Комментариев:

Как производится гибка металла своими руками? При выполнении строительных работ часто бывает нужно выполнить сгиб металлических элементов. Например, бывает необходимо согнуть листовой металл или трубы. Трубы, имеющие небольшой диаметр, сгибают при помощи тисков.

Сгибание металлических листов на гибочном станке происходит без сварки и не нарушает структуру металла.

Часто при выполнении строительных работ возникает необходимость согнуть трубы большого диаметра. Для такой работы нужны специальные станки, которые выполняют сгибание труб и металлических листов. Сгибаемый элемент при этом не получает повреждений.

При гибке деталей учитывают пластичность материала, его толщину, определяют радиус кривизны.

В чем заключается технология гибки металла?

Схема сборки самодельного листогиба: 1 – основание; 2 – гайка-маховичок; 3 – прижим; 4 – изгибаемый лист; 5 – струбцина; 6 – обжимной пуансон.

Гибка листового металла — это выполнение определенных действий, вследствие которых металлический лист приобретает нужную форму. Сгибание детали происходит без помощи сварочных или каких-либо других соединений, которые уменьшают прочность и долговечность материала.

При выполнении сгиба изделия растягиваются его наружные слои и сжимаются внутренние. Технология сгибания заключается в том, чтобы перегнуть одну часть детали по отношению к другой на необходимый угол.

Во время гибки материал подвергают деформации. Величина возможной деформации зависит от толщины материала, угла изгиба, пластичности и скорости сгибания.

Сгибание выполняют посредством оборудования для сгиба деталей. Данное оборудование сгибает элемент таким образом, чтобы готовая конструкция не имела повреждений.

Если согнуть элемент неправильно, то на его поверхности произойдут различные дефекты, вследствие которых на линии изгиба материал получит такие повреждения, что готовая конструкция может сломаться. Гибку производят для листов различной толщины.

Напряжение изгиба материала должно быть больше, чем его предел упругости. В результате гибки должна происходить пластическая деформация материала. При этом готовая конструкция после операции сгиба будет сохранять ту форму, которую ей придали.

Чертеж листогиба (деталировка): 1 – струбцина; 2 – щечка; 3 – основание; 4 – кронштейн; 5 – сварной прижим; 6 – ось; 7 – уголок пуансона.

Преимущества процесса гибки:

  1. Процесс имеет высокую производительность.
  2. В результате сгибания получается заготовка, которая не имеет шва.
  3. Готовая конструкция обладает высокой устойчивостью к коррозии.
  4. Изделие обладает высокой прочностью.
  5. На месте сгиба изделия не появляется ржавчина.
  6. Конструкция является цельной.

Недостатки:

  1. Процесс ручной гибки является достаточно трудоемким.
  2. Оборудование для сгиба имеет высокую стоимость.

В отличие от конструкций, выполненных методом сгиба листового металла, на сварных конструкциях есть сварной шов, который подвергается коррозии и ржавчине.

Сгиб изделий осуществляют вручную или при помощи оборудования. Ручной изгиб является очень трудоемким. Он выполняется при помощи молотка и плоскогубцев. Сгиб материала небольшой толщины выполняют киянкой.

Сгибание листового металла производят при помощи вальцов, пресса или роликовых станков. Чтобы листу придать форму цилиндра, используют ручные, гидравлические вальцы или вальцы с электроприводом. Таким методом изготавливают трубы.

Схема сборки рабочего хода: 1 – вкладыш из дерева; 2 – основание; 3 – щечка правая; 4 – изгибаемый лист; 5 – прижим; 6 – ось пуансона; 7 – пуансон; 8 – рычаг пуансона.

Гибка металла применяется в домашнем строительстве для изготовления водостоков, профилей, металлических каркасов, труб и других конструкций. При гибке листового металла своими руками можно изготовить трубы различного диаметра. При помощи станков изгибается материал с цинковым покрытием.

Если необходимо выполнить изгиб металла в домашних условиях, станок для сгибания можно изготовить своими руками. Для изготовления станка нужно выполнить шаблон из древесины, имеющий контур определенной, изогнутой формы.

При сгибе изделия нужно определить его размеры. Длину конструкции вычисляют с учетом радиуса изгиба листа. Для заготовок, сгибаемых под прямым углом, без создания закруглений, припуск на загиб должен составлять 0,6 от толщины листа.

Своими руками можно сгибать конструкции из пластичных металлов: меди, латуни, алюминия. Радиус изгиба зависит от качества материала и способа гибки. Изделия с небольшим радиусом закругления выполняют из пластичных материалов.

Вернуться к оглавлению

Гибка металла своими руками

Вернуться к оглавлению

Как изготовить скобу методом гибки

При сгибании стальной полосы на роликовом станке, верхняя прорезь на бруске должна соответствовать размеру полосы.

Материалы и инструменты:

  • металлический лист;
  • тиски;
  • молоток;
  • оправа;
  • брусок;
  • электропила по металлу.

Предварительно нужно по схеме вычислить длину полосы заготовки и сделать расчет гибки металлического листа.

При расчетах на каждый загиб выполняют запас по 0,5 толщины полосы и по 1 мм на сгиб торцов в сторону.

Согласно схеме выпиливают заготовку, делают отметки места изгиба. Изгиб заготовки выполняют в тисках с угольниками.

Сначала надо зажать в тисках заготовку на уровне изгиба. Затем при помощи молотка выполняют первый загиб.

Затем заготовку переставляют в тисках и зажимают ее оправой вместе с бруском. Затем делают второй загиб.

После этого вытаскивают заготовку, делают отметки длины лапок скобы.

Скобу с бруском оправой загибают в тисках, при этом отгибают обе ее лапки. Изгиб уточняют треугольником. Если изгиб выполнен неправильно, его исправляют при помощи молотка и бруска оправы. После процесса сгиба конструкцию отпиливают до нужных размеров.

Гибка листового метала производится с помощью пресса, с возможностями установки различных матриц и пуансонов. Габариты оборудования зависят от их технических характеристик и методов гибки металла.

Калибровка : металлический лист фиксируется между матрицей и пуансоном, затем сгибается до нужного вам угла. Угол определяется особенностями оснастки. Свойства метала на процесс не влияют, так как точность загиба зависит только от примененных усилий. Недостаток: необходима смена оснастки при смене вида заготовки.

Гнется листовой металл путем упругопластической деформации, которая различно протекает со всех сторон выгибаемой заготовки. Внутри изгиба слои металла укорачиваются и сжимаются в продольном направлении, а в поперечном слои растягиваются. Между этими двумя слоями (укороченным и удлиненным) находится нейтральный слой, равный длине первоначальной заготовки.

Свободная — воздушная гибка

Один из самых практичных методов гибки металла, является Воздушная гибка. Путём заранее заданной глубины, пуансон опускается в матрицу без необходимости иметь радиус и угол таковыми, как в готовой детали. В силу этого, инструмент очень универсальный. Возможность выполнить гибку множества спектров углов, путем точно заданной глубины движения пуансона, что позволяет воздержатся от частой смены инструмента.

Из-за небольших усилий, которые требуются для такого вида гибки, открывается возможность применять сложные по форме и узкие пуансоны (для различных видов профилей). Точность обработки, используемая таким методом гибки, в среднем ±15’–30’. Все зависит от точности движения пуансона, колебания толщины металла от заранее заданной и от того, как будет пружинить металл в процессе гибки.

  • Достоинства: высокая производительность, одна матрица для разных углов.
  • Недостатки: Нельзя использовать метал тоньше 1.2 мм, смена метала требует дополнительной настройки.

Штамповка

Штамповка или чеканка (Coining) — это метод который является самым точным, но не самым популярным в силу того, что требует больших затрат на оборудование и инструменты. Матрица и пуансон производятся строго по форме нужного угла гибки.

Прилагаемые усилия в таком способе гибки до 25 раз больше, чем в воздушной, а значит, что какие-либо отклонение в толщине материала, не влияют на точность чеканки. Максимальная толщина металла 2мм.

Так же, в силу своей массивности, не позволяет выполнять гибку сложных элементов. Главным минусом такой гибки, является необходимость иметь набор инструментов для разных углов и радиусов.

Прочие способы гибки листового металла на производстве

Довольно таки популярным методом гибки является Folding . Принцип заключается в том, что прижим на столе, удерживает деталь во время процесса гибки, поэтому уменьшается возможность повреждения поверхности детали. Колебание толщины метала не влияет на точность угла. Максимальная толщина металла 2мм.

Гибка листа, при помощи матрицы, с заранее заданной формой, называют — Bottoming . Весьма затратный, по своей сути метод, поскольку для каждого угла гибки и толщины металлических листов, необходимо иметь целый набор инструментов. Имеет более высокую точность чем воздушная гибка ±15’. Толщина листового металла для такой гибки не более 5мм.

Гибка металла осуществляется на станках с ЧПУ. Также это могут быть листогибы: прессовые, поворотные и ротационные, 3-4 валковые станки и автоматические гибочные комплексы.

Оборудование для гибки листового металла

  • Листогибы — позволяют изготавливать профиль или металлочерепицу, металлические каркасы, комплектующие элементы вентиляционных систем, сборные перегородки, подвесные строительные элементы, облицовки кабельных систем.
  • Фальцепрокатные станки — предназначены для производства кровли.
  • Зиг-машины — применяются для зиговки, гибки металла, а также прямой и круговой с большой толщиной листа. Зиг-машина делает загибку в углов, круглый фальц, гофрирование, фальцовку специального профиля, вытягивание, обжим замков и резку и развальцовку водосточной трубы.
  • Вальцовочные станки (машины) — предназначены для производства изогнутых форм.
  • Станки для нанесения параллельных рёбер жёсткости — могут делаь как U, так и Z-образные профили.
  • Разматыватели — вспомогательное оборудование — предназначено для размотки металлических рулонов и металлической ленты и подачи её на устройство сгибки, резки.

"Гибка" звучит как простой процесс, но в действительности, он очень сложен.
"Лист" и "гибка" не очень ассоциируются с высокой технологией. Однако, для того, чтобы гнуть "непослушный" лист необходимы специальные знания и большой опыт. Объясните техническому специалисту, который не знаком с листовым металлом, что в нашем высокотехничном мире невозможно постоянно получать при гибке угол 90°, не меняя параметров настройки. То получается, а то - нет!

Без изменения программы угол будет меняться, если, например, лист толщиной 2 мм сделан из нержавеющей стали или алюминия, если его длина - 500 мм, 1000 мм или 2000 мм, если гибка производится вдоль или поперек волокон, если линия гибки находится в окружении пробитых или прорезанных лазером отверстий, если лист имеет различную упругую деформацию, если поверхностное упрочнение, вследствие пластической деформации, сильнее или слабее, если... если...

КАКОЙ МЕТОД ГИБКИ ВЫБРАТЬ?

Различается 2 основных метода:
Мы говорим о "воздушной гибке" или "свободной гибке", если между листом стенками V-образной матрицы существует воздушный зазор. В настоящее время это наиболее распространенный метод.
Если лист прижат полностью к стенкам V-образной матрицы, мы называем этот метод "калибровкой". Несмотря на то, что этот метод является достаточно старым, он используется и даже должен использоваться в определенных случаях, которые мы рассмотрим далее.

Свободная гибка

Обеспечивает гибкость, но имеет некоторые ограничения по точности.

Основные черты:

  • Траверса с помощью пуансона вдавливает лист на выбранную глубину по оси Y в канавку матрицы.
  • Лист остается "в воздухе" и не соприкасается со стенками матрицы.
  • Это означает, что угол гибки определяется положением оси Y, а не геометрией гибочного инструмента.

Точность настройки оси Y на современных прессах - 0,01 мм. Какой угол гибки соответствует определенному положению оси Y? Трудно сказать, потому что нужно найти правильное положение оси Y для каждого угла. Разница в положении оси Y может быть вызвана настройкой хода опускания траверсы, свойствами материала (толщина, предел прочности, деформационное упрочнение) или состоянием гибочного инструмента.

Приведенная ниже таблица показывает отклонение угла гибки от 90° при различных отклонениях оси Y.

а° /V mm 1,5° 2,5° 3,5° 4,5°
4 0,022 0,033 0,044 0,055 0,066 0,077 0,088 0,099 0,11
6 0,033 0,049 0,065 0,081 0,097 0,113 0,129 0,145 0,161
8 0,044 0,066 0,088 0,110 0,132 0,154 0,176 0,198 0,220
10 0,055 0,082 0,110 0,137 0,165 0,192 0,220 0,247 0,275
12 0,066 0,099 0,132 0,165 0,198 0,231 0,264 0,297 0,330
16 0,088 0,132 0,176 0,220 0,264 0,308 0,352 0,396 0,440
20 0,111 0,166 0,222 0,277 0,333 0,388 0,444 0,499 0,555
25 0,138 0,207 0,276 0,345 0,414 0,483 0,552 0,621 0,690
30 0,166 0,249 0,332 0,415 0,498 0,581 0,664 0,747 0,830
45 0,250 0,375 0,500 0,625 0,750 0,875 1,000 1,125 1,250
55 0,305 0,457 0,610 0,762 0,915 1,067 1,220 1,372 1,525
80 0,444 0,666 0,888 1,110 1,332 1,554 1,776 1,998 2,220
100 0,555 0,832 1,110 1,387 1,665 1,942 2,220 2,497 2,775

Преимущества свободной гибки:

  • Высокая гибкость: без смены гибочных инструментов вы можете получить любой угол гибки, находящийся в промежутке между углом раскрытия V-образной матрицы (например, 86° или 28°) и 180°.
  • Меньшие затраты на инструмент.
  • По сравнению с калибровкой требуется меньшее усилие гибки.
  • Можно "играть" усилием: большее раскрытие матрицы означает - меньшее усилие гибки. Если вы удваиваете ширину канавки, вам необходимо только половинное усилие. Это означает, что можно гнуть более толстый материал при большем раскрытии с тем же усилием.
  • Меньшие инвестиции, так как нужен пресс с меньшим усилием.

Все это, однако, теоретически. На практике вы можете потратить деньги, сэкономленные на приобретении пресса с меньшим усилием, позволяющего использовать все преимущества воздушной гибки, на дополнительное оснащение, такое как, дополнительные оси заднего упора или манипуляторы.

Недостатки воздушной гибки:

  • Менее точные углы гибки для тонкого материала.
  • Различия в качестве материала влияют на точность повторения.
  • Не применима для специфических гибочных операций.

Совет:

  • Воздушную гибку желательно применять для листов толщиной свыше 1,25 мм; для толщины листа 1 мм и менее рекомендуется использовать калибровку.
  • Наименьший внутренний радиус гибки должен быть больше толщины листа. Если внутренний радиус должен быть равен толщине листа -рекомендуется использовать метод калибровки. Внутренний радиус меньше толщины листа допустим только на мягком легко деформируемым материале, например меди.
  • Большой радиус может быть получен воздушной гибкой путем использования пошагового перемещения заднего упора. Если большой радиус должен быть высокого качества, рекомендуется только метод калибровки специальным инструментом.

Какое усилие?
По причине различных свойств материала и последствий пластической деформации в зоне гибки, определить требуемое усилие можно только примерно.
Предлагаем вам 3 практических способа:

1. Таблица

В каждом каталоге и на каждом прессе вы можете найти таблицу, показывающую требуемое усилие (Р) в кН на 1000 мм длины гиба (L) в зависимости от:

  • толщины листа (S) в мм
  • предела прочности (Rm) в Н/мм2
  • V - ширины раскрытия матрицы (V) в мм
  • внутреннего радиуса согнутого листа (Ri) в мм
  • минимальной высоты отогнутой полки (B) в мм

Пример подобной таблицы
Необходимое усилие для гибки 1 метра листа в тоннах. Предел прочности 42-45 кг/мм2.
Рекомендуемое соотношение параметров и усилия

2. Формула


1,42 - это эмпирический коэффициент, который учитывает трение между кромками матрицы и обрабатываемым материалом.
Другая формула дает похожие результаты:

3. "Правило 8"

При гибке низкоуглеродистой стали ширина раскрытия матрицы должна в 8 раз превосходить толщину листа (V=8*S), тогда Р=8хS, где Р выражается в тоннах (например: для толщины 2 мм раскрытие матрицы \/=2х8=16 мм означает, что вам необходимо 16 тонн/м)

Усилие и длина гиба
Длина гиба пропорциональна усилию, т.е. усилие достигает 100% только при длине гиба 100%.
Например:

Cовет:
Если материал ржавый или не смазан, следует добавлять 10-15% к усилию гиба.

Толщина листа (S)
DIN допускает значительное отклонение от номинальной толщины листа (например, для толщины листа 5 мм норма колеблется между 4,7 и 6,5 мм). Следовательно, вам нужно рассчитывать усилие только для реальной толщины, которую вы измерили, или для максимального нормативного значения.

Предел прочности на растяжение (Rm)
Здесь также допуски являются значительными и могут оказывать серьезное влияние при расчете требуемого усилия гиба.
Например:
St 37-2: 340-510 Н/мм2
St 52-3: 510-680 Н/мм2

Совет:
Не экономьте на усилии гиба! Предел прочности на растяжение пропорционален усилию гиба и не может быть подогнан, когда вам это нужно! Реальные значения толщины и предела прочности являются важным факторами при выборе нужного станка с нужным номинальным усилием.

V - раскрытие матрицы
По эмпирическому правилу, раскрытие V-образной матрицы должно восьмикратно превосходить толщину листа S до S=6 мм:
V=8xS
Для большей толщины листа необходимо:
V=10xS или
V=12xS

Раскрытие V-образной матрицы обратно пропорционально требуемому усилию:
большее раскрытие означает меньшее усилие гиба, но больший внутренний радиус;
меньшее раскрытие означает большее усилие, но меньший внутренний радиус.

Внутренний радиус гиба (Ri)
При применении метода воздушной гибки большая часть материала подвергается упругой деформации. После гибки материал возвращается в свое первоначальное состояние без остаточной деформации ("обратное пружинение"). В узкой области вокруг точки приложения усилия материал подвергается пластической деформации и навсегда остается в таком состоянии после гибки. Материал становится тем прочнее, чем больше пластическая деформация. Мы называем это "деформационным упрочнением".

Так называемый "естественный внутренний радиус гибки" зависит от толщины листа и раскрытия матрицы. Он всегда больше чем толщина листа и не зависит от радиуса пуансона.

Чтобы определить естественный внутренний радиус, мы можем использовать следующую формулу: Ri = 5 x V /32
В случае V=8хS, мы можем сказать Ri=Sх1,25

Мягкий и легкодеформируемый металл допускает меньший внутренний радиус. Если радиус слишком маленький, материал может быть смят на внутренней стороне и растрескаться на внешней стороне гиба.

Совет:
Если вам нужен маленький внутренний радиус, гните на медленной скорости и поперек волокон.

Минимальная полка (В):
Во избежание проваливания полки в канавку матрицы, необходимо соблюдать следующую минимальную ширину полки:

Упругая деформация
Часть упруго деформированного материала "спружинит" обратно после того, как усилие гиба будет снято. На сколько градусов? Это уместный вопрос, потому что важен только реально полученный угол гиба, а не рассчитанный теоретически. Большинство материалов имеют достаточно постоянную упругую деформацию. Это означает, что материал той же толщины и с тем же пределом прочности спружинит на одинаковую величину при одинаковом угле гибки.

Упругая деформация зависит от:

  • угла гибки: чем меньше угол гибки, тем больше упругая деформация;
  • толщины материала: чем толще материал, тем меньше упругая деформация;
  • предела прочности на растяжение: чем выше предел прочности, тем, больше упругая деформация;
  • направления волокон: упругая деформация различна при гибке вдоль или поперек волокон.

Продемонстрируем сказанное выше для предела прочности, измеряемой при условии V=8хS:

Все производители гибочного инструмента учитывают упругую деформацию, когда предлагают инструмент для свободной гибки (например угол раскрытия 85° или 86 ° для свободных гибов от 90° до 180°).

Калибровка

Точный - но негибкий способ

При этом методе угол гиба определен усилием гиба и гибочным инструментом: материал зажат полностью между пуансоном и стенками V образной матрицы. Упругая деформация равняется нулю и различные свойства материала практически не влияют на угол гиба.

Грубо говоря, усилие калибровки в 3 -10 раз выше усилия свободной гибки.

Преимущества калибровки:

  • точность углов гиба, несмотря на разницу в толщине и свойствах материала
  • возможно выполнение всех специальных форм с помощью металлического инструмента
  • маленький внутренний радиус
  • большой внешний радиус
  • Z-образные профили
  • глубокие U-образные каналы
  • возможно выполнение всех специальных форм для толщины до 2 мм с помощью стальных пуансонов и матриц из полиуретана.
  • превосходные результаты на гибочных прессах, не имеющих точности, достаточной для свободной гибки.

Недостатки калибровки:

  • требуемое усилие гиба в 3 - 10 раз больше, чем при свободной гибке;
  • нет гибкости: специальный инструмент для каждой формы;
  • частая смена инструмента (кроме больших серий).

Гибка тонколистового металла дает возможность при небольших физических усилиях создать изделие нужной формы. Альтернативным этому методом считается сварной процесс, занимающий много времени, требующий более высоких денежных затрат.

Гибку металла возможно осуществлять вручную либо автоматически, однако суть процедуры от этого не меняется. Если гнется металлопрокат, имеющий большой диаметр, нейтральный слой размещается в центральной части. На производственных предприятиях металл гнут посредством особого оснащения. Сначала проводятся предварительные вычисления, при этом принимается во внимание ГОСТ.

Гибка заготовок из тонколистового металла и проволоки располагает собственными особенностями. Их необходимо обязательно учитывать, чтобы избежать создания бракованных изделий.

Ключевые принципы сгибания

Для того чтобы изменить форму металлопроката, возможно применять разные методы. Зачастую используется сваривание, однако подобное высокотемпературное воздействие на металлическое изделие значительно меняет его структуру, сильно уменьшает параметры прочности, снижает эксплуатационный период.

При гибке алюминиевого листа внешние слои металла растягиваются, а внутренние – сжимаются. Выполняется перегибание части металлопроката относительно другой на заданный угол. Определить угол перегиба возможно путем расчета.

Разумеется, из-за прикладываемого усилия само изделие деформируется. Степень деформирования находится в допустимых пределах. В соответствии с ГОСТ максимально допустимая деформация зависит от толщины листа, угла перегиба, прочности материала, быстроты выполнения процедуры.

Типы гибки

Гибка листа может осуществляться как ручным способом, так и с использованием соответствующих устройств. Первая довольно сложная процедура, занимающая много времени, предполагающая применение пассатижей и молотка. Перегибание тонколистового материала осуществляется при помощи специального приспособления – киянки.

Для того чтобы механизировать гибочный процесс, применяют особые устройства – вальцы, листогибы, станочные аппараты. Для того чтобы придать изделию форму цилиндра, применяют гидравлические/ручные/электроприводные вальцы. Благодаря им возможно создавать дымоходы, трубные изделия, желоба.

Листогибочные работы являются одним из наиболее распространенных сегодня методов, позволяющих изменять форму металлопроката. В настоящее время современное оснащение достигло такого уровня, что на станке для гибки листового металла возможно производить самые сложные изделия. Рабочий инструмент заменяется быстро, благодаря этому станочное устройство возможно оперативно перенастраивать.

Гибочное оснащение

Сегодня существует множество разнообразных станков для гибки металла. На простейших аппаратах можно изготавливать швеллеры и уголки. Производственные организации обыкновенно применяют прессы, которые делятся на:

  1. Ротационные. Это вальцовые аппараты, гнущие металл при перемещении между особыми валиками. Подразделяются на стационарные и мобильные. Их используют для того, чтобы изготавливать крупногабаритные изделия небольшой серийности.
  2. Поворотные. Металлические пластины сгинаются благодаря гибочным балкам и 2 плитам. Внизу располагается стационарная плита, а наверху – поворотная. Подобное оснащение оптимально для обрабатывания изделий из листового металла, имеющих простой рельеф и маленькие габариты.
  3. Обыкновенные прессы на пневматике или гидравлике. Они используются для изготовления массовых и мелкосерийных партий деталей из нержавеющего либо иного металла. Сгибание изделий осуществляется между пуансоном и матрицей. Это позволяет обрабатывать даже те детали, которые имеют большую толщину. Листогибочные прессы на гидравлике применяются более часто, чем аппараты на пневматике.

Ротационное оснащение, посредством которого реализуется технология гибки, является наиболее современным. Оно функционирует в автоматическом режиме. Ознакомиться с принципом его работы можно, посмотрев видео. Рабочему нет нужды рассчитывать оптимальное усилие.

Станочные аппараты с балкой поворота тоже считаются автоматизированными. Рабочий отправляет по одному оцинкованному либо обычному листу в устройство, располагает изделие так, как нужно. Подобное оснащение нередко применяется на маленьких предприятиях, которые работают с деталями из металла.

Собственноручная гибка

Любой материал располагает собственным ГОСТ. Его нужно в обязательном порядке принимать во внимание, осуществляя расчет наименьшего радиуса изгибания листа. Кроме того, гибка стального листа предполагает учет индекса упругости, прочности.

Посредством данной процедуры можно делать профиля разной конфигурации, сборные перегородки, откосы, множество иных деталей. Алюминиевые/стальные листы подвергаются выравниванию и разрезанию соответственно с чертежом. Собственноручное резание обыкновенно выполняется ножницами. На изделии в нужных участках проставляются отметки, по которым и станет осуществляться гибка листового металла своими руками.

Лист надежно фиксируется в тисках соответствующей величины (по прочерченной изгибной линии). Затем, посредством массивного молотка, выполняется первый сгиб.

Потом изделие из металла передвигается к следующему месту сгиба, плотно зажимается с бруском из дерева. Выполняется новый загиб. Скобяные лапки размечаются и, посредством молотка и тисков, загибаются в необходимую сторону.

Когда радиусная гибка листового металла окончена, нужно удостовериться в том, что изделие соответствует установленным требованиям. Для этого можно использовать угольник. Если обнаружены какие-либо неточности, их необходимо сразу же устранить.

Создание станка для сгибания листового металла

Согнуть листовой металл в домашних условиях, если нет станка может быть проблематично. Поэтому станок для гибки листового металла можно изготовить его самостоятельно. Для этого потребуются: уголок (80 миллиметров), балка из металла (восемьдесят миллиметров), петли, болты, сварочный аппарат, струбцины, рукояти, стол.

  1. Сначала сделайте основу из металла, предназначенную для самодельного аппарата. Воспользуйтесь двутавровым профилем.
  2. Присоедините уголок кверху балки. Используйте для этого болты. При сгибе изделие не сдвинется с места благодаря надежной фиксации.
  3. Посредством сварочного аппарата приварите три петли под уголок. Лучше всего использовать петли, крепящиеся к дверям из стали. Вторую часть петли необходимо сваривать с развернутым к профилю уголком.
  4. Теперь можете гнуть алюминиевый лист (либо любой другой). Для этого поворачивайте уголок. Чтобы обеспечить удобство выполнения процедуры, сварите с уголком 2 рукояти.
  5. Для плотного прижатия устройства, посредством которого будет осуществляться радиусная гибка металла, к столу понадобятся 2 струбцины. Открутите уголок прижима. установите изделие. Верните уголок на прежнее место.
  6. Убирать уголок необязательно. Можете просто приподнять его. Изделие кладется промеж профиля и уголка. После этого металлический лист выравнивается по уголковому краю.

Не забудьте проверить, что все болты хорошо прикручены. Поверните траверсы, согните изделие таким образом, чтобы образовался необходимый вам угол. Данный угол нужно рассчитать заранее, чтобы не отвлекаться на вычисления при осуществлении процедуры.

Если необходимо гнуть жесть на собственноручно сделанном станке, то дадим пару советов. Жесть относится к тонколистовым металлам, поэтому каких-либо проблем с ее изгибанием возникнуть не должно. Технология гибки на изготовленном в бытовых условиях станке такова, что на нем можно гнуть лишь листы малой толщины. Чтобы выполнить сгибание толстых металлических листов, требуется применять особые станки, которыми домашние умельцы не располагают.

Станок для гибки металла из толстых листов используется на промышленных предприятиях, производящих разнообразные детали. Стоимость таких устройств соответствующая. Мало какой домашний мастер сможет себе позволить их приобретение. Намного проще сделать станок самостоятельно, благо для бытовых целей гибки тонколистового материала будет вполне достаточно.

Гибка стальных изделий с небольшими габаритными размерами поперечного сечения выполняется, как правило, в холодном состоянии. Процесс заключается в необратимом изменении продольной или поперечной оси деформируемой заготовки.

Виды гибки различаются по следующим параметрам:

Технология гибки профилированным инструментом

Все рассматриваемые далее процессы ведутся с применением специализированного инструмента – штампов . Рабочими деталями любого гибочного штампа являются пуансон и матрица. Пуансон – подвижная часть штампа – закрепляется. Как правило, в верхней его половине, и при перемещении ползуна двигается возвратно-поступательно. Матрица – неподвижная часть штампа – располагается в нижней его половине, которая фиксируется на столе оборудования.

Точность штамповки профилированным инструментом зависит от:

При проектировании рабочего профиля гибочных пуансонов и матриц основным фактором является не технологическое усилие (при всех вариантах гибки оно невелико), а так называемое упругое последействие металла заготовки, называемое пружинением .

В результате пружинения металл всегда стремится вернуться к своей первоначальной форме, а интенсивность этого стремления зависит от предела пластичности. Мягкие металлы (алюминий, медь, сталь с процентом углерода до 0,1% и пр.) распружинивают на 3…8%, а латуни, средне- и высокоуглеродистые стали — на 12…15% .

Учёт пружинения производится по нескольким вариантам:

  1. Изготовлением пуансонов и матриц с рабочим профилем, который учитывает будущее пружинение (например, если требуется согнуть заготовку на угол 60 0 , при ожидаемом пружинении металла 10 0 , то профиль инструмента выполняют под углом 70 0). Коэффициенты пружинения определяются по таблицам, в зависимости от марки материала и толщины заготовки.
  2. Изготовления пуансонов с поднутрением , куда затекает деформируемый металл. При этом силы упругого последействия нейтрализуются усилием пластического деформирования заготовки.
  3. Введением дополнительного калибрующего перехода , когда происходит доштамповка изделия. Способ непроизводителен, поскольку увеличивает трудоёмкость гибки.
  4. Снижением скорости деформирования и оставления металла под нагрузкой в течение некоторого времени, пока не исчезнут силы инерции в деформируемом сечении. Это возможно только на гидравлических прессах, либо прессах со специальным, кривошипно-коленчатым приводом.

Износ гибочного инструмента неравномерен: интенсивнее изнашиваются пуансоны и матрицы в местах перегиба исходного профиля , в то время, как стойкость периферийных участков намного выше. Тем не менее, инструмент подлежит восстановлению или ремонту (чаще всего изношенные участки наплавляют, а затем шлифуют в размер).

Для гибки пластичных материалов используют пуансоны и матрицы, изготавливаемые из углеродистых инструментальных сталей типа У10 или У12 по ГОСТ 1435 . Заготовки из материалов с повышенным значением временного сопротивления деформируют пуансонами и матрицами из легированных инструментальных сталей типа 9ХС или Х12М по ГОСТ 5950 .

К числу основных видов оборудования для гибки в штампах относят:

  1. Листогибочные вертикальные прессы с механическим приводом (в отечественном прессостроении эти машины имеют обозначение И13_ _ причём две последние цифры указывают на номинальное усилие).
  2. Листогибочные прессы горизонтального исполнения (серия И12_ _).
  3. Универсальные многоползунковые листогибочные автоматы (серия А72_ _).

Технология гибка профилированным инструментом имеет свои ограничения:

  • При штамповке на прессах всегда имеется стадия возвратного хода , когда деформирования не происходит, поэтому производительность снижается ;
  • На одном комплекте штампов можно изготовить деталь строго определённого типоразмера . Частичным выходом из положения является установка на столе пресса нескольких комплектов разных пуансонов и матриц, для деталей, требующих одинаковое значение рабочего хода ползуна пресса;
  • Штампы представляют собой технически сложный инструмент , себестоимость которого довольно высока. Это негативно сказывается на цене конечной продукции;
  • При гибке сортовых профилей в местах перепадов поперечного сечения заготовки возможны трещины .

Исходя из этого, гибку непрофилированным инструментом стоит использовать лишь при значительных программах выпуска деталей.

Этот способ гибки основан на использовании ротационного инструмента . При этом деформирование происходит вследствие пропускания заготовки в зазор между непрерывно вращающимися валками . Валки расположены так, что в результате такого прохода изделие приобретает необходимую кривизну.

Качественная гибка сортового проката – швеллера, двутавра, уголка – возможна только таким способом, поскольку при этом на результат никак не повлияют параметры поперечного сечения заготовки.

При обработке тонколистового металлопроката гибка происходит по окружности, а сортового проката – по дуге окружности, которая выставляется изменением расстояния между рабочими валками.

Наибольшее распространение приобрели трёхвалковые листо- и сортогибочные машины . Два валка – нижних – являются опорными, в третий – верхний – нажимным. Классификация валковых гибочных машин может быть выполнена по следующим признакам:

  1. По расположению валков относительно вертикальной оси оборудования – симметричном и асимметричном. При симметрично расположенных валках нажимной размещается строго посредине, а при асимметричной схеме нажимной валок располагается над одним из опорных валков.
  2. По ширине валков , что определяет технологические возможности оборудования: чем длиннее валки, тем большей ширины лист можно согнуть на данном установке.
  3. По наличию дополнительных валков , установленных либо до, либо после основных. Такое оборудование выполняет не только гибку, но и последующую правку изделий.
  4. По относительному расположению рабочих валков , которое может быть в горизонтальной или вертикальной плоскости. Последнее менее удобно, однако иногда целесообразно, поскольку в результате уменьшаются габаритные размеры оборудования в плане.

Поскольку при ротационной гибке усилие прилагается не в точке контакта, а по дуге, то удельная нагрузка на ролики невелика, что, во-первых, увеличивает их стойкость, а, во-вторых, даёт возможность использовать для их изготовления менее дорогие инструментальные стали.

Валковый инструмент, в отличие от штампового – универсальный, поэтому ротационная гибка эффективна при любых программах выпуска конечной продукции.

Последовательность действия листо- и сортогибочных машин. Гибка обечаек.

Гибка на листогибочном оборудовании с симметричным расположением рабочих валков включает в себя следующие стадии:

  • Заправку листа в пространство между валками, при этом передняя кромка заготовки должна лечь на второй опорный валок;
  • Опускание верхнего валка до положения, при котором гарантированно обеспечивается нужная кривизна изгибаемого профиля;
  • Включение привода , в результате чего лист силами трения захватывается валками проходит сквозь рабочую зону, приобретая необходимую форму;
  • Заправку следующей заготовки , с повторением цикла деформирования.

Изделие, прошедшее сквозь рабочую зону, не будет продеформировано на участке переднего и заднего края листа на величину, равную половине расстояния между опорными валками. Подгибку производится выполнять вручную, что неудобно. Поэтому при необходимости гибки профиля по всей длине заготовки следует использовать ротационные машины с асимметричной компоновкой . Задний конец при этом гарантированно подгибается, а для переднего достаточно завести лист с обратной стороны. Таким образом из листового металла получается обечайка (открытый цилиндрический или конический элемент конструкции).

Для возможности гибки листа разной толщины в машинах предусматривается регулировка расстояния между нижними валками . Для этого перемещают подшипники, в которых вращаются оси этих валков. Доступна и замена валка на инструмент с увеличенным диаметром, что потребуется при ротационной гибки более толстых заготовок.

Аналогичным образом действуют и сортогибочные машины. Они также выполняются трёхвалкового исполнения, и состоят из следующих узлов:

  1. Станины .
  2. Роликов , рабочий профиль которых соответствует сечению сортового проката.
  3. Боковых роликов , обеспечивающих прямолинейность движения заготовки.
  4. Поперечнины, ограничивающей перемещение заготовки в поперечном направлении (для симметричных профилей, например, швеллеров, поперечина переводится в нерабочее положение.
  5. Механизма заправки профиля в рабочее пространство между валками.
  6. Электродвигателя .
  7. Промежуточных зубчатых передач .
  8. Системы включения привода .

Настройка сортогибочной машины на нужный радиус гиба производится маховичком винтового механизма. Небольшие типоразмеры сортового проката гнут на машинах с горизонтальным расположением рабочих валков. Более универсальными считаются сортогибочные машины с вертикальной компоновкой.

Маркировка ротационных гибочных машин отечественного производства:

  • И22_ _ — листогибочные трёхвалковые;
  • И42_ _ — листогибочные четырёхвалковые;
  • И32_ _ — сортогибочные трёхвалковые;
  • И33 — сортогибочные многовалковые.