугирования он поступает на нефтеперерабатывающий завод (НПЗ). На установках термоконтактного крекинга НПЗ после предварительной гидроочистки с получением товарной серы выделяют фракции: бензиновые, дизельные, котельного топлива и металлосодержащий кокс. Из двух кубометров песков получают 1 баррель нефти (159 кг). В сутки вырабатывают 8000 м 3 нефти, 350 т серы, 260 т кокса и газ. Из отходов извлекают титановые минералы и циркон (до 690 т в год). На юго-запад от Атабаски находятся месторождения Колд-Лейк (14 млрд. м 3), Пис-Ривер (12 млрд. м 3), Уобаска (14 млрд. м 3).

Шахтная разработка может вестись в двух модификациях: очистная шахтная – с подъемом углеводородонасыщенной породы на поверхность и шахтно-скважинная – с проводкой горных выработок в надпластовых породах и бурением из них кустов вертикальных и наклонных скважин на продуктивный пласт для сбора нефти уже в горных выработках. Очистной-шахтный способ.


Рис. 1 Роторный экскаватор Рис. 2 Шахтный метод разработки

(Рис. 2) применим лишь до глубин 200 метров, зато имеет более высокий коэффициент нефтеотдачи (до 45%) по сравнению со скважинными методами. Большой объем проходки по пустым породам снижает рентабельность метода, который в настоящее время экономически эффективен только при наличии в породе (кроме углеводородов) ещё и редких металлов. Шахтно-скважинный метод разработки применим на более значительных глубинах (до 400 метров), но имеет низкий коэффициент нефтеотдачи и требует большого количества бурения по пустым породам. Принцип шахтно-скважинного метода таков. Если горные выработки находятся ниже продуктивного нефтеносного горизонта, то из них бурятся небольшие дренажные скважины (причем бурение обычно 10–12 скважин), по которым нефть идет самотеком под действием гравитационного фактора и попадает в специальные канавки, находящиеся на дне горной выработки и имеющие небольшой уклон для стока в нефтехранилище. В случае, когда горные выработки находятся выше продуктивного горизонта, также бурят кустовые скважины, но нефть извлекается насосами. Вязкие нефти транспортируются по канавкам при помощи воды открытым способом ввиду почти полного отсутствия газообразных компонентов. Далее из нефтехранилища эта нефть подается на поверхность насосами.

Для повышения темпов добычи тяжелых нефтей и природных битумов и обеспечения полноты выработки запасов в шахтно-скважинном способе разработки используют паротепловое воздействие на пласт. Так называемый термошахтный метод применим на глубинах до 800 метров, имеет высокий коэффициент нефтеизвлечения (до 50%), однако более сложен в управлении, чем шахтный и шахтно-скважинный методы. Наиболее известным примером шахтно-скважинной разработки залежей тяжелых нефтей является разработка Ярегского месторождения.

Разработка Ярегского месторождения подразделена на три этапа: 1) опытный при эксплуатации скважин с поверхности, 2) шахтный способ разработки, 3) шахтный способ с применением теплового воздействия на пласт.

Эксплуатация скважин с поверхности привела к уровню нефтедобычи всего в 2%. Именно тогда возникла идея бурения шахтных скважин, оканчивающихся в системе галерей, расположенных в вышележащем горизонте.

Разработка шахтным способом осуществлялась по двум системам (Рис. 3): 1) ухтинской, при которой залежь дренировали весьма плотной сеткой вертикальных или слегка наклонных скважин (глубиной до 50 м), пробуренных из горной выработки вышележащего туффитового горизонта, находящейся выше продуктивного пласта на 25 метров и 2) уклонно-скважинной – с расположением галерей в верхней части пласта и разбуриванием шестигранников (площадью 8–12 га) в подстилающем горизонте пологими скважинами длиной до 200 м., которые отходят от них как спицы колеса от оси.


Рис. 3 Схема разработки шахтным способом Ярегского месторождения, включающая в себя ухтинскую и уклонно-скважинную системы

1 – система наклонных скважин; 2 – подземная часть скважины; 3 – насосная станция; 4 – подземная галерея для аэрации; 5 – основная скважина; 6 – скважина для аэрации; 7 – электрическое оборудование; 8 – хранение взрывчатых веществ; 9 – подземная галерея; 10 – камеры, в которые выходят устья скважин; 11 – система сгруппированных скважин

Такая двойная система скважин позволила увеличить коэффициент нефтеотдачи до 6%. Для его повышения было решено прибегнуть к паротепловому воздействию. Необходимо было найти «прорывную» технологию, обеспечивающую решение проблем. Такая технология была предложена, опробована и после проведения большого объема опытных работ по тепловому воздействию на продуктивный пласт в условиях шахтной разработки, с 1972 года началось широкомасштабное внедрение «двухгоризонтной системы» термошахтного способа разработки (Рис. 4) на всех нефтешахтах.


Рис. 4 Двухгоризонтная система разработки

В настоящее время продолжается поиск и совершенствование технологий добычи нефти на месторождении. Так с 1999 г., на нефтешахтах проводились опытно-промышленные работы по испытанию подземно-поверхностной технологии (рис. 5). За период испытания новой технологии получен достаточный материал для проведения анализа разработки и подтверждена методика расчета технологических показателей разработки по предложенному способу.

Данный метод позволил увеличить годовой объём добычи нефти в настоящее время до 690 тыс. тонн без существенной реконструкции мощностей, но с серьёзными отступлениями и не выполнением ОТМ, обеспечивающих заявленные преимущества данного способа, по отношению к существующим. (двухгоризонтная, одногоризонтная, панельная системы) и ту эффективность, ради которой эта технология внедряется.

В тот же период были начаты опытно-промышленные работы с применением поверхностных технологий, предложенной Л.М. Рузиным, на площадях ранее отработанных по уклонно-скваженной системе, шахтным способом на естественном режиме истощения. Технология предусматривала циклическую закачку пара (пароциклическую обработку) с переводом скважин в конце цикла закачки в режим эксплуатации. Опытные работы велись в границах шахтного поля 2 бис – ОПУ-99, на третий год разработки этого участка появились положительные контуры эффективности этой технологии, По предложениям специалистов института «РосНИПИтермнефть», руководитель Джалалов К.Э., в ходе ОПР в технологию вносятся корректировки, связанные с переводом контурного ряда скважин, после 3-й пароциклической обработки в режим постоянного нагнетания, то есть сочетание пароциклики с площадным вытеснением. К сожалению, «политические» мотивы не позволили продолжить ОПР и получить реальные результаты.

Начиная с 2004 года на одном их участков месторождения осуществляется адаптация к условиям Ярегского месторождения канадского способа разработки – термо-гравитационного дренирования, сущность которого заключается в разработке нефтяной залежи горизонтальными скважинами с поверхности.

Эффективность любой системы разработки определяется, безусловно, экономическими показателями – затратами на добычу нефти, темпами отбора и коэффициентом извлечения нефти (КИН).

«Холодные» способы добычи

К современным «холодным» методам добычи тяжелой нефти, в первую очередь, может быть отнесен метод «CHOPS» (рис. 6), предполагающий добычу нефти вместе с песком за счет осознанного разрушения слабосцементированного коллектора и создания в пласте соответствующих условий для течения смеси нефти и песка (месторождение Ллойдминстер, Канада). Применение метода CHOPS не требует больших инвестиций на обустройство и обеспечивает незначительность эксплуатационных расходов, однако коэффициент нефтеотдачи в этом случае как правило не превышает 10%. При холодной добыче успешно используется специализированное насосное оборудование (например, установки винтовых насосов), с помощью которого производится откачка специально созданной смеси пластового флюида и песка. Добыча песка приводит к возникновению длинных каналов, или «червоточин», обладающих высокой проницаемостью. Опыт показывает, что некоторые каналы могут отходить в стороны от эксплуатационной скважины на расстояние до 200 м. Сочетание пенистости нефти с высокопроницаемыми каналами обуславливает высокие коэффициенты извлечения и высокие дебиты, наблюдаемые у большинства нефтеносных пластов месторождения Ллойдминстер. Несмотря на коммерческий успех технологии холодной добычи, существует ряд признаков, по которым можно судить о вероятном достижении предела ее возможностей. По имеющимся оценкам, объем добываемой в настоящее время нефти составляет 36 500 м 3 /сут (230 000 барр./сут), при этом согласно прогнозам в следующем десятилетии произойдет снижение добываемых объемов на 50%. Причиной такого снижения добычи являются следующие факторы:

» отсутствие новых месторождений, пригодных для разработки с применением методики холодной добычи;

» обводнение скважин за счет притока воды по сети каналов;

» снижение пластового давления и энергии пластов;

» низкий приток жидкости и высокий газовый фактор;

» невозможность эксплуатации скважин дольше 7–8 лет в силу вышеуказанных причин.


Рис. 6 Метод разработки «CHOPS»

В числе «холодных» способов добычи тяжелых нефтей и битумов с использованием растворителей следует указать так называемый VAPEX метод (рис. 7) – закачка растворителя в пласт в режиме гравитационного дренажа. Этот способ воздействия предполагает использование пары горизонтальных скважин. За счет закачки растворителя в верхнюю из них, создается камера растворитель (углеводородные растворители, в том числе этан или пропан).Нефть разжижается за счет диффузии в нее растворителя и стекает по границам камеры к добывающей скважине под действием гравитационных сил.Коэффициент извлечения нефти этим методом доходит до 60%, однако темпы добычи чрезвычайно низки.

Таким образом, «холодные» методы разработки залежей тяжелой нефти не лишены ряда существенных недостатков. В их числе ограничения по максимальным значениям вязкости нефти и низкие темпы разработки. Поэтому, подавляющее число активно осуществляемых проектов разработки месторождений тяжелой нефти и битумов связано с тепловыми методами воздействия на пласты.


Рис. 7 Метод разработки «VAPEX».

Тепловые методы разработки

Тепловые методы разработки нефтяных месторождений делятся на два принципиально различных вида. Первый, основанный на внутрипластовых процессах горения, создаваемых путем инициирования горения коксовых остатков в призабойной зоне нагнетательных скважин (с применением забойных нагревательных устройств – обычно типа ТЭНов) с последующим перемещением фронта горения путём нагнетания воздуха (сухое горение) или воздуха и воды (влажное горение). Второй, наиболее широко применяемый в России и за рубежом, основанный на нагнетании (с поверхности) теплоносителей в нефтяные пласты.

Методы нагнетания теплоносителя в нефтяные пласты имеют две принципиальные разновидности технологии. Первая – основана на вытеснении нефти теплоносителем и его оторочками. Такая разновидность получила в зависимости от вида используемого теплоносителя наименования: паротеплового воздействия на пласт (ПТВ) и воздействия горячей водой (ВГВ) Вторая – на паротепловой обработке призабойной зоны добывающих скважин (ПТОС). В этом случае в качестве теплоносителя используется насыщенный водяной пар.

Внутрипластовое горение (рис. 8). Сущность процесса сводится к образованию и перемещению по пласту высокотемпературной зоны сравнительно небольших размеров, в которой тепло генерируется в результате экзотермических окислительных реакций между частью содержащейся в пласте нефти и кислородом нагнетаемого в пласт воздуха.

Рис. 8 Внутрипластовое горение

В качестве топлива для горения расходуется часть нефти, остающаяся в пласте после вытеснения ее газами горения, водяным паром, водой, испарившимися фракциями нефти впереди фронта горения и претерпевающая изменения вследствие дистилляции, крекинга и других сложных физико-химических процессов. Выгорает 5–25% запасов нефти. Исследованиями установлено, что с увеличением плотности и вязкости нефти расход сгорающего топлива увеличивается, а с увеличением проницаемости уменьшается.

Процесс внутрипластового горения имеет следующие разновидности по направлению движения окислителя:

– прямоточный процесс, когда движение зоны горения и окислителя совпадают;

– противоточный процесс, когда зона горения движется навстречу потоку окислителя.

Технология процесса заключается в следующем. Сначала компрессорами закачивают воздух. Если в течение первых месяцев не обнаруживается признаков экзотермических реакций (по данным анализов газа и температуры в добывающих скважинах), то приступают к инициированию горения. Его можно осуществить одним из методов: электрическим забойным нагревателем, который опускается в скважину на кабеле и обдувается воздухом; забойной газовой горелкой, опускаемой в скважину на двух концентричных рядах труб (для раздельной подачи топлива и воздуха); использование теплоты химических окислительных реакций определенных веществ (пирофоров); подачей катализаторов окисления нефти.

После создания фронта горения в призабойной зоне нагнетательной скважины дальше его поддерживают и перемещают по пласту закачкой воздуха, с постоянно возрастающим его расходом. После того, как процесс горения стабилизировался, в пласте по направлению от нагнетательной скважины к добывающим можно выделить несколько характерных зон.

Между забоем нагнетательной скважины и фронтом горения размещается выжженная зона 1. При нормальном течении процесса в ней остается сухая, свободная от каких-либо примесей порода пласта. У кровли и подошвы пласта в данной зоне после прохождения фронта горения может оставаться нефтенасыщенность 2, так как в связи с потерями тепла в кровлю и подошву температура в этих частях может оказаться недостаточной для воспламенения топлива. Исследованиями установлено, что зона фронта горения 3 имеет сравнительно малые поперечные размеры и не доходит до кровли и подошвы пласта. Непосредственно перед фронтом горения в поровом пространстве породы движется зона 4 коксообразования и испарения сравнительно легких фракций нефти и связанной воды. Нагрев этой области пласта осуществляется за счет теплопроводности и конвективного переноса тепла парами воды, нефти и газообразными продуктами горения. Температура в этой зоне падает от температуры горения до температуры кипения воды (в смеси с нефтью) при пластовом давлении.

Перед зоной испарения движется зона 5 конденсации паров воды и нефти. Температура зоны равна температуре кипения смеси воды и нефти. Впереди этой зоны движется зона 6 жидкого горячего конденсата нефти и воды. Температура в зоне 6 снижается от температуры конденсации до пластовой. Впереди зоны конденсата нефти и воды может образоваться «нефтяной вал» зона 7 (зона повышенной нефтенасыщенности) при температуре равной пластовой. Последняя зона 8 – зона нефти с начальной нефтенасыщенностью и пластовой температурой, через которую фильтруются оставшиеся газообразные продукты горения.

Эффективная реализация процесса внутрипластового горения зависит от правильного подбора нефтяной залежи и всестороннего обоснования признаков, влияющих на успешное и экономичное применение такого способа.

Для внутрипластового горения наиболее благоприятны продуктивные пласты толщиной 3–25 м. Остаточная нефтенасыщенность должна составлять 50–60%, а первоначальная обводненность не более 40%. Вязкость и плотность нефти могут варьироваться в широких пределах. Пористость пласта существенно влияет на скорость продвижения фронта горения и потребное давление для окислителя. Проницаемость более 0,1 мкм 2 .

Влажное внутрипластовое горение. Процесс влажного внутрипластового горения заключается в том, что в пласт вместе с воздухом закачивается в определенном количестве вода, которая, соприкасаясь с нагретой движущимся фронтом горения породой, испаряется. Увлекаемый потоком газа пар переносит теплоту в область впереди фронта горения, где вследствие этого развиваются обширные зоны прогрева, выраженные в основном зонами насыщенного пара и сконденсированной горячей воды.

Смысл применения влажного внутрипластового горения заключается в том, что добавление к нагнетаемому воздуху агента с более высокой теплоемкостью – воды, улучшает теплоперенос в пласте, что способствует перемещению теплоты из задней области в переднюю относительно фронта горения. Использование основной массы теплоты в области позади фронта горения, т.е. приближение генерированной в пласте теплоты к фронту вытеснения нефти, существенно повышает эффективность процесса теплопереноса и извлечения нефти.

Паротепловые обработки призабойных зон скважин и закачка в пласт теплоносителя. Являются наиболее широко применяемыми методами добычи тяжелых нефтей и природных битумов.

Процесс паротепловой обработки (ПТОС) призабойной зоны скважины заключается в периодической закачке пара через НКТ в добывающие скважины для разогрева призабойной зоны пласта и снижения в ней вязкости нефти, т.е. для повышения продуктивности скважин. Цикл (нагнетание пара, выдержка, добыча) повторяется несколько раз на протяжении стадии разработки месторождения. Такой метод называется циклическим.

Основные достоинства – высокий дебит после обработки, меньшие потери тепла по стволу скважины в кровлю и подошву пласта, температура обсадной колонны при нагнетании пара ниже, чем при других вариантах.

Недостатки – падение дебита при последующих циклах, неполное извлечение нефти из пласта, ограниченность зоны прогрева пласта и др.

Существует циркуляционный вариант, при котором пар нагнетают по кольцевому пространству к забою, оборудованному пакером, а через НКТ откачивают конденсат вместе с нефтью. Для этого варианта необходим мощный, однородный пласт, хорошо проницаемый в вертикальном направлении.

Преимущество: эксплуатация скважины не прекращается.

Недостатки: большие потери тепла, высокая температура обсадной колонны и необходимость её защиты от деформации, ограниченность прогрева пласта, необходимость создания специальных пакеров и скважинных насосов для работы при высоких температурах.

Площадной вариант – пар подают в нагнетательную скважину, а нефть,

вытесняемая из пласта оторочкой горячего пароконденсата и пара, добывается

из соседних добывающих. Идет процесс непрерывного фронтального вытеснения нефти из пласта.

Преимущество: высокая нефтеотдача пласта в результате прогрева большой зоны.

Недостатки: затрата значительного количества тепловой энергии, в результате чего метод иногда бывает экономически невыгоден.

Из-за того, что паротепловому воздействию подвергается только призабойная зона скважины, коэффициент нефтеизвлечения для такого метода разработки остается низким (15–20%). Еще одним из недостатков метода является высокая энергоемкость процесса и увеличение объема попутного газа. Поэтому, в основном ПТОС применяются как дополнительное воздействие на призабойную зону скважины при осуществлении процесса вытеснения нефти теплоносителем из пласта, т.е. нагнетания теплоносителя с продвижением теплового фронта вглубь пласта.

Увеличение нефтеотдачи пласта при закачке в него теплоносителя достигается за счет снижения вязкости нефти под воздействием тепла, что способствует улучшению охвата пласта и повышает коэффициент вытеснения. В качестве рабочих агентов могут использоваться горячая вода, пар, горячий полимерный раствор и т.д.

Закачка горячей воды. В определенных физико-геологических условиях, в особенности с ростом глубин залегания пластов и повышением давления нагнетания теплоносителей, технологически и экономически целесообразно нагнетать в пласт высокотемпературную воду (до 200 °С), не доводя ее до кипения, так как при высоких давлениях (25 МПа) энтальпия пара, горячей воды или пароводяной смеси практически не различается. После предварительного разогрева призабойной зоны пласта и вытеснения нефти на расстояние нескольких десятков метров от скважины можно переходить на закачку холодной воды. Размеры зон прогрева и последующего охлаждения определяются термогидродинамическими расчетами в зависимости от темпа нагнетания горячей и холодной воды, температур пласта и теплоносителя, а также теплофизических характеристик пласта и теплоносителя. Доказана высокая эффективность от нагнетания высокотемпературной горячей воды при различных геолого-физичских условиях.

Вытеснение нефти паром. На основании лабораторных и промысловых опытов установлено, что наиболее эффективным рабочим агентом, используемым для увеличения нефтеотдачи, является насыщенный водяной пар высоких давлений (8–15 МПа). Объем пара может быть в 25–40 раз больше, чем объем воды. Пар в состоянии вытеснить почти до 90% нефти из пористой среды.

Увеличение нефтеотдачи пласта в процессе нагнетания в него пара достигается за счет снижения вязкости нефти под воздействием температуры, что способствует улучшению охвата пласта процессом, а также за счет расширения нефти, перегонки ее с паром и экстрагирования растворителем, что повышает коэффициент вытеснения. Основную долю эффекта вытеснения нефти (40–50%) обеспечивает снижение вязкости нефти, затем дистилляция нефти и изменение подвижностей (18–20%) и в меньшей степени – расширение и смачиваемость пласта.

С целью недопущения рассеивания тепла в окружающие породы, для воздействия паром выбирают нефтяные пласты с достаточно большой толщиной (15 м и более).

К недостаткам метода вытеснения нефти паром следует прежде всего отнести необходимость применения высококачественной чистой воды для парогенераторов, чтобы получить пар с насыщенностью 80% и теплоемкостью 5000 кДж/кг. В воде, питающей парогенератор, должно содержаться менее 0,005 мг/л твердых взвешенных частиц и полностью должны отсутствовать органические вещества (нефть, соли), растворенный газ (особенно кислород), а также катионы магния и кальция (нулевая жесткость).

Обработка воды химическими реагентами, умягчение, удаление газов, обессоливание требуют больших расходов, иногда достигающих 30–35% от общих расходов на производство пара.

Вытеснение нефти паром из песчаных пластов после прогрева и подхода фронта пара к добывающим скважинам сопровождается выносом песка, а из глинистых пластов – снижением их проницаемости, что создает дополнительные трудности.

Отношение подвижностей пара и нефти хуже, чем отношение подвижностей воды и нефти, поэтому охват пласта вытеснением паром ниже, чем при заводнении, особенно в случае вязкостей нефти более 800 – 1000 мПа·с. Повышение охвата пластов процессом вытеснения нефти паром – одна из основных проблем, требующих решения. Другая, наиболее сложная проблема при применении пара – сокращение потерь теплоты через обсадные колонны нагнетательных скважин, которые в обычных условиях достигают 3–4% на каждые 100 м глубины скважины.

При больших глубинах скважин (1000 м и более) потери теплоты в нагнетательных скважинах могут достигать 35 – 45% и более от поданной на устье скважины, что сильно снижает экономическую эффективность процесса. Термоизоляция паронагнетательных труб особенно в глубоких скважинах снижает эти потери, но при этом встречаются технические трудности. Цементация колонны должна осуществляться до самого устья скважины. Цемент должен быть расширяющимся со специальными добавками (до 30 – 60% кремнезема), термостойким.

Основное ограничение на применение метода – глубина не более 800–1000 м.

Несмотря на накопленный опыт в области тепловых методов воздействия на пласты, для отечественной нефтяной промышленности представляется крайне необходимым поиск и создание новых более совершенных технологий разработки залежи тяжелый нефтей и битумов. Это обусловлено как структурой «нетрадиционных» запасов нефти, так и необходимостью более полной выработки запасов углеводородов при достаточной высокой эффективности их добычи. Как уже отмечалось выше, более 2/3 извлекаемых запасов «нетрадиционных» углеводородов в России приходится на битумы, а не на тяжелую нефть. Геологические ресурсы природных битумов на порядок превышают извлекаемые запасы тяжелой нефти. Для разработки таких месторождений с достижением приемлемыми значениями коэффициентов извлечения необходимы новейшие тепловые методы, превосходящие по эффективности уже традиционные технологии теплового воздействия.

Совершенствование методов разработки высоковязких нефтей и природных битумов

высоковязкий нефть разработка месторождение

Для исключения убыточности и нерентабельности разработки месторождений высоковязких нефтей и природных битумов в России и за рубежом ведутся работы, направленные на совершенствование и создание технологий повышения нефтеотдачи, позволяющих разрабатывать вышеуказанные месторождения с наибольшей экономической эффективностью.

В сфере разработки месторождений трудноизвлекаемого сырья, необходимо отметить деятельность таких компаний как «Удмуртнефть», «Татнефть», «РИТЭК».

После создания в 1973 г. в Удмуртии ПО «Удмуртнефть» первые попытки разработки основных месторождений с применением традиционных способов – редкими сетками скважин с заводнением – не дали положительных результатов. Скважины имели низкие дебиты, наблюдались быстрые прорывы закачиваемой воды по наиболее проницаемым пластам и пропласткам, не достигались проектные отборы и величины текущей нефтеотдачи, резко снижалась рентабельность освоения месторождений. Из-за применения в расчетах упрощенных гидродинамических моделей без учета осложняющих факторов оказались существенно завышенными проектные технико-экономические показатели разработки и особенно значения конечной нефтеотдачи, которые принимались проектами в пределах 34–45%.

Поэтому уже в 1975 г. были начаты масштабные комплексные научные исследования по созданию принципиально новых технологий повышения нефтеотдачи. Были организованы целенаправленные теоретические и экспериментальные исследования особенностей механизма нефтеотдачи в сложных трещинно-порово-кавернозных коллекторах с нефтями повышенной и высокой вязкости.

Накопленный мировой опыт разработки залежей с высоковязкими нефтями, содержащимися главным образом в терригенных коллекторах, доказывал эффективность использования тепловых методов (воздействие горячей водой – ВГВ и паротепловое воздействие – ПТВ). Однако для карбонатных коллекторов с тяжелыми вязкими нефтями подобных разработок не было. В Удмуртии разработка технологий освоения трудноизвлекаемых запасов в карбонатных коллекторах велась в двух направлениях: 1) поиск и создание технологий физико-химического воздействия на пласт, 2) тепловое воздействие на пласт.

Итогом целенаправленных научно-практических исследований стало создание принципиально новых технологий и способов рациональной разработки и повышения нефтеотдачи для решения проблемы эксплуатации сложнопостроенных месторождений с карбонатными коллекторами. Не имеющие аналогов в мировой практике термополимерные и термоциклические технологии воздействия на пласт научно обоснованы на уровне изобретений и патентов, испытаны и широко внедрены в производство. Если традиционно применяемые технологии заводнения в карбонатных коллекторах с нефтями повышенной и высокой вязкости могли обеспечить конечную нефтеотдачу не более 20–25%, то новые технологии позволяют довести нефтеотдачу до 40–45%.

Сущность нового подхода заключается в том, что при воздействии растворами полимера (полиакриламид концентрации 0,05–0,10%) удается существенно выравнивать профили приемистости в нагнетательных скважинах, а главное – значительно увеличивать коэффициент охвата неоднородного коллектора рабочим агентом. За счет выравнивания соотношения вязкостей вытесняемой и вытесняющей фаз происходит гашение вязкостной неустойчивости фронтов вытеснения – неконтролируемых прорывов воды к добывающим скважинам.

Исследования и последующий промышленный опыт показали, что технологии полимерного воздействия повышают в 1,5–1,7 раза конечную текущую нефтеотдачу по сравнению с таковой от воздействия необработанной водой, т.е. при заводнении существенно ниже динамика обводнения добывающих скважин и выше их рабочие дебиты. Разработанная новая технология термополимерного воздействия (ТПВ) предусматривает закачку в пласт нагретого до 80–90 °С полимерного раствора той же концентрации, что и холодный раствор.

Существенное улучшение механизма извлечения нефти из пластов при ТПВ заключается в том, что закачиваемый горячий полимерный раствор после прохождения по пласту снижает свою температуру до пластовой, тем самым увеличивая свою вязкость на фронте вытеснения, что приводит к его выравниванию и увеличению коэффициента охвата пласта. Причем этот процесс в пласте оказывается саморегулируемым, что особенно важно в трещиноватых коллекторах. На Мишкинском и Лиственском месторождении месторождениях дополнительная добыча нефти за счет технологии ТПВ превысила 560 тыс. т. Так, 1 т сухого полимера позволяет дополнительно добывать 263 т нефти.

В целях совершенствования технологии ТПВ была разработана новая технология термополимерного воздействия с добавлением полиэлектролита (ТПВПЭ), способствующего замедлению возможной деструкции полимера и более глубокому проникновению его в пласт. Кроме того, используя данную технологию, удалось существенно сократить расход дорогостоящего полимера (на 15–20%), снизив тем самым себестоимость добытой нефти. Дальнейшее совершенствование технологии ТПВ шло по пути значительного снижения энергоемкости и ресурсосбережения, что привело к разработке технологии циклического внутрипластового полимерно-термического воздействия (ЦВПТВ). Здесь закачка теплоносителя и раствора полимера осуществляется уже в несколько циклов, после чего предусматривается закачка обычной воды. Цикличность процесса ЦВПТВ приводит к увеличению охвата пласта рабочим агентом, интенсификации капиллярных и термоупругих эффектов и сокращению расхода химреагента. Реализация проекта началась на Ижевском месторождении, что позволило дополнительно добыть более 400 тыс. т нефти и достичь конечной нефтеотдачи 35,4 вместо 11,5% при существующем ныне режиме истощения. Применение технологии ЦВПТВ на Лиственском месторождении даст возможность получить дополнительно 2,3 млн. т нефти, увеличить извлечение нефти на 8% в сравнении с таковым при холодном полимерном воздействии (ХПВ). В качестве теплоносителей для нагнетания в пласт с целью повышения нефтеотдачи в настоящее время используется перегретая горячая вода (t=260 °C).

Термические методы на месторождениях высоковязких нефтей обеспечивают кратное увеличение нефтеотдачи относительно таковой при естественных режимах разработки и методах заводнения. В механизме нефтеизвлечения выделяются три основных фактора:

– улучшение отношения подвижностей нефти и воды;

– тепловое расширение пластовой системы;

– улучшение проявления молекулярно-поверхностных сил в пласте.

Внедрение технологий термического воздействия было начато на Гремихинском месторождении. Основной объект разработки – залежь пласта А4 башкирского яруса среднего карбона, со сложными трещинно-порово-кавернозными крайне неоднородными коллекторами. Режим пласта упруговодонапорный. Было ясно, что эффективность разработки месторождения традиционными способами будет низкой. Нефтеотдача, на естественном режиме составляет не более 10–12%. Поэтому в 1983 г. были начаты экспериментальные работы по нагнетанию в пласт теплоносителя: горячей воды с температурой на устье скважин 260 °С.

Однако эта технология весьма энергоемка, требует крупных материальных затрат, поэтому специалистами ОАО «Удмуртнефть» совместно с учеными ряда институтов проводились работы по созданию принципиально новых ресурсо и энергосберегающих технологий, позволяющих вывести заведомо нерентабельные запасы высоковязких нефтей Гремихинского месторождения в разряд прибыльных.

В результате созданы, запатентованы и внедрены в производство принципиально новые высокоэффективные технологии теплового воздействия: импульсно-дозированное тепловое воздействие (ИДТВ), импульсно-дозированное тепловое воздействие с паузой (ИДТВ(П), теплоциклическое воздействие на пласт (ТЦВП) и его модификации.

Сущность технологии ИДТВ заключается в многократном воздействии на матрицу попеременно и строго рассчитанными циклами «нагрев – охлаждение», что способствует более полному вытеснению нефти при поддержании в пласте так называемой «эффективной температуры». Это понятие положено в основу определения необходимых объемов теплоносителя и холодной воды для обеспечивания значительного сокращения энерго- и ресурсозатрат. Интенсификация добычи нефти в режиме ИДТВ определяется ускорением процесса охвата объекта разработки тепловым воздействием.

По сравнению с ПТВ и ВГВ циклический процесс позволяет использовать теплогенерирующие установки для большого числа нагнетательных скважин, так как в периоды нагнетания порции холодной воды теплоноситель нагнетается в другие скважины. При неоднократном повторе циклов смены температур, т.е. при термоциклическом воздействии на матрицу, величина нефтеотдачи достигает 37%, что на 9% выше, чем при заводнении.

В техническом исполнении ИДТВ особых дополнительных конструкций и установок не требует. Применяются стандартные паронагнетательные скважины, внутрискважинное устьевое и наземное оборудование.

В технологии ИДТВ(П) закачка вытесняющих агентов ведется не непрерывно, как в ИДТВ, а с кратковременными остановками (паузами) в периоды нагнетания порций холодной воды. Назначение пауз – периодическое создание в пласте перепадов давления с целью нарушения установившихся потоков флюидов и вовлечения в активную разработку низкопроницаемых зон. Продолжительность паузы принимается равной времени восстановления давления в пласте после остановки скважины. Технология ИДТВ(П), обладая всеми свойствами технологии ИДТВ, обеспечивает увеличение нефтеизвлечения до 40%.

Сущность технологии ТЦВП заключается в организации единого технологического процесса комплексного теплового воздействия на пласт через систему нагнетательных и добывающих скважин. Осуществление одного полного цикла ТЦВП включает: нагнетание теплоносителя в пласт одновременно через центральную нагнетательную и три добывающие скважины, расположенные через одну в 7-точечном элементе, при этом отбор жидкости ведут через оставшиеся три добывающие скважины. Затем происходит смена функции группы добывающих скважин – находящиеся под закачкой теплоносителя переводятся на режим отбора и наоборот; все добывающие скважины переводятся на режим отбора, закачку теплоносителя осуществляют через центральную нагнетательную скважину. Технология предусматривает осуществление трех-пяти таких циклов, что обеспечивает практически полный охват вытеснением всего площадного элемента. Циклический процесс приводит к периодической смене направлений фильтрационных потоков, что является сдерживающим фактором обводнения продукции добывающих скважин. Расчетная конечная нефтеотдача достигает 45%. Если рассматривать зону реагирования, то здесь доля нефти, добытой за счет термических методов, составляет 75%.

Экономическая эффективность от внедрения тепловых методов на Гремихинском месторождении составила около 525 млн р., в том числе по технологиям: ИДТВ – 211 млн р., ИДТВ(П) – 190 млн р., ТЦВП – 64 млн р.

Об эффективности технологий свидетельствует уровень текущей нефтеотдачи (42%) на опытных участках их применения, тогда как прогнозная конечная нефтеотдача при заводнении оценивается в пределах 20–25%.

Объемы дополнительно добытой нефти за счет новых технологий, достигнутые коэффициенты нефтеизвлечения в пределах опытных участков и на объектах в целом свидетельствуют о высокой эффективности внедряемых термических и термополимерных методов на месторождениях высоковязких нефтей Удмуртии. Расчеты себестоимости добычи нефти при внедрении новых технологий по сравнению с традиционными подходами убедительно доказывают их более высокую экономическую эффективность.

Практический опыт разработки Гремихинского, Мишкинского и Лиственского месторождений и расчеты себестоимости добычи нефти при достижении конечных значений нефтеизвлечения показали, что себестоимость добычи нефти при использовании созданных в ОАО «Удмуртнефть» физико-химических и термических методов повышения нефтеотдачи пластов ниже, чем при естественном режиме и заводнении. В результате стало возможным рентабельное применение новых технологий при существующих ценах на нефть.

Таким образом, новые технологии позволили устранить главное препятствие на пути применения тепловых методов при разработке месторождений вязких нефтей – большие затраты, поскольку традиционные тепловые методы по затратам примерно в 2 раза выше, чем при заводнении.

Несмотря на накопленный опыт в области тепловых методов воздействия на пласты, для отечественной нефтяной промышленности представляется крайне необходимым поиск и создание новых более совершенных технологий разработки залежи тяжелый нефтей и битумов. Это обусловлено как структурой «нетрадиционных» запасов нефти, так и необходимостью более полной выработки запасов углеводородов при достаточной высокой эффективности их добычи. Как уже отмечалось выше, более 2/3 извлекаемых запасов «нетрадиционных» углеводородов в России приходится на битумы, а не на тяжелую нефть. Геологические ресурсы природных битумов на порядок превышают извлекаемые запасы тяжелой нефти. Для разработки таких месторождений с достижением приемлемыми значениями коэффициентов извлечения необходимы новейшие тепловые методы, превосходящие по эффективности уже традиционные технологии паротеплового воздействия. Одним из таких методов может явиться парогравитационный дренаж (SAGD) (Рис. 9), который на сегодняшний день в мире зарекомендовал себя как очень эффективный способ добычи тяжелой нефти и природных битумов. В классическом описании эта технология требует бурения двух горизонтальных скважин, расположенных параллельно одна над другой, через нефтенасыщенные толщины вблизи подошвы пласта. Верхняя горизонтальная скважина используется для нагнетания пара в пласт и создания высокотемпературной паровой камеры.

Процесс парогравитационного воздействия начинается со стадии предпрогрева, в течение которой (несколько месяцев) производится циркуляции пара в обеих скважинах. При этом за счет кондуктивного переноса тепла осуществляется разогрев зоны пласта между добывающей и нагнетательной скважинами, снижается вязкость нефти в этой зоне и, тем самым, обеспечивается гидродинамическая связь между скважинами. На основной стадии добычи производится уже нагнетание пара в нагнетательную скважину.

Рис. 9 Схема установки для добычи битума в режиме парогравитационного дренажа. Условные обозначения: 1 – лебедка; 2 – устьевое оборудование; 3,4 – эксплуатационные колонны соответственно добывающей и нагнетательной скважин; 5 – сваб; 6 – канат.

Закачиваемый пар, из-за разницы плотностей, пробивается к верхней части продуктивного пласта, создавая увеличивающуюся в размерах паровую камеру. На поверхности раздела паровой камеры и холодных нефтенасыщенных толщин постоянно происходит процесс теплообмена, в результате которого пар конденсируется в воду и вместе с разогретой нефтью стекают вниз к добывающей скважине под действием силы тяжести. Рост паровой камеры вверх продолжается до тех пор, пока она не достигнет кровли пласта, а затем она начинает расширяться в стороны. При этом нефть всегда находится в контакте с высокотемпературной паровой камерой. Таким образом, потери тепла минимальны, что делает этот способ разработки выгодным с экономической точки зрения.

Для повышения добычи и снижения энергозатрат некоторые компании начинают комбинировать методы VAPEX и SAGD. Одним из решений является технология SAP (SolventAidedProcess), в которой объединены преимущества указанных методов. В процессе SAP небольшое количество углеводородного растворителя вводится в качестве добавки в пар, закачиваемый при применении технологии SAGD. В то время как пар является основным теплоносителем и снижает вязкость нефти, добавка растворителя способствует ее разжижению в еще большей степени. Хотя улучшение экономических показателей зависит от конкретной ситуации, анализ полученных результатов показывает экономическую выгоду перехода с процесса SAGD на SAP.

В Канаде под закачкой растворителя подразумевается закачка углеводородных газов (парафиновых растворителей), таких как метан, пропан, бутан и их смеси. Этот метод требует наличия поблизости источника углеводородных газов и высокотехнологичного оборудования для их закачки. В то время как, месторождения сверхвязких нефтей Республики Татарстан характеризуются малой глубиной залегания продуктивного пласта (менее 100 м) и низкими пластовыми давлениями. В таких условиях применение данных растворителей нецелесообразно. Наиболее подходящими растворителями для вытеснения сверхвязких нефтей, содержащихся в слабоцементированных песчаниках уфимского яруса, являются углеводородные жидкости (нефтяные растворители), вязкость которых меньше вязкости нефти.

В мае 2006 г. специалистами ОАО «Татнефть» начат уникальный проект по добыче сверхвязких нефтей на Ашальчинском месторождении с использованием технологии парогравитационного воздействия. Для повышения ее эффективности была проведена экспериментальная оценка использования нефтяных растворителей совместно с закачкой пара. С целью выбора подходящего растворителя для вытеснения сверхвязких нефтей Ашальчинского и Мордово-Кармальского месторождений исследованы физико-химические свойства следующих растворителей: миа-прома, кичуйского нестабильного бензина, абсорбента Н, девонской нефти, нефраса 120/200, смесового растворителя «МС-50», нефраса 130/150, нефраса 150/200, нефраса 150/300, стерлитамакского абсорбента, дистиллята, дизельного топлива, абсорбента А-2, печного топлива.

Установлено, что самой низкой растворяющей способностью обладает дистиллят, производимый на базе Азнакаевской НГДУ «Азнакаевскнефть» (количество растворенной нефти составляет 4,67%), а самой высокой – нефрас 150/300 (15,1%).

Установлено, что все исследованные нефтяные растворители, кроме дистиллята, применимы в технологиях паротеплового воздействия, так как они не осаждают асфальтосмолистые вещества из сверхвязкой нефти. Анализ результатов исследований свидетельствует о том, что все изученные нефтяные растворители ускоряют разрушение водонефтяных эмульсий, приготовленных на основе сверхвязкой нефти Ашальчинского и Мордово-Кармальского месторождений при температуре 95 и 20 °С. Полученные результаты позволяют рекомендовать для при – менения в технологиях VAPEX и SAP в Татарстане нефтяные растворители, такие как абсорбент и нефрас, которые полностью соответствуют требованиям, предъявляемым к растворителям, используемым совместно с тепловыми методами.

Интересна технология инновационного технико-технологического комплекса парогазового воздействия разработанная в ОАО «РИТЭК». Суть ее состоит в том, что в парогазогенераторной установке теплоноситель образуется непосредственно в призабойной зоне пласта (рис. 10). При генерации теплоносителя в призабойной зоне тепловые потери при транспортировке пара практически отсутствуют. Экономичность таких устройств по эффективности сжигания топлива примерно на 30%выше, чем у наземных установок.

В парогазогенераторе для генерации парогазовой смеси используются только жидкие компоненты: вода и монотопливо (система, в которой все необходимые для реакции компоненты содержатся в одном жидкостном потоке). Кроме того, при работе парогазогенератора в нефтяной пласт нагнетается не чистый пар, а его смесь с продуктами сгорания, так называемая парогазовая смесь. Парогаз оказывает на пласт комбинированное воздействие: тепловое и физико-химическое, так как в его состав входят, помимо водяного пара, углекислый газ и азот. Таким образом, в парогазогенераторах обеспечивается практически полное использование химической энергии топлива, отсутствуют выбросы отработанных газов в атмосферу, а тепловое воздействие на пласт дополняется физико-химическим.

В мае 2009 г. в скв. 249 Мельниковского месторождения в Республике Татарстан были начаты опытно-промысловые испытания парогазогенераторного комплекса на монотопливе, которые уже дали положительные результаты. Это завершающий этап разработки уникальной комплексной технологии, позволяющей осуществлять добычу высоковязкой нефти на больших глубинах. Данная технология и разработанный комплекс оборудования открывают большие возможности для добычи нетрадиционного сырья, в частности в Республике Татарстан, где сосредоточены значительные запасы высоковязкой нефти.


Рис. 10. Принципиальная схема установки парогазогенератора на монотопливе: 1– станция управления; 2– монотопливо; 3 – вода; 4– плунжерный насос

Заключение

Таким образом, запасы высоковязких нефтей и природных битумов гораздо больше запасов традиционной мало- и средневязкой нефти. Распространение месторождений трудноизвлекаемого сырья в мире достаточно широкое.

Наиболее активная деятельность по разработке месторождений тяжелых нефтей и природных битумов ведется в Канаде, США, России, Венесуэле.

В России также широка география тяжелых нефтей, но наибольшее их преобладание в европейской части страны. Не все российские нефтяные компании гонятся за трудноизвлекаемыми углеводородами с целью получения прибыли, т. к. разработка таких месторождений подчас бывает убыточной, несмотря на государственную поддержку. Однако, некоторые компании имеют приоритетным направлением разработку именно таких месторождений (н-р «Татнефть», «Удмуртнефть», «Коминефть»).

Высоковязкие нефти, а, в частности природные битумы, необходимо рассматривать как комплексное сырьё. Они содержат в своем составе такие ценные гетероорганические соединения, как нафтеновые кислоты, сульфокислоты, простые и сложные эфиры, такие уникальные компоненты, как металлопорфирины (связаны с ванадилом и никелем), которые могут служить источником уникальных катализаторов, сенсибилизаторов, органических полупроводников. Они используются в медицине, в биотехнологиях, в химических технологиях, в микроэлектронике, поэтому спрос на них существует в тех странах, где эти технологии интенсивно развиваются. До сих пор уникальные нефти используются в качестве печного топлива, т. к. их на НПЗ не принимают, что ведет не только к потере ценных компонентов, но и наносит существенный экологический ущерб.

Специалистами ВНИГРИ были изучены технологии разработки высоковязких нефтей и природных битумов и их модификации: внутрипластовое горение и паротепловое воздействие. Оказалось что при внутрипластовом горении мы не только теряем часть нефти, но и теряем ценные попутные компоненты (потери ванадия от 36 до 75%). При паротепловом методе воздействия потери ценных компонентов не превышали 10–15%.

Итак, развитие направления разработки высоковязких нефтей и природных битумов должно включать в себя следующие работы:

– изучение накопленного отечественного и зарубежного опыта по разработке месторождений высоковязких нефтей (ВВН) и природных битумов (ПБ);

– анализ и разработку рациональных методов добычи ВВН и ПБ и повышение нефтеотдачи для максимального извлечения всех полезных компонентов;

– создание технологий получения из ВВН И ПБ товарной нефти на промысле, соответствующей стандартам приемки в магистральный трубопровод;

– разработка технологий и создание нефтеперерабатывающих мощностей, рассчитанных на повышение глубины переработки ВВН и ПБ и степени извлечения попутных компонентов;

– решение специфических экологических проблем, связанных с добычей, транспортировкой и переработкой ВВН и ПБ.

Несмотря на то, что разработка высоковязких нефтей и природных битумов на сегодняшний день лидирующим направлением не является, рано или поздно она приобретет свое ведущее место.


Список литературы

1. Байбаков Н.К., Гарушев А.Р. Тепловые методы разработки нефтяных месторождений. – М.: Недра, 1988. – с. 343.

2. Билалова Г.А., Билалова Г.М. Применение новых технологий в добыче нефти. – Учебное пособие. – Волгоград: Издательский Дом «Ин-Фолио», 2009. – 272 с.

3. Бурже Ж.П., Сурио М., Комбарну М. Термические методы повышения нефтеотдачи пластов. – М.: Недра, 1988. – 424 с.

4. Кудинов В.И. Совершенствование тепловых методов разработки месторождений высоковязких нефтей. – М.: Нефть и газ. – 1996. – 284 с.

5. Николин И.В. МЕТОДЫ РАЗРАБОТКИ ТЯЖЕЛЫХ НЕФТЕЙ ПРИРОДНЫХ БИТУМОВ. Наука – фундамент решения технологических проблем развития России, 2007 г., №2

6. www.rogtecmagazine.com «ТЕХНОЛОГИИ ЦИКЛИЧЕСКОЙ ЗАКАЧКИ РАСТВОРИТЕЛЯ ДЛЯ ИЗВЛЕЧЕНИЯ ТЯЖЕЛОЙ НЕФТИ»

7. http://www.ogbus.ru Полищук Ю.М., Ященко И.Г. ВЫСОКОВЯЗКИЕ НЕФТИ: АНАЛИЗ ПРОСТРАНСТВЕННЫХ И ВРЕМЕННЫХ ИЗМЕНЕНИЙ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ Нефтегазовое дело, 2005

8. Евгения Данилова, к. х. н. Тяжелые нефти России The Chemical Journal Декабрь 2008

9. В.И. Кокорев (ОАО «РИТЭК») Инновационный подход к разработке месторождений с трудноизвлекаемыми запасами нефти нефтяное хозяйство 08.2009 г.

10. В.И. Кудинов (ОАО «Удмуртнефть»), В.А. Савельев, Т.И. Головина (УдмуртНИПИнефть) «Экономическая эффективность внедрения тепловых методов повышения нефтеотдачи на месторождениях ОАО «УДМУРТНЕФТЬ»»

11. www.ngtp.ruИскрицкая Н.И. «Экономическая эффективность инноваций ВНИГРИ при освоении месторождений высоковязких нефтей и природных битумов» Нефтегазовая геология. Теория и практика. 2006 (1)