Несомненно, самое ценное свойство тантала - его исключительная химическая стойкость: в этом отношении он уступает только благородным металлам, да и не всегда. не растворяется даже в такой химически агрессивной среде, как царская водка, которая без труда растворяет и , и платину, и другие . О высочайшей коррозионной стойкости тантала свидетельствуют и такие факты. При 200° С он не подвержен коррозии в 70%-ной азотной кислоте, в серной кислоте при 150° С коррозии тантала также не наблюдается, а при 200° С металл корродирует, но лишь на 0,006 мм в год.

К тому же - металл пластичный, из него можно изготовлять тонкостенные изделия и изделия сложной формы. Неудивительно, что он стал незаменимым конструкционным материалом для химической промышленности. Танталовую аппаратуру применяют в производстве многих кислот (соляной, серной, азотной, фосфорной, уксусной), брома, хлора, перекиси водорода. На одном из предприятий, использующих газообразный хлористый , детали из нержавеющей стали выходили из строя уже через два месяца. Но, как только сталь была заменена танталом, даже самые тонкие детали (толщиной 0,3-0,5 мм) оказались практически бессрочными - срок службы их увеличился до 20 лет.

Из всех кислот лишь плавиковая способна растворять (особенно при высокой температуре). Из него изготовляют змеевики, дистилляторы, клапаны, мешалки, аэраторы и многие другие детали химических аппаратов. Реже - аппараты целиком.Многие конструкционные материалы довольно быстро теряют теплопроводность: на их поверхности образуется плохо проводящая тепло окисная или солевая пленка. Танталовая аппаратура свободна от этого недостатка, вернее, пленка окисла может на нем образоваться, но она тонка и хорошо проводит тепло.

Кстати, именно высокая теплопроводность в сочетании с пластичностью сделали тантал прекрасным материалом для теплообменников.Танталовые катоды применяют при электролитическомвы делении золота и серебра. Достоинство этих катодов включается в том, что осадок золота и серебра можно смыть с них царской водкой, которая не причиняет вредатанталу.Тантал важен не только для химической промышленности. С ним встречаются и многие химики-исследователи в своей повседневной лабораторной практике. Танта-довые тигли, чашки, шпатели - вовсе не редкость«Нужно иметь танталовые нервы…»Уникальное качество тантала - его высокая биологическая совместимость, т. е. способность приживаться в организме, не вызывая раздражения окружающих тканей. На этом свойстве основано широкое применение тантала в медицине, главным образом в восстановительной хирургии - для ремонта человеческого организма.

Пластинки из этого металла используют, например, при повреждениях черепа - ими закрывают проломы черепной коробки. В литературе описан случай, когда из танталовой пластинки было сделано искусственное ухо, причем пересаженная с бедра кожа при этом настолько хорошо прижилась, что вскоре танталовое ухо трудно было отличить от настоящего. Танталовой пряжей иногда возмещают потери мускульной ткани. С помощью тонких танталовых пластин хирурги укрепляют после операции стенки брюшной полости. Танталовыми скрепками, подобными тем, которыми сшивают тетради, надежно соединяют кровеносные сосуды. Сетки из тантала применяют при изготовлении глазныхпротезов. Нитями из этого металла заменяют сухожилия и даже сшивают нервные волокна. И если выражение «железные нервы» мы обычно употребляем в переносном смысле, людей с танталовыми нервами, быть может, вам приходилось встречать.Право, есть что-то символическое в том, что именно на долю металла, названного в честь мифологического мученика, выпала гуманная миссия - облегчать людские муки. ..

Как тантал разлучают с ниобием.

Земная кора содержит всего лишь 0,0002% Та, но минералов его известно много - свыше 130. Тантал в этих минералах, как правило, неразлучен с ниобием, что объясняется чрезвычайным химическим сходством элементов и почти одинаковыми размерами их ионов.Трудность разделения этих металлов долгое время тормозила развитие промышленности тантала и ниобия. До недавних пор их выделяли лишь способом, предложенным еще в 1866 г. швейцарским химиком Мариньяком, который воспользовался различной растворимостью фтор-танталата и фторниобата калия в разбавленной плавиковой кислоте.

В последние годы важное значение приобрели также экстракционные методы выделения тантала, основанные на различной растворимости солей тантала и ниобия в некоторых органических растворителях. Опыт показал, что наилучшими экстракционными свойствами обладают метилизобутилкетон и циклогексанон.В наши дни основной способ производства металлического тантала - расплавленного фтортантала-та калия в графитовых, чугунных или никелевых тиглях, служащих по совместительству катодами. Танталовый порошок осаждается на стенках тигля.

Извлеченный из тигля, этот порошок подвергают сначала прессованию в пластины прямоугольного сечения (если заготовка предназначена для прокатки в листы) либо в штабики квадратного сечения (для волочения проволоки), а затем - спеканию.Некоторое применение находит также натриетермиче-ский способ получения тантала. В этом процессе взаимодействуют фтортанталат калия и металлический :

K 2 TaF 7 + 5Na → Та + 2KF + 5NaF.

Конечный продукт реакции - порошкообразный тантал, который затем спекают. В последние два десятилетия стали применять и другие методы обработки порошка -дуговую или индукционную плавку в вакууме и электронно-лучевую плавку.

Статья на тему Тантал химические свойства

Тантал - это разумный выбор для всех сфер применения, где требуется высокая коррозионная стойкость. Хотя тантал и не относится к благородным металлам, он сравним с ними по своей химической устойчивости. Кроме того, тантал легко поддается формовке даже при температуре ниже комнатной благодаря своей объемноцентрированной кубической кристаллической структуре. Высокая коррозионная стойкость тантала делает его ценным материалом для использования в самых различных химических средах. Мы используемый наш "неподатливый" материал, например, для теплообменников для сектора приборостроения, загрузочных поддонов для строительства печей, имплантатов для медицинской техники и компонентов конденсаторов для электронной промышленности.

Гарантированная чистота.

Вы можете быть уверенными в качестве нашей продукции. Мы изготавливаем наши продукты из тантала сами - от металлического порошка до готового продукта. В качестве исходного материала мы используем только чистейший танталовый порошок. Так мы гарантируем вам чрезвычайно высокую чистоту материала.

Мы гарантируем качество чистоты спеченного тантала - 99,95 % (чистота металла без ниобия). Согласно химическим анализам, остаточное содержание состоит из следующих элементов:

Элемент Типичная макс. величина [мкг] Гарантированное макс. значение
[мкг]
Fe 17 50
Mo 10 50
Nb 10 100
Ni 5 50
Si 10 50
Ti 1 10
W 20 50
C 11 50
H 2 15
N 5 50
O 81 150
Cd 5 10
Hg* -- 1
Pb 5 10

Мы гарантируем качество чистоты тантала полученного путем плавки - 99,95 % (чистота металла без ниобия) Согласно химическим анализам, остаточное содержание состоит из следующих элементов:

Элемент Типичное значение макс. (µg/g) Гарантированное значение (µg/g)
Fe 5 100
Mo 10 100
Nb 19 400
Ni 5 50
Si 10 50
Ti 1 50
W 20 100
C 10 30
H 4 15
N 5 50
O 13 100
Cd -- 10
Hg* -- 1
Pb -- 10

Присутствие Сr(VI) и органических примесей исключено производственным процессом (многократная термообработка при температуре выше 1000 °C в атмосфере высокого вакуума) * исходная величина

Материал с особыми талантами.

Насколько уникальны свойства нашего тантала, настолько же специфичны и сферы его применения в промышленности. Ниже мы кратко представим вам две из них:

Индивидуально подобранные химические и электрические свойства.

Благодаря чрезвычайно мелкой микроструктуре тантал является идеальным материалом для производства ультратонкой проволоки с безупречной, исключительно чистой поверхностью для использования в танталовых конденсаторах. Мы можем с высокой степенью точности определять химические, электрические и механические свойства такой проволоки. Так, мы обеспечиваем нашим клиентам индивидуально подобранные и стабильные свойства компонентов, которые мы постоянно развиваем и улучшаем.

Превосходная стойкость и высокая пластичность в холодном состоянии.

Превосходная стойкость в сочетании с отличной формуемостью и свариваемостью делают тантал идеальным материалом для теплообменников. Наши танталовые теплообменники исключительно стабильны и устойчивы в целом ряду агрессивных сред. Обладая многолетним опытом обработки тантала, мы также можем изготовлять продукты сложной геометрии, точно отвечающие вашим требованиям.

Чистый тантал или все же сплав?

Мы оптимальным образом подготавливаем наш тантал к любым применениям. При помощи различных легирующих элементов мы можем изменять следующие свойства вольфрама:

  • физические свойства (например, температура плавления, давление пара, плотность, электропроводность, теплопроводность, тепловое расширение, теплоемкость)
  • механические свойства (например, прочность, механизм разрушения, пластичность)
  • химические свойства (например, коррозионная стойкость, травимость)
  • обрабатываемость (например, машинная обработка, формуемость, свариваемость)
  • структура и характеристики рекристаллизации (например, температура рекристаллизации, склонность к появлению хрупкости, эффект старения, размер зерен)

И это еще не все: используя наши специальные технологии производства, мы можем изменять различные другие свойства тантала в широком диапазоне. Результат: две различные технологии производства тантала и сплавы, обладающие различными свойствами, точно отвечающие требованиям конкретного применения.

Тантал, полученный спеканием (TaS).

Чистый тантал, полученный спеканием, и чистый тантал, полученный плавкой, обладают следующими общими характеристиками:

  • высокая температура плавления, составляющая 2 996 °C
  • превосходная пластичность в холодном состоянии
  • рекристаллизация при температуре от 900 °C до 1 450 °C (в зависимости от степени деформации и чистоты)
  • превосходная стойкость в водных растворах и расплавах металлов
  • сверхпроводимость
  • высокий уровень биологической совместимости

Когда предстоит чрезвычайно тяжелая работа, поможет наш тантал, полученный спеканием: благодаря используемому нами методу порошковой металлургии тантал, полученный спеканием , (TaS) обладает чрезвычайно мелкозернистой структурой и высокой чистотой. В связи с этим материал и отличается высочайшим качеством поверхности и хорошими механическими свойствами.

Для использования в конденсаторах мы рекомендуем одну из разновидностей нашего тантала с чрезвычайно высоким качеством поверхности (TaK ). Такой тантал используется в виде проволоки в танталовых конденсаторах. Высокую емкость, низкий ток утечки и низкое сопротивление можно гарантировать только тогда, когда используется проволока, не имеющая дефектов и примесей.

Тантал, полученный плавкой (TaM).

Не всегда требуется лучшее из лучшего. Тантал, полученный плавкой , (TaM), как правило, более экономичен в производстве, чем тантал, полученный спеканием, а его качества достаточно для многих сфер применения. Однако этот материал не такой мелкозернистый и однородный, как тантал, полученный спеканием. Просто свяжитесь с нами. Мы будем рады проконсультировать вас.

Стабилизированный тантал (TaKS).

Мы легируем наш спеченный стабилизированный тантал кремнием , что позволяет предотвратить рост зерен даже при высокой температуре. Это делает наш тантал пригодным для использования даже при крайне высокой температуре. Мелкозернистая микроструктура остается стабильной даже после отжига при температуре до 2 000 °C. Этот процесс позволяет сохранить превосходные механические свойства материала, такие как его пластичность и прочность. Стабилизированный тантал в виде проволоки или листов идеально подходит для производства танталовых анодов методом спекания или для использования в секторе строительства печей.

Тантал-вольфрам (TaW) отличается хорошими механическими свойствами и превосходной коррозионной стойкостью. Мы добавляем в чистый вольфрам от 2,5 до 10 масс. % вольфрама. Хотя получаемый сплав в 1,4 раза прочнее , чем чистый тантал, он так же легко поддается формовке при температуре до 1 600 °C. Наш материал оптимально подходит для теплообменников и нагревательных элементов, используемых в сфере производства химического оборудования.

Хорош во всех отношениях. Характеристики тантала.

Тантал относится к группе тугоплавких металлов . Тугоплавкие металлы имеют температуру плавления выше температуры плавления платины (1 772 °C). Энергия, связывающая отдельные атомы, чрезвычайно высока. Высокая температура плавления тугоплавких металлов сочетается с низким давлением пара. Тугоплавкие металлы также отличаются высокой плотностью и низким коэффициентом теплового расширения.

В периодической системе химических элементов тантал находится в том же периоде, что и вольфрам. Как и вольфрам, тантал имеет чрезвычайно высокую плотность - 16.6 г/см3. Однако, в отличие от вольфрама, тантал становится хрупким при обработке в водородной среде. По этой причине материал изготовляется в высоком вакууме.

Тантал, несомненно, является наиболее устойчивым из тугоплавких металлов . Он устойчив во всех кислотах и основаниях и обладает крайне специфическими свойствами:

Свойства
Атомное число 73
Атомная масса 180.95
Температура плавления 2 996 °C / 3 269 K
Температура кипения 6 100 °C / 6 373 K
Атомный объем 1.80 ·  10-29 [м3]
Давление пара при 1 800 °C при 2 200 °C 5 · 10-8 [Пa] 7 · 10-5 [Пa]
Плотность при 20 °C (293 K) 16.60 [г/см3]
Кристаллическая структура объемноцентрированная кубическая
Постоянная кристаллической решетки 3.303 · 10-10 [м]
Твердость при 20 °C (293 K) деформированный рекристаллизованный 120 - 220 80 - 125
Модуль упругости при 20 °C (293 K) 186 [ГПa]
Коэффициент Пуассона 0.35
Коэффициент линейного теплового расширения при 20 °C (293 K) 6.4 · 10-6 [м/(м·K)]
Теплопроводность при 20 °C (293 K) 54 [Вт/(м K)]
Удельная теплоемкость при 20 °C (293 K) 0.14 [Дж/(г·K)]
Электропроводность при 20 °C (293 K) 8 · 10 6
Удельное электрическое сопротивление при 20 °C (293 K) 0.13 [(Ом·мм2)/м]
Скорость звука при 20 °C (293 K) Продольная волна
Поперечная волна
4 100 [м/с] 2 900 [м/с]
Работа выхода электрона 4.3 [эВ]
Сечение захвата тепловых нейтронов 2.13 · 10-27 [м2]
Температура рекристаллизации (продолжительность отжига: 1 час) 900 - 1 450 °C
Сверхпроводящий (температура перехода) < -268.65 °C / < 4.5 K

Теплофизические свойства.

Тугоплавкие металлы, как правило, имеют низкий коэффициент теплового расширения и относительно высокую плотность .. Это касается и тантала. Хотя теплопроводность тантала ниже, чем у вольфрама и молибдена, материал имеет более высокий коэффициент теплового расширения, чем многие другие металлы.

Теплофизические свойства тантала изменяются при изменении температуры. На графиках ниже показаны кривые изменения наиболее важных переменных:

Механические свойства.

Даже малые количества таких элементов, образующих твердый раствор внедрения, как кислород, азот, водород и углерод, могут изменить механические свойства тантала. Кроме того, для изменения его механических свойств используются такие факторы, как чистота металлического порошка, технология производства (спекание или плавка), степень холодной обработки и тип термической обработки.

Как и вольфрам и молибден, тантал имеет объемноцентрированную кубическую кристаллическую решетку . Температура хрупко-вязкого перехода тантала составляет -200 °C, что значительно ниже комнатной температуры. Благодаря этому металл крайне легко поддается формовке . В процессе холодной обработки повышается предел прочности и твердость металла, но одновременно снижается удлинение при разрыве. Хотя материал теряет пластичность, он не становится хрупким.

Термостойкость материала ниже, чем у вольфрама, но сравнима с термостойкостью чистого молибдена. Для повышения термостойкости мы добавляем в наш тантал тугоплавкие металлы, например, вольфрам.

Модуль упругости тантала ниже, чем у вольфрама и молибдена, и сравним с модулем упругости чистого железа. Модуль упругости снижается при повышении температуры.

Механические свойства.

Благодаря высокой пластичности тантал оптимально подходит для формовочных процессов , таких как гибка, штамповка, прессование или глубокая вытяжка. Тантал с трудом поддается машинной обработке . Стружка плохо отделяется. По этой причине мы рекомендуем использовать стружкоотводные ступеньки. Тантал отличается превосходной свариваемостью в сравнении с вольфрамом и молибденом.

У вас есть вопросы о механической обработке тугоплавких металлов? Мы будем рады помочь вам, используя наш многолетний опыт.

Химические свойства.

Поскольку тантал устойчив в химических веществах любого типа, этот материал часто сравнивают с драгоценными металлами. Однако, с точки зрения термодинамики, тантал представляет собой недрагоценный металл, который, тем не менее, может образовывать устойчивые соединения с различными элементами. На воздухе тантал образует очень плотный слой оксида , (Ta2O5) который защищает основной материал от химического воздействия. Таким образом, слой оксида делает тантал коррозионностойким .

При комнатной температуре тантал не является устойчивым только в следующих неорганических веществах: концентрированная серная кислота, фтор, фтороводород, фтористоводородная кислота и растворы кислот, содержащие ионы фтора. Щелочные растворы, расплавленный гидроксид натрия и гидроксид калия также оказывают химическое воздействие на тантал. В то же время материал устойчив в водном растворе аммиака. Если тантал подвергается химическому воздействию, водород проникает в его кристаллическую решетку, и материал становится хрупким. Коррозионная стойкость тантала постепенно снижается при повышении температуры.

Тантал является инертным по отношению ко многим растворам. Однако, если тантал подвергается воздействию смешанного раствора, то его коррозионная стойкость может снизиться, даже если он устойчив в отдельных компонентах такого раствора. У вас есть сложные вопросы по коррозии? Мы будем рады помочь вам, используя наш опыт и нашу собственную лабораторию по исследованию коррозии.

Коррозионная стойкость в воде, водных растворах и в среде неметаллов
Вода Горячая вода < 150 °C стойкий
Неорганические кислоты Соляная кислота < 30 % до 190 °C Серная кислота < 98 % до 190 °C Азотная кислота < 65 % до 190 °C Фтористо-водородная кислота < 60 % Фосфорная кислота < 85 % до 150 °C стойкий стойкий стойкий нестойкий стойкий
Органические кислоты Уксусная кислота < 100 % до 150 °C Щавелевая кислота < 10 % до 100 °C Молочная кислота < 85 % до 150 °C Винная кислота < 20 % до 150 °C
Щелочные растворы Гидроксид натрия < 5 % до 100 °C Гидроксид калия < 5 % до 100 °C Аммиачные растворы < 17 % до 50 °C Карбонат натрия < 20 % до 100 °C стойкийстойкийстойкийстойкий
Соляные растворы Хлорид аммония < 150 °C Хлорид кальция < 150 °C Хлорид железа < 150 °C Хлорат калия < 150 °C Биологические жидкости < 150 °C Сульфат магния < 150 °C Нитрат натрия < 150 °C Хлорид олова < 150 °C стойкийcтойкийстойкийстойкийстойкийстойкийстойкийстойкий
Неметаллы Фтор Хлор < 150 °C Бром < 150 °C Йод < 150 °C Сера < 150 °C Фосфор < 150 °C Бор < 1 000 °C нестойкийстойкийcтойкийстойкийстойкийстойкийстойкий

Тантал устойчив в некоторых расплавах металлов, таких как Ag, Bi, Cd, Cs, Cu, Ga, Hg, K, Li, Mg, Na и Pb, при условии что эти расплавы содержат малое количество кислорода. Однако этот материал подвержен воздействию Al, Fe, Be, Ni и Co.

Коррозионная стойкость в расплавах металлов
Алюминий нестойкий Литий стойкий при температуре < 1 000 °C
Бериллий нестойкий Магний стойкий при температуре < 1 150 °C
Свинец стойкий при температуре < 1 000 °C Натрий стойкий при температуре < 1 000 °C
Кадмий стойкий при температуре < 500 °C Никель нестойкий
Цезий стойкий при температуре < 980 °C Ртуть стойкий при температуре < 600 °C
Железо нестойкий Серебро стойкий при температуре < 1 200 °C
Галлий стойкий при температуре < 450 °C Висмут стойкий при температуре < 900 °C
Калий стойкий при температуре < 1 000 °C Цинк стойкий при температуре < 500 °C
медь стойкий при температуре < 1 300 °C Олово стойкий при температуре < 260 °C
Кобальт нестойкий

Когда неблагородный металл, например, тантал, вступает в контакт с благородными металлами, например, платиной, очень быстро возникает химическая реакция. В связи с этим необходимо учитывать реакцию тантала с другими материалами, присутствующими в системе, особенно при высокой температуре.

Тантал не вступает в реакцию с инертными газами. По этой причине инертные газы высокой чистоты могут использоваться в качестве защитных газов. Однако при повышении температуры тантал активно вступает в реакцию с кислородом или воздухом и может поглощать большое количество водорода и азота. Это делает материал хрупким. Устранить эти примеси позволяет отжиг тантала в высоком вакууме. Водород исчезает при температуре 800 °C, а азот - при 1 700 °C.

В высокотемпературных печах тантал может вступать в реакцию с деталями конструкции, изготовленными из тугоплавких оксидов или графита. Даже очень устойчивые оксиды, такие как оксид алюминия, магния или циркония, могут подвергаться восстановлению при высокой температуре, если они вступают в контакт с танталом. При контакте с графитом может образовываться карбид тантала, что приводит к повышению хрупкости тантала. Хотя обычно тантал можно легко комбинировать с другими тугоплавкими металлами, например, молибденом или вольфрамом, он может вступать в реакцию с гексагональным нитридом бора и нитридом кремния.

В таблице ниже указана коррозионная стойкость материала по отношению к термостойким материалам, используемым при строительстве промышленных печей. Указанные предельные температуры действительны для вакуума. При использовании защитного газа эти температуры примерно на 100-200 °C ниже.

Коррозионная стойкость по отношению к термостойким материалам, используемым при строительстве промышленных печей
Оксид алюминия стойкий при температуре < 1 900 °C Молибден стойкий
Оксид бериллия стойкий при температуре < 1 600 °C Нитрид кремния стойкий при температуре < 700 °C
Гексагональный. нитрид бора стойкий при температуре < 700 °C Оксид тория стойкий при температуре < 1 900 °C
Графит стойкий при температуре < 1 000 °C вольфрам стойкий
Оксид магния стойкий при температуре < 1 800 °C Оксид циркония стойкий при температуре < 1 600 °C

Тантал — «умный металл»

Тантал, свойства и характеристики которого оказались поистине уникальными, в наше время получил название «умный металл».

Немного истории

Тантал был открыт в 1802 г. Шведский химик А.Г. Экеберг изучал найденные минералы и обнаружил, что в них находится неизвестный в то время элемент, но выделить его в чистом виде он не смог. Неизвестный металл был назван в честь древнегреческого мифологического героя Тантала. На протяжении 4-х десятилетий химики ошибочно считали, что тантал и известный к тому времени ниобий - это один и тот же химический элемент. Получить его в чистом виде удалось немецким химикам в 1903 г, а в промышленных целях он начал активно использоваться в годы Второй мировой войны.

Описание и свойства тантала

В периодической таблице этот металл занимает 73-ю позицию, обозначается Ta.

При нормальных условиях имеет серебристый цвет, внешне похож на серебро и некоторые другие благородные металлы. За счет окисления в воздухе покрывается оксидной пленкой, темнеет, становится более похожим на свинец. При комнатной температуре окисление протекает очень медленно, поэтому металл долго сохраняет свой характерный цвет. Активное окисление в воздухе начинается при температуре выше 280°С.

С галогенами металл вступает в реакции при низких температурах, но сразу покрывается поверхностной пленкой, которая защищает его от дальнейших реакций по всему объему.

Температура плавления относительно высокая, составляет 3017°С. Она намного выше, чем у многих металлов. Для сравнения:

  • свинец — 327°С;
  • алюминий — 660°С;
  • латунь - до 1000°С;
  • золото — 1064°С;
  • медь — 1083°С;
  • железо — 1540°С.

Благодаря высочайшей прочности металла тантала, его используют во многих отраслях производства

Среди материалов, широко используемых в промышленности, по температуре плавления тантал уступает вольфраму, у которого эта величина равна 3420°С.

Плотность тантала равна 16700 кг/м3, этот металл намного плотнее, чем распространенные железо и медь, у которых она равна соответственно 7870 и 8940 кг/м3. По плотности его можно сравнить с золотом, плотностью которого 19320 кг/м3. Тантал обладает высокой твердостью. Несмотря на свойства, это очень пластичный металл. Материал можно раскатать до толщины 1 мкм. Такой пластичностью обладает только золото.

Прокат материала проводится без нагревания, что значительно упрощает его обработку. Механическую прочность можно повысить наклепом. При температуре ниже — 196°С свойство пластичности исчезает, металл становится хрупким.

По магнитным свойствам тантал относят к парамагнетикам. Свойства парамагнетика хорошо проявляются при температурах ниже 3420°С, затем металл становится ферромагнетиком.

Тантал обладает высочайшей устойчивостью к агрессивным действиям среды. Его не разрушает азотная кислота с концентрацией 70%. На него не действует серная кислота, нагретая до 150°С, но при повышении температуры кислоты до 200°С начинается медленное разрушение металла.

Такая антикоррозийная стойкость металла, превышающая стойкость нержавеющей стали, сделала его незаменимым в целом ряде производственных процессов.

Для выделения драгоценных металлов из растворов и расплавов их солей применяется электролиз. Но катоды, на которые осаждаются благородные металлы, при этом быстро разрушаются. Замена катодов, изготовленных из обычных металлов, на танталовые сделала процесс электролиза намного эффективнее и дешевле. Этот способ применяется и для выделения из руд редкоземельных элементов.

Тантал обладает высокой биологической совместимостью, поэтому получил широкое применение в медицине. Протезы и имплантаты из него не оказывают химического воздействия на организмы, не окисляются, поэтому организмом не отторгаются.

К хорошим проводникам электрического тока тантал отнести нельзя, его удельное сопротивление при 20°С составляет 0,13 Ом*мм²/м, оно больше, чем у железа (0,1 Ом*мм²/м). Но он обладает относительно высокой температурой перехода в состояние сверхпроводимости, она равна 4,5К. При более высокой температуре в состояние сверхпроводимости переходят ванадий (5,3К), свинец (7,2К) и его «близнец» ниобий (9,2К). Это свойство тантала сделало его востребованным в производстве сверхпроводников криотонов, используемых в электронно-вычислительной технике. В радиоэлектронике используются конденсаторы с танталовыми обкладками. Они оказались самыми эффективными, но работать могут при небольших значениях напряжения.

В военной промышленности сплавы тантала используются для увеличения пробивной способности снарядов.

В научных и военных целях радиоактивные изотопы используются для создания источников гамма-излучения. Радиоактивные изотопы входят в состав ископаемых, но в гораздо большей концентрации они содержатся в отходах, остающихся после работы ядерных реакторов.

Тантал применяется при строительстве защиты ядерных реакторов, так как это один из немногих элементов, не разрушающихся от действия паров цезия.

На поверхности режущего инструмента для придания ему особой прочности наносится карбид тантала. Такой инструмент используется для резки и сверления особо прочных материалов, при бурении глубинных скважин в твердых породах.

Тантал благодаря высочайшей прочности, устойчивости к окислению и высокой температуре плавления используется в производстве авиационных и ракетных двигателей.

Детали, изготовленные из тантала, в агрессивных средах служат на десятки лет дольше, чем изготовленные из других материалов с высокой коррозийной стойкостью.

Все физические характеристики материала можно изменять, внося в него легирующие добавки.

Добыча тантала

Благодаря изыскательским работам были найдены новые месторождения металла тантал

В земной коре тантала содержится около 0,0002%, поэтому он относится к редким элементам. Но практически во всех странах имеются месторождения его соединений. В Европе самые большие и богатые месторождения находятся во Франции, небольшие месторождения есть в большинстве стран бывшего СССР. Среди африканских стран самыми большими запасами сырья обладает Египет. Но самые крупные и богатые месторождения, известные и разработанные на сегодняшний день располагаются в Австралии.

Встречается элемент в виде собственных солей, или он входит в состав других минералов. Во втором случае ему обязательно сопутствует ниобий. Минералы могут быть стабильными и радиоактивными.

Добыча этого металла составляет 420 тонн в год. Лидирующие государства по добыче и переработке - США и ФРГ.

Из-за мирового кризиса спрос на тантал несколько снизился, но с 2010 г. опять возрос. В последнее время проводятся активные изыскательские работы. Благодаря им были открыты новые месторождения в США, Бразилии, ЮАР.

Фригийского царя Тантала боги наказали за неоправданную жестокость. Они обрекли Тантала на вечные муки жажды, голода и страха. С тех пор стоит он в преисподней по горло в прозрачной воде. Под тяжестью созревших плодов склоняются к нему ветви деревьев. Когда томимый жаждой Тантал пытается напиться, вода уходит вниз. Стоит ему протянуть руку к сочным плодам, ветер поднимает ветвь, и обессилевший от голода грешник не может ее достать. А прямо над его головой нависла скала, грозя в любой миг обрушиться.

Так мифы Древней Греции повествуют о муках Тантала. Должно быть, не раз шведскому химику Экебергу пришлось вспомнить о танталовых муках, когда он безуспешно пытался растворить в кислотах «землю», открытую им в 1802 г., и выделить из нее новый элемент. Сколько раз, казалось, ученый был близок к цели, но выделить новый металл в чистом виде ему так и не удалось. Отсюда – «мученическое» название элемента №73.

Споры и заблуждения

Спустя некоторое время выяснилось, что у тантала есть двойник, который появился на свет годом раньше. Этот двойник – элемент №41, открытый в 1801 г. и первоначально названный Колумбией. Позже его переименовали в ниобий. Сходство ниобия и тантала ввело в заблуждение химиков. После долгих споров они пришли к выводу, что тантал и Колумбии – одно и то же.

Поначалу такого же мнения придерживался и известнейший химик того времени Йене Якоб Берцелиус, однако в дальнейшем он усомнился в этом. В письме к своему ученику немецкому химику Фридриху Вёлеру Берцелиус писал:

«Посылаю тебе обратно твой X, которого я вопрошал, как мог, но от которого я получил уклончивые ответы. Ты титан? – спрашивал я. Он отвечал: Вёлер же тебе сказал, что я не титан.

Я также установил это.

– Ты цирконий? – Нет, – отвечал он, – я же растворяюсь в соде, чего не делает цирконовая земля. – Ты олово? – Я содержу олово, но очень мало. – Ты тантал? Я с ним родствен, – отвечал он, – но я растворяюсь в едком кали и осаждаюсь из него желто-коричневым. – Ну что же ты тогда за дьявольская вещь? – спросил я. Тогда мне показалось, что он ответил: мне не дали имени.

Между прочим, я не вполне уверен, действительно ли я это слышал, потому что он был справа от меня, а я очень плохо слышу на правое ухо. Так как твой слух лучше моего, то я тебе шлю этого сорванца назад, чтобы учинить ему новый допрос...»

Речь в этом письме шла об аналоге тантала – элементе, открытом англичанином Чарльзом Хэтчетом в 1801 г.

Но и Вёлеру не удалось внести ясность во взаимоотношения тантала с Колумбией. Ученым суждено было заблуждаться более сорока лет. Лишь в 1844 г. немецкому химику Генриху Розе удалось разрешить запутанную проблему и доказать, что Колумбии, как и тантал, имеет полное право на «химический суверенитет». А уж поскольку налицо были родственные связи этих элементов, Розе дал Колумбию новое имя – ниобий, которое подчеркивало их родство (в древнегреческой мифологии Ниобея – дочь Тантала).

Первые шаги

На протяжении многих десятилетий конструкторы и технологи не проявляли к танталу никакого интереса. Да собственно говоря, тантала, как такового, попросту и не существовало: ведь в чистом компактном виде этот металл ученые смогли получить лишь в XX в. Первым это сделал немецкий химик фон Болтон в 1903 г. Еще раньше попытки выделить тантал в чистом виде предпринимали многие ученые, в частности Муассан. Но металлический порошок, полученный Муассаном, восстановившим пятиокись тантала Ta 2 O 5 углеродом в электрической печи, не был чистым танталом, порошок содержал 0,5% углерода.

Итак, в начале нашего века в руки исследователей попал чистый тантал, и теперь они уже могли детально изучить свойства этого светло-серого металла со слегка синеватым оттенком.

Что же он собой представляет? Прежде всего – это тяжелый металл: его плотность 16,6 г/см 3 (заметим, что для перевозки кубометра тантала понадобилось бы шесть трехтонных грузовиков).

Высокая прочность и твердость сочетаются в нем с отличными пластическими характеристиками. Чистый тантал хорошо поддается механической обработке, легко штампуется, перерабатывается в тончайшие листы (толщиной около 0,04 мм) и проволоку. Характерная черта тантала – его высокая теплопроводность. Но, пожалуй, самое важное физическое свойство тантала – тугоплавкость: он плавится почти при 3000°C (точнее, при 2996°C), уступая в этом лишь вольфраму и рению.

Когда стало известно, что тантал весьма тугоплавок, у ученых возникла мысль использовать его в качестве материала для нитей электроламп. Однако уже спустя несколько лет тантал вынужден был уступить это поприще еще более тугоплавкому и не столь дорогому вольфраму.

В течение еще нескольких лет тантал не находил практического применения. Лишь в 1922 г. его смогли использовать в выпрямителях переменного тока (тантал, покрытый окисной пленкой, пропускает ток лишь в одном направлении), а спустя еще год – в радиолампах. Тогда же началась разработка промышленных методов получения этого металла. Первый промышленный образец тантала, полученный одной из американских фирм в 1922 г., был величиной со спичечную головку. Спустя двадцать лет та же фирма ввела в эксплуатацию специализированный завод по производству тантала.

Как тантал разлучают с ниобием

Земная кора содержит всего лишь 0,0002% Ta, но минералов его известно много – свыше 130. Тантал в этих минералах, как правило, неразлучен с ниобием, что объясняется чрезвычайным химическим сходством элементов и почти одинаковыми размерами их ионов.

Трудность разделения этих металлов долгое время тормозила развитие промышленности тантала и ниобия. До недавних пор их выделяли лишь способом, предложенным еще в 1866 г. швейцарским химиком Мариньяком, который воспользовался различной растворимостью фтортанталата и фторниобата калия в разбавленной плавиковой кислоте.

В последние годы важное значение приобрели также экстракционные методы выделения тантала, основанные на различной растворимости солей тантала и ниобия в некоторых органических растворителях. Опыт показал, что наилучшими экстракционными свойствами обладают метилизобутилкетон и циклогексанон.

В наши дни основной способ производства металлического тантала – электролиз расплавленного фтортанталата калия в графитовых, чугунных или никелевых тиглях, служащих по совместительству катодами. Танталовый порошок осаждается на стенках тигля. Извлеченный из тигля, этот порошок подвергают сначала прессованию в пластины прямоугольного сечения (если заготовка предназначена для прокатки в листы) либо в штабики квадратного сечения (для волочения проволоки), а затем – спеканию.

Некоторое применение находит также натриетермический способ получения тантала. В этом процессе взаимодействуют фтортанталат калия и металлический натрий:

K 2 TaF 7 + 5Na → Ta + 2KF + 5NaF.

Конечный продукт реакции – порошкообразный тантал, который затем спекают. В последние два десятилетия стали применять и другие методы обработки порошка – дуговую или индукционную плавку в вакууме и электронно-лучевую плавку.

На службе химии

Несомненно, самое ценное свойство тантала – его исключительная химическая стойкость: в этом отношении он уступает только благородным металлам, да и то не всегда.

Тантал не растворяется даже в такой химически агрессивной среде, как царская водка, которая без труда растворяет и золото, и платину, и другие благородные металлы. О высочайшей коррозионной стойкости тантала свидетельствуют и такие факты. При 200°C он не подвержен коррозии в 70%-ной азотной кислоте, в серной кислоте при 150°C коррозии тантала также не наблюдается, а при 200°C металл корродирует, но лишь на 0,006 мм в год.

К тому же тантал – металл пластичный, из него можно изготовлять тонкостенные изделия и изделия сложной формы. Неудивительно, что он стал незаменимым конструкционным материалом для химической промышленности.

Танталовую аппаратуру применяют в производстве многих кислот (соляной, серной, азотной, фосфорной, уксусной), брома, хлора, перекиси водорода. На одном из предприятий, использующих газообразный хлористый водород, детали из нержавеющей стали выходили из строя уже через два месяца. Но, как только сталь была заменена танталом, даже самые тонкие детали (толщиной 0,3...0,5 мм) оказались практически бессрочными – срок службы их увеличился до 20 лет.

Из всех кислот лишь плавиковая способна растворять тантал (особенно при высокой температуре). Из него изготовляют змеевики, дистилляторы, клапаны, мешалки, аэраторы и многие другие детали химических аппаратов. Реже – аппараты целиком.

Многие конструкционные материалы довольно быстро теряют теплопроводность: на их поверхности образуется плохо проводящая тепло окисная или солевая пленка. Танталовая аппаратура свободна от этого недостатка, вернее, пленка окисла может на нем образоваться, но она тонка и хорошо проводит тепло. Кстати, именно высокая теплопроводность в сочетании с пластичностью сделали тантал прекрасным материалом для теплообменников.

Танталовые катоды применяют при электролитическом выделении золота и серебра. Достоинство этих катодов заключается в том, что осадок золота и серебра можно смыть с них царской водкой, которая не причиняет вреда танталу.

Тантал важен не только для химической промышленности. С ним встречаются и многие химики-исследователи в своей повседневной лабораторной практике. Танталовые тигли, чашки, шпатели – вовсе не редкость.

«Нужно иметь танталовые нервы...»

Уникальное качество тантала – его высокая биологическая совместимость, т.е. способность приживаться в организме, не вызывая раздражения окружающих тканей. На этом свойстве основано широкое применение тантала в медицине, главным образом в восстановительной хирургии – для ремонта человеческого организма. Пластинки из этого металла используют, например, при повреждениях черепа – ими закрывают проломы черепной коробки. В литературе описан случай, когда из танталовой пластинки было сделано искусственное ухо, причем пересаженная с бедра кожа при этом настолько хорошо прижилась, что вскоре танталовое ухо трудно было отличить от настоящего.

Танталовой пряжей иногда возмещают потери мускульной ткани. С помощью тонких танталовых пластин хирурги укрепляют после операции стенки брюшной полости. Танталовыми скрепками, подобными тем, которыми сшивают тетради, надежно соединяют кровеносные сосуды. Сетки из тантала применяют при изготовлении глазных протезов. Нитями из этого металла заменяют сухожилия и даже сшивают нервные волокна. И если выражение «железные нервы» мы обычно употребляем в переносном смысле, то людей с танталовыми нервами, быть может, вам приходилось встречать.

Право, есть что-то символическое в том, что именно на долю металла, названного в честь мифологического мученика, выпала гуманная миссия – облегчать людские муки...

Основной заказчик – металлургия

Однако на медицинские нужды расходуется лишь 5% производимого в мире тантала, около 20% потребляет химическая промышленность. Основная часть тантала – свыше 45% – идет в металлургию. В последние годы тантал все чаще используют в качестве легирующего элемента в специальных сталях – сверхпрочных, коррозионностойких, жаропрочных. Действие, оказываемое на сталь танталом, подобно действию ниобия. Добавка этих элементов к обычным хромистым сталям повышает их прочность и уменьшает хрупкость после закалки и отжига.

Очень важная область применения тантала – производство жаропрочных сплавов, в которых все больше и больше нуждается ракетная и космическая техника. Замечательными свойствами обладает сплав, состоящий из 90% тантала и 10% вольфрама. В форме листов такой сплав работоспособен при температуре до 2500°C, а более массивные детали выдерживают свыше 3300°C! За рубежом этот сплав считают вполне надежным для изготовления форсунок, выхлопных труб, деталей систем газового контроля и регулирования и многих других ответственных узлов космических кораблей. В тех случаях, когда сопла ракет охлаждаются жидким металлом, способным вызвать коррозию (литием или натрием), без сплава тантала с вольфрамом просто невозможно обойтись.

Еще большую жаропрочность детали из тантало-вольфрамового сплава приобретают, если на них нанесен слой карбида тантала (температура плавления этого покрытия – свыше 4000°C). При опытных запусках ракет такие сопла выдерживали колоссальные температуры, при которых сам сплав быстро корродирует и разрушается.

Другое достоинство карбида тантала – его твердость, близкая к твердости алмаза, – привело этот материал в производство твердосплавного инструмента для скоростного резания металла.

Работа под напряжением

Приблизительно четвертая часть мирового производства тантала идет в электротехническую и электровакуумную промышленность. Благодаря высокой химической инертности как самого тантала, так и его окисной пленки, электролитические танталовые конденсаторы весьма стабильны в работе, надежны и долговечны: срок их службы достигает 12 лет, а иногда и больше. Миниатюрные танталовые конденсаторы используют в передатчиках радиостанций, радарных установках и других электронных системах. Любопытно, что эти конденсаторы могут сами себя ремонтировать: предположим, возникшая при высоком напряжении искра разрушила изоляцию – тотчас же в месте пробоя вновь образуется изолирующая пленка окисла, и конденсатор продолжает работать как ни в чем не бывало.

Окись тантала обладает ценнейшим для электротехники свойством: если через раствор, в который погружен тантал, покрытый тончайшей (всего несколько микрон!) пленкой окиси, пропускать переменный электрический ток, он пойдет лишь в одном направлении – от раствора к металлу. На этом принципе основаны танталовые выпрямители, которые применяют, например, в сигнальной службе железных дорог, телефонных коммутаторах, противопожарных сигнальных системах.

Тантал служит материалом для различных деталей электровакуумных приборов. Как и ниобий, он отлично справляется с ролью геттера, т.е. газопоглотителя. Так, при 800°C тантал способен поглотить количество газа, в 740 раз больше его собственного объема. А еще из тантала делают горячую арматуру ламп – аноды, сетки, катоды косвенного накала и другие нагреваемые детали. Тантал особенно нужен лампам, которые, работая при высоких температурах и напряжениях, должны долго сохранять точные характеристики. Танталовую проволоку используют в криотронах – сверхпроводящих элементах, нужных, например, в вычислительной технике.

Побочные «специальности» тантала

Тантал – довольно частый гость в мастерских ювелиров, во многих случаях им заменяют платину. Из тантала делают корпуса часов, браслеты и другие ювелирные изделия. И еще в одной области элемент №73 конкурирует с платиной: стандартные аналитические разновесы из этого металла по качеству не уступают платиновым. В производстве наконечников для перьев автоматических ручек танталом заменяют более дорогой иридий. Но и этим послужной список тантала не исчерпывается. Специалисты по военной технике считают, что из тантала целесообразно изготовлять некоторые детали управляемых снарядов и реактивных двигателей.

Широкое применение находят и соединения тантала. Так, фтортанталат калия используют как катализатор в производстве синтетического каучука. В этой же роли выступает и пятиокись тантала при получении бутадиена из этилового спирта.

Окись тантала иногда применяют и в стеклоделии – для изготовления стекол с высоким коэффициентом преломления. Смесь пятиокиси тантала Ta 2 O 5 с небольшим количеством трехокиси железа предложено использовать для ускорения свертывания крови. Гидриды тантала успешно служат для припаивания контактов на кремниевых полупроводниках.

Спрос на тантал постоянно растет, и поэтому можно не сомневаться, что в ближайшие годы производство этого замечательного металла будет увеличиваться быстрее, чем сейчас.

Тантал тверже... тантала

Танталовые покрытия не менее привлекательны, чем, скажем, никелевые и хромовые. Привлекательны не только внешне. Разработаны способы, позволяющие покрывать танталовым слоем различной толщины изделия больших размеров (тигли, трубы, листы, сопла ракет), причем покрытие может быть нанесено на самые разнообразные материалы – сталь, железо, медь, никель, молибден, окись алюминия, графит, кварц, стекло, фарфор и другие. Характерно, что твердость танталового покрытия, по Бринелю, составляет 180...200 кг/мм 2 , в то время как твердость технического тантала в виде отожженных прутков или листов колеблется в пределах 50...80 кг/мм 2 .

Дешевле платины, дороже серебра

Замена платины танталом, как правило, весьма выгодна – он дешевле ее в несколько раз. Тем не менее дешевым тантал не назовешь. Относительная дороговизна тантала объясняется высокой ценой материалов, используемых в его производстве, и сложностью технологии получения элемента №73: для получения тонны танталового концентрата необходимо переработать до 3 тыс. т руды.

Металл из гранита

Поиски танталового сырья продолжаются и в наши дни. Ценные элементы, в том числе тантал, есть в обычных гранитах. В Бразилии уже пробовали добывать тантал из гранитов. Правда, промышленного значения этот процесс получения тантала и других элементов пока не имеет – он весьма сложен и дорог, но получить тантал из такого необычного сырья сумели.

Только один окисел

Раньше считалось, что, подобно многим другим переходным металлам, тантал при взаимодействии с кислородом может образовывать несколько окислов разного состава. Однако более поздние исследования показали, что кислород окисляет тантал всегда до пятиокиси Ta 2 O 5 . Существовавшая путаница объясняется образованием твердых растворов кислорода в тантале. Растворенный кислород удаляется при нагревании выше 2200°C в вакууме. Образование твердых растворов кислорода сильно сказывается на физических свойствах тантала. Повышаются его прочность, твердость, электрическое сопротивление, но зато снижаются магнитная восприимчивость и коррозионная стойкость.

Тантал (Ta) — элемент с атомным номером 73 и атомным весом 180,948. Является элементом побочной подгруппы пятой группы, шестого периода периодической системы Дмитрия Ивановича Менделеева. Тантал в свободном состоянии при нормальных условиях представляет собой металл платиново-серого цвета со слегка свинцовым оттенком, что является следствием образования оксидной пленки (Ta 2 O 5). Тантал — тяжелый, тугоплавкий, достаточно твердый, но не хрупкий металл, в то же самое время он очень ковкий, хорошо поддающийся механической обработке, особенно в чистом виде.

В природе тантал находится в виде двух изотопов: стабильного 181 Ta (99,99 %) и радиоактивного 180 Ta (0,012 %) с периодом полураспада 10 12 лет. Из искусственно полученных радиоактивный 182 Ta (период полураспада 115,1 суток) используется как изотопный индикатор.

Элемент открыт в 1802 году шведским химиком А. Г. Экебергом в двух минералах, найденных в Финляндии и Швеции. Назван был в честь героя древнегреческих мифов Тантала по причине трудности его выделения. Долгое время минералы колумбит, содержащий колумбий (ниобий) и танталит, содержащий тантал, считались одним и тем же. Ведь эти два элемента частые спутники друг друга и во многом схожи. Данное мнение долгое время считалось верным в среде химиков всех стран, лишь в 1844 году немецкий химик Генрих Розе вновь изучал колумбиты и танталиты из различных мест и нашел в них новый металл, близкий по свойствам к танталу. Это был ниобий. Пластичный чистый металлический тантал впервые получен немецким учёным В. фон Болтоном в 1903 году.

Основные месторождения минералов тантала расположены в Финляндии, странах Скандинавии, Северной Америки, Бразилии, Австралии, Франции, Китае и ряде других государств.

В связи с тем, что тантал обладает рядом ценных свойств — хорошей пластичностью, высокой прочностью, свариваемостью, коррозионной устойчивостью в умеренных температурах, тугоплавкостью и рядом других важных качеств — применение семьдесят третьего элемента весьма широко. Наиболее важные области применения тантала — электронная техника и машиностроение. Приблизительно четвертая часть мирового производства тантала идет в электротехническую и электровакуумную промышленность. В электронике он используется для изготовления электролитических конденсаторов, анодов мощных ламп, сеток. В химической промышленности из тантала изготовляют детали машин, применяемых в производстве кислот, ведь этот элемент обладает исключительной химической стойкостью. Тантал не растворяется даже в такой химически агрессивной среде, как царская водка! В танталовых тиглях плавят металлы, например, редкоземельные. Из него изготовляют нагреватели высокотемпературных печей. Благодаря тому, что тантал не взаимодействует с живыми тканями организма человека и не вредит им, он применяется в хирургии для скрепления костей при переломах. Однако главным потребителем столь ценного металла является металлургия (свыше 45 %). В последние годы тантал все чаще используют в качестве легирующего элемента в специальных сталях — сверхпрочных, коррозионностойких, жаропрочных. Кроме того, многие конструкционные материалы довольно быстро теряют теплопроводность: на их поверхности образуется плохо проводящая тепло окисная или солевая пленка. Конструкции из тантала и его сплавов с такими проблемами не сталкиваются. Образующаяся на них окисная пленка тонка и хорошо проводит тепло, к тому же имеет защитные антикоррозионные свойства.

Ценность имеет не только чистый тантал, но и его соединения. Так высокая твердость карбида тантала используется при изготовлении твердосплавного инструмента для скоростного резания металла. Тантало-вольфрамовые сплавы придают жаропрочность деталям, изготовляемым из них.

Биологические свойства

Благодаря своей высокой биологической совместимости — способности уживаться с живыми тканями, не вызывая раздражения и отторжения организма — тантал нашел широкое применение в медицине, главным образом в восстановительной хирургии — для восстановления человеческого организма. Тонкие пластины из тантала применяют при повреждениях черепной коробки — ими закрывают проломы в черепе. Медицине известен случай, когда из танталовой пластинки было сделано искусственное ухо, при этом, кожа, пересаженная с бедра, прижилась настолько хорошо и быстро, что вскоре искусственный орган нельзя было отличить от настоящего. Танталовые нити используют при восстановлении поврежденной мускульной ткани. Танталовыми пластинками хирурги скрепляют стенки брюшной полости после операций. Даже кровеносные сосуды можно соединить, для этого используют скрепки из тантала. Сети из этого уникального материала применяют при изготовлении глазных протезов. Нитями из этого металла заменяют сухожилия и даже сшивают нервные волокна.

Не менее широко применение пятиокиси тантала Та 2 О 5 — ее смесь с небольшим количеством трехокиси железа предложено использовать для ускорения свертывания крови.

Последнее десятилетие развивается новая отрасль медицины, основанная на использовании близкодействующих статических электрических полей для стимулирования позитивных биологических процессов в организме человека. Причем электрические поля образуются не за счет традиционных электротехнических источников энергии с сетевым или аккумуляторным электропитанием, а за счет автономно функционирующих электретных покрытий (диэлектрик, сохраняющий продолжительное время некомпенсированный электрический заряд), нанесенных на имплантаты различного назначения, широко применяемые в медицине.

В настоящее время положительные результаты применения электретных пленок пятиокиси тантала получены в следующих областях медицины: челюстно-лицевая хирургия (использование имплантантов с покрытием из Та 2 О 5 исключает возникновение воспалительных процессов, сокращает сроки приживления имплантанта); ортопедическая стоматология (покрытие протезов из акриловых пластмасс пленкой из пятиокиси тантала устраняет все возможные патологические проявления, обусловленные непереносимостью акрилатов); хирургия (применение электретного аппликатора при лечении дефектов кожных покровов и соединительной ткани при длительно незаживающих раневых процессах, пролежнях, нейротрофических язвах, термических поражениях); травматология и ортопедия (ускорение развития костной ткани при лечении переломов и болезней опорно-двигательной системы человека под действием статического поля, создаваемого пленкой электретного покрытия).

Все эти уникальные научные разработки стали возможны благодаря научной работе специалистов из Санкт-Петербургского Государственного Электротехнического Университета (ЛЭТИ).

Помимо выше перечисленных областей, где уже применяются или внедряются уникальные покрытия из пятиокиси тантала, существуют разработки, находящиеся на самых начальных стадиях. К ним относятся разработки для следующих областей медицины: косметология (изготовления материала на основе покрытий из пятиокиси тантала, который заменит «золотые нити»); кардиохирургия (нанесении электретных пленок на внутреннюю поверхность искусственных кровеносных сосудов, препятствует образованию тромбов); эндопротезирование (снижение риска отторжения протезов, находящихся в постоянном взаимодействии с костной тканью). Кроме того, создается хирургический инструмент с покрытием из пленки пятиокиси тантла.

Известно, что тантал весьма стоек в отношении агрессивных сред, об этом свидетельствует ряд фактов. Так при температуре в 200 °C этот металл не подвержен воздействию семидесяти процентной азотной кислоты! В серной кислоте при температуре 150 °C коррозии тантала также не наблюдается, а при 200 °C металл корродирует, но всего лишь на 0,006 мм в год!

Известен случай, когда на одном предприятии, использовавшем газообразный хлористый водород, детали из нержавеющей стали выходили из строя уже через пару месяцев. Однако, как только сталь была заменена танталом, даже самые тонкие детали (толщиной 0,3...0,5 мм) оказались практически бессрочными — срок службы их увеличился до 20 лет!

Тантал наряду с никелем и хромом широко используется в качестве антикоррозионного покрытия. Им покрывают детали самых разнообразных форм и размеров: тигли, трубы, листы, сопла ракет и многое другое. Причем материал, на который наносится танталовое покрытие, может быть самым разнообразным: железо, медь, графит, кварц, стекло и другие. Что самое интересное — твердость танталового покрытия выше твердости технического тантала в отожженном виде в три-четыре раза!

В связи с тем, что тантал весьма ценный металл, поиски его сырья продолжаются и в наши дни. Минералоги обнаружили, что в обычных гранитах, помимо других ценных элементов, содержится и тантал. Попытка добычи тантала из гранитных пород предпринималась в Бразилии, металл был получен, однако промышленного масштаба такая добыча не получила — крайне дорогим и сложным оказался процесс.

Современные электролитические танталовые конденсаторы стабильны в работе, надежны и долговечны. Миниатюрные конденсаторы, изготовленные из этого материала, используемые в различных электронных системах, помимо выше перечисленных достоинств, имеют одно уникальное качество: они могут производить собственный ремонт самостоятельно! Каким же образом это происходит? Предположим, что от возникшего перепада напряжения, либо по другой причине, нарушается целостность изоляции — мгновенно в месте пробоя вновь образуется изолирующая пленка окисла, и конденсатор продолжает работать, как ни в чем не бывало!

Несомненно, появившийся в середине XX века термин «умный металл», то есть металл, помогающий работать умным машинам, по праву можно присвоить танталу.

В некоторых областях тантал заменяет, а иногда даже конкурирует с платиной! Так в ювелирной работе тантал часто заменяет более дорогой благородный металл при изготовлении браслетов, часовых корпусов и других ювелирных изделий. В другой же области тантал успешно конкурирует с платиной — стандартные аналитические разновесы из этого металла по качеству не уступают платиновым.

Кроме того, танталом заменяют более дорогой иридий в производстве наконечников для перьев автоматических ручек.

Благодаря своим уникальным химическим свойствам, тантал нашел применение, как материал для катодов. Так танталовые катоды применяют при электролитическом выделении золота и серебра. Их ценность заключается в том, что осадок благородных металлов можно смыть с них царской водкой, которая не причиняет вреда танталу.

Определенно можно говорить о том факте, что есть нечто символическое, если даже не мистическое в том, что шведский химик Экеберг, пытаясь насытить кислотами новое вещество, был поражен его «жаждой» и дал новому элементу имя в честь мифического злодея, убившего собственного сына и предавшего богов. А спустя двести лет оказалось, что этот элемент способен буквально «сшить» человека и даже «заменить» ему сухожилия и нервы! Получается, что томимый в подземном царстве мученик искупая свою вину помощью человеку, пытается выпросить прощение у богов…

История

Тантал — герой древнегреческих мифов, лидийский или фригийский царь, сын Зевса. Разгласил тайны олимпийских богов, похитил с их пира амбросию и угостил олимпийцев блюдом, приготовленным из тела собственного сына Пелопса, которого он же и убил. За свои злодеяния Тантал был приговорен богами на вечные муки голода, жажды и страха в подземном царстве Аида. С тех пор он стоит по горло в прозрачной кристально чистой воде, к его голове склоняются ветви под тяжестью спелых плодов. Только не может он утолить ни жажду, ни голод - вода уходит вниз, как только он пытается напиться, а ветви поднимает ветер, от рук голодного убийцы. Над головой Тантала нависает скала, которая в любой миг может обрушиться, заставляя несчастного грешника вечно мучиться от страха. Благодаря этому мифу возникло выражение «танталовы муки», обозначающее непереносимые страдания, бесплотные попытки освободиться от мучений. Видимо, в ходе безуспешных попыток шведского химика Экеберга растворить в кислотах «землю», открытую им в 1802 году, и выделить из нее новый элемент, именно это выражение и пришло ему в голову. Не раз ученому казалось, что он близок к цели, но выделить новый металл в чистом виде ему так и не удалось. Так появилось «мученическое» название нового элемента.

Открытие тантала тесно связано с открытием другого элемента - ниобия, который появился на свет годом раньше и первоначально получил название Колумбия, которое дал ему первооткрыватель Гатчет. Этот элемент - двойник тантала близкий ему по ряду свойств. Именно эта близость и ввела в заблуждение химиков, которые после долгих споров пришли к ошибочному выводу о том, что тантал и колумбий - один и тот же элемент. Данное заблуждение длилось более сорока лет, пока в 1844 году известный немецкий химик Генрих Розе, в ходе повторного изучения колумбитов и танталитов из различных месторождений, не доказал, что колумбий - это самостоятельный элемент. Колумбий, изучаемый Гатчетом был ниобием с большим содержанием тантала, что и ввело в заблуждение ученый мир. В честь такой родственной близости двух элементов Розе присвоил колумбию новое название Ниобий - в честь дочери фригийского царя Тантала Ниобии. И хотя Розе также допустил ошибку, якобы открыв еще один новый элемент, который он назвал Пелопием (в честь сына Тантала Пелопса), его работы стали основой для строгого различия ниобия (колумбия) и тантала. Только, даже после доказательств Розе тантал и ниобий долгое время путали. Так тантал называли колумбием, в России колумбом. Гесс в своих «Основаниях чистой химии» вплоть до их шестого издания (1845) говорит только о тантале, не упоминая о Колумбии; у Двигубского (1824) встречается название - танталий. Такие ошибки и оговорки понятны - способ разделения тантала и ниобия был разработан лишь в 1866 году швейцарским химиком Мариньяком, а как такового чистого элементарного тантала еще не существовало: ведь в чистом компактном виде этот металл ученые смогли получить лишь в XX веке. Первым, кто смог получить металлический тантал, был немецкий химик фон Болтон, а произошло это лишь в 1903 году. Ранее, конечно же, предпринимались попытки получения чистого металлического тантала, но все старания химиков были безуспешны. Например, французский химик Муассан получил металлический порошок, по его утверждению - чистый тантал. Однако этот порошок, полученный восстановлением пятиокиси тантала Ta 2 O 5 углеродом в электрической печи, не был чистым танталом, порошок содержал 0,5 % углерода.

В итоге детальное изучение физико-химических свойств семьдесят третьего элемента стало возможно лишь в начале двадцатого века. В течение еще нескольких лет тантал не находил практического применения. Лишь в 1922 г. его смогли использовать в выпрямителях переменного тока.

Нахождение в природе

Среднее содержание семьдесят третьего элемента в земной коре (кларк) 2,5∙10 -4 % по массе. Тантал характерный элемент кислых пород — гранитных и осадочных оболочек, в которых его среднее содержание достигает 3,5∙10 -4 %, что касается ультраосновных и основных пород - верхние участки мантии и глубинные части земной коры, то концентрация тантала там значительно ниже: 1,8∙10 -6 %. В породах магматического происхождения тантал рассеян, также как и в биосфере, так как изоморфен со многими химическими элементами.

Несмотря на малое содержание тантала в земной коре, весьма широко распространение его минералов - их насчитывается более сотни, как собственно минералов тантала, так и танталосодержащих руд, все они образовались в связи с магматической деятельностью (танталит, колумбит, лопарит, пирохлор и другие). Во всех минералах спутником тантала является ниобий, что объясняется чрезвычайным химическим сходством элементов и почти одинаковыми размерами их ионов.

Собственно танталовые руды имеют соотношение Ta 2 O 5: Nb 2 O 5 ≥1. Главными минералами танталовых руд являются колумбит-танталит (содержание Ta 2 O 5 30-45 %), танталит и манганотанталит (Ta 2 O 5 45-80 %), воджинит (Ta, Mn, Sn) 3 O 6 (Ta 2 O 5 60-85 %), микролит Ca 2 (Ta, Nb) 2 O 6 (F, OH) (Ta 2 O 5 50-80 %) и другие. Танталит (Fe, Mn)(Ta, Nb) 2 O 6 имеет несколько разновидностей: ферротанталит (FeO>MnO), манганотанталит (MnO>FeO). Танталит бывает разных оттенков от черного до красно-коричневого. Главными минералами тантало-ниобиевых руд, из которых наряду с ниобием извлекают значительно более дорогой тантал - это колумбит (Ta 2 O 5 5-30 %), танталсодержащий пирохлор (Ta 2 O 5 1-4 %), лопарит (Ta 2 O 5 0,4-0,8 %), гатчеттолит (Ca, Tr, U) 2 (Nb, Ta) 2 O 6 (F, OH)∙nH 2 O (Ta 2 O 5 8-28 %), иксиолит (Nb, Ta, Sn, W, Sc) 3 O 6 и некоторые другие. Тантало-ниобаты, содержащие U, Th, TR, метамиктны, сильно радиоактивны и содержат переменное количество воды; обычны полиморфные модификации. Тантало-ниобаты образуют мелкую вкрапленность, крупные выделения редки (кристаллы типичны в основном для лопарита, пирохлора и колумбит-танталита). Окраска черная, темно-бурая, буровато-желтая. Обычно полупрозрачные или слабо просвечивают.

Различается несколько главных промышленных и генетических типов месторождений танталовых руд. Редкометальные пегматиты натро-литиевого типа представлены зональными жильными телами, состоящими из альбита, микроклина, кварца, в меньшей степени сподумена или петалита. Редкометальные танталоносные граниты (апограниты) представлены небольшими штоками и куполами микроклин-кварц-альбитовых гранитов, часто обогащенных топазом и литиевыми слюдами, содержащими тонкую вкрапленность колумбита-танталита и микролита. Коры выветривания, делювиально-аллювиальные и аллювиальные россыпи, возникающие в связи с разрушением пегматитов, содержат касситерит и минералы группы колумбита-танталита. Лопаритсодержащие нефелиновые сиениты состава луявритов, фойялитов.

Кроме того, в промышленное использование вовлекаются месторождения комплексных тантало-ниобиевых руд, представленных карбонатитами и ассоциирующими с ними форстерит-апатит-магнетитовыми породами; микроклин-альбитовыми рибекитовыми щелочными гранитами и граносиенитами и другими. Некоторое количество тантала извлекается из вольфрамитов грейзеновых месторождений.

Крупнейшие месторождения титановых руд расположены в Канаде (Манитоба, Берник-Лейк), Австралии (Гринбушес, Пилбара), Малайзии и Тайланде (танталосодержащие оловянные россыпи), Бразилии (Параиба, Риу-Гранди-ду-Норти), ряде африканских государств (Заир, Нигерия, Южная Родезия).

Применение

Тантал нашел свое техническое применение довольно поздно — в начале XX века его использовали в качестве материала для нитей накаливания электроламп, что обуславливалось таким качеством этого металла, как тугоплавкость. Однако вскоре он потерял свое значение в этой области, вытесненный менее дорогим и более тугоплавким вольфрамом. Вновь тантал стал «технически непригодным» вплоть до двадцатых годов XX века, когда его стали использовать в выпрямителях переменного тока (тантал, покрытый окисной пленкой, пропускает ток лишь в одном направлении), а спустя еще год — в радиолампах. После чего металл получил признание и вскоре стал завоевывать все новые и новые области промышленности.

В наше время тантал благодаря своим уникальным свойствам используется в электронике (производство конденсаторов высокой удельной емкости). Примерно четвертая часть мирового производства тантала идет в электротехническую и электровакуумную промышленность. Благодаря высокой химической инертности, как самого тантала, так и его окисной пленки, электролитические танталовые конденсаторы весьма стабильны в работе, надежны и долговечны: срок их службы может достигать более двенадцати лет. В радиотехнике тантал используется в радиолокационной аппаратуре. Мини конденсаторы из тантала используют в передатчиках радиостанций, радарных установках и других электронных системах.

Основной потребитель тантала — металлургия, использующая свыше 45 %, производимого металла. Тантал активно используют в качестве легирующего элемента в специальных сталях — сверхпрочных, коррозионностойких, жаропрочных. Добавка этого элемента к обычным хромистым сталям повышает их прочность и уменьшает хрупкость после закалки и отжига. Производство жаропрочных сплавов — большая необходимость для ракетной и космической техники. В тех случаях, когда сопла ракет охлаждаются жидким металлом, способным вызвать коррозию (литием или натрием), без сплава тантала с вольфрамом просто невозможно обойтись. Кроме того, из жаропрочных сталей изготовляют нагреватели высокотемпературных вакуумных печей, подогревателей, мешалок. Карбид тантала (температура плавления 3 880 °C) применяется в производстве твёрдых сплавов (смеси карбидов вольфрама и тантала — марки с индексом ТТ, для тяжелейших условий металлообработки и ударно поворотного бурения крепчайших материалов (камень, композиты).

Стали, легированные танталом имеют широкое применение, например в химическом машиностроении. Ведь такие сплавы имеют исключительную химическую стойкость, они пластичны, жаростойки и жаропрочны, именно благодаря этим свойствам тантал стал незаменимым конструкционным материалом для химической промышленности. Танталовую аппаратуру применяют в производстве многих кислот: соляной, серной, азотной, фосфорной, уксусной, а также брома, хлора и перекиси водорода. Из него изготовляют змеевики, дистилляторы, клапаны, мешалки, аэраторы и многие другие детали химических аппаратов. Иногда — аппараты целиком. Танталовые катоды применяют при электролитическом выделении золота и серебра. Достоинство этих катодов заключается в том, что осадок золота и серебра можно смыть с них царской водкой, которая не причиняет вреда танталу.

Кроме того, тантал используют в приборостроении (рентгеновская аппаратура, контрольный инструмент, диафрагмы); в медицине (материал для восстановительной хирургии); в ядерной энергетике — в качестве теплообменника для ядерно-энергетических систем (тантал наиболее из всех металлов устойчив в перегретых расплавах и парах цезия-133). Высокая способность тантала поглощать газы используется для поддержания глубокого вакуума (электровакуумные приборы).

Последние годы тантал используется в качестве ювелирного материала, в связи с его способностью образовывать на поверхности прочные пленки оксида любого цвета.

Широкое применение находят и соединения тантала. Пятиокись тантала используется в атомной технике для варки стекла поглощающего гамма-излучение. Фтортанталат калия используют как катализатор в производстве синтетического каучука. В этой же роли выступает и пятиокись тантала при получении бутадиена из этилового спирта.

Производство

Известно, что руды содержащие тантал редки и бедны именно этим элементом. Основное сырье для производства тантала и его сплавов — танталитовые и лопаритовые концентраты, содержащие всего 8 % Та 2 О 5 , и более 60 % Nb 2 O 5 . Кроме того, в переработку идут даже те руды, которые содержат всего сотые доли процента (Та, Nb) 2 O 5 !

Технология производства тантала довольно сложна и осуществляется в три стадии: вскрытие или разложение; отделение тантала от ниобия и получение их чистых химических соединений; восстановление и рафинирование тантала.

Вскрытие танталового концентрата, иначе говоря, извлечение тантала из руд осуществляется с помощью щелочей (сплавление) либо при помощи плавиковой кислоты (разложение) или смеси плавиковой и серной кислот. После чего переходят ко второй стадии производства — экстракционное извлечение и разделение тантала и ниобия. Последняя задача весьма сложна по причине схожести химических свойств этих металлов и почти одинаковым размером их ионов. До недавних пор металлы разделяли лишь способом, предложенным еще в 1866 году швейцарским химиком Мариньяком, который воспользовался различной растворимостью фтортанталата и фторниобата калия в разбавленной плавиковой кислоте. В современной промышленности используется несколько способов разделения тантала и ниобия: экстракция органическими растворителями, избирательное восстановление пятихлористого ниобия, дробная кристаллизация комплексных фтористых солей, разделение с помощью ионообменных смол, ректификация хлоридов. В настоящее время чаще всего используемый способ разделения (он же и самый совершенный) — экстракция из растворов фтористых соединений тантала и ниобия, содержащих плавиковую и серную кислоты. При этом также происходит очистка тантала и ниобия от примесей других элементов: кремния, титана, железа, марганца и других сопутствующих элементов. Что касается лопаритовых руд, то их концентраты перерабатываются хлорным методом, с получением конденсата хлоридов тантала и ниобия, которые разделяют в дальнейшем методом ректификации. Разделение смеси хлоридов складывается из следующих стадий: предварительная ректификация (происходит отделение хлоридов тантала и ниобия от сопутствующих примесей), основная ректификация (с получением чистого NbCl 5 и концентрата TaCl 5) и завершающая ректификация танталовой фракции (получение чистого TaCl 5). Вслед за разделением родственных металлов происходит осаждение и очистка танталовой фазы с получением фтортанталата калия повышенной чистоты (с использованием KCl).

Металлический тантал получают путем восстановления его соединений высокой чистоты, для чего возможно применение нескольких способов. Это либо восстановление тантала из пентооксида сажей при температуре 1800—2000 °C (карботермический способ), либо восстановление натрием фтортанталата калия при нагревании (натриетермический способ), либо электрохимическое восстановление из расплава, содержащего фтортанталат калия и оксид тантала (электролитический способ). Так или иначе, получают металл в порошкообразном виде с чистотой 98—99 %. Дабы получить металл в слитках, его спекают в виде предварительно спрессованных из порошка заготовок. Спекание происходит посредством пропускания тока при температуре 2 500—2 700 °C или нагреванием в вакууме при 2 200—2 500 °C. После чего чистота металла значительно увеличивается, становясь равной 99,9—99,95 %.

Для дальнейшего рафинирования и получения танталовых слитков используют электровакуумную плавку в дуговых печах с расходуемым электродом, а для более глубокого рафинирования применяют электронно-лучевую плавку, которая значительно снижает содержание в тантале примесей, повышает его пластичность и снижает температуру перехода в хрупкое состояние. Тантал такой чистоты сохраняет высокую пластичность при температурах, близких к абсолютному нулю! Поверхность слитка из тантала оплавляют (для придания требуемых показателей по поверхности слитка) или обрабатывают на токарном станке.

Физические свойства

Только в начале XX века ученые получили в свои руки чистый металлический тантал и смогли детально изучить свойства этого светло-серого металла со слегка синеватым свинцовым оттенком. Какими же качествами обладает этот элемент? Определенно, тантал — тяжелый металл: его плотность 16,6 г/см 3 при 20 °C (для сравнения у железа плотность 7,87 г/см 3 , плотность свинца — 11,34 г/см 3) и для транспортировки одного кубометра данного элемента потребовалось бы шесть трехтонных грузовиков. Высокая прочность и твердость сочетаются в нем с отличными пластическими характеристиками. Чистый тантал хорошо поддается механической обработке, легко штампуется, перерабатывается в тончайшие листы (толщиной около 0,04 мм) и проволоку (модуль упругости тантала 190 Гн/м 2 или 190·10 2 кгс/мм 2 при 25 °С). На холоде металл поддается обработке без значительного наклепа, подвергается деформации со степенью сжатия 99 % без промежуточного обжига. Переход тантала из пластичного состояния в хрупкое не наблюдается даже при его охлаждении до -196 °C. Предел прочности при растяжении отожженного тантала высокой чистоты 206 Мн/м 2 (20,6 кгс/мм 2) при 27 °C и 190 Мн/м 2 (19 кгс/мм 2) при 490 °C; относительное удлинение 36 % (при 27 °С) и 20 % (при 490 °С). Тантал имеет кубическую объемноцентрированную решетку (а = 3,296 A); атомный радиус 1,46 A, ионные радиусы Та 2+ 0,88 A, Та 5+ 0,66 A.

Как говорилось ранее — тантал очень твердый металл (твердость по Бринеллю листового тантала в отожженном состоянии составляет 450—1250 МПа, в деформированном состоянии 1250—3500 МПа). Более того, можно повысить твердость металла путем добавления в него ряда примесей, например углерода или азота (твердость по Бринеллю танталового листа после поглощения газов при нагревании увеличивается до 6000 МПа). В итоге примеси внедрения способствуют повышению твердости по Бринеллю, временного сопротивления, предела текучести, но снижают характеристики пластичности и усиливают хладноломкость, проще говоря — делают металл хрупким. Другие характерные черты семьдесят третьего элемента — его высокая теплопроводность, при 20—100 °C эта величина составляет 54,47 вт/(м∙К) или 0,13 кал/(см·сек·°С) и тугоплавкость (возможно, самое важное физическое свойство тантала) — он плавится почти при 3 000 °C (точнее, при 2 996 °C), уступая в этом лишь вольфраму и рению. Температура кипения тантала также чрезвычайно высока: 5 300 °C.

Что касается других физических свойств тантала, то его удельная теплоемкость при температурах от 0 до 100 °C составляет 0,142 кдж/(кг·К) или 0,034 кал/(г·°С); температурный коэффициент линейного расширения тантала 8,0·10 -6 (при температурах 20—1 500 °С). Удельное электросопротивление семьдесят третьего элемента при 0 °С 13,2·10 -8 ом·м, при 2000 °С 87·10 -8 ом·м. При 4,38 К металл становится сверхпроводником. Тантал парамагнитен, удельная магнитная восприимчивость 0,849·10 -6 (при 18 °С).

Итак, тантал обладает уникальным комплексом физических свойств: высоким коэффициентом теплопередачи, высокой способностью поглощать газы, жаропрочностью, тугоплавкостью, твердостью, пластичностью. Кроме того, его отличает высокая прочность — он хорошо поддается обработке давлением всеми существующими методами: ковка, штамповка, прокатка, волочение, скручивание. Тантал характеризуется хорошей свариваемостью (сварка и пайка в среде аргона, гелия, либо в вакууме). Кроме того, тантал обладает исключительной химической и коррозионной стойкостью (с образованием анодной пленки), низким давлением пара и небольшой работой выхода электронов и, вдобавок, он прекрасно уживается с живой тканью организма.

Химические свойства

Определенно, одно из самых ценных свойств тантала — его исключительная химическая стойкость: в этом отношении он уступает только благородным металлам, да и то не всегда. Он устойчив к соляной, серной, азотной, фосфорной и органическим кислотам всех концентраций (вплоть до температуры 150 °С). По своей химической устойчивости тантал подобен стеклу — нерастворим в кислотах и их смесях, его не растворяет даже царская водка, против которой бессильны золото и платина и ряд других ценных металлов. Семьдесят третий элемент растворим только в смеси плавиковой и азотной кислот. Причем реакция с плавиковой кислотой происходит только с пылью металла и сопровождается взрывом. Даже в горячих соляной и серной кислотах тантал более стоек, чем его брат-близнец ниобий. Однако к воздействию щелочей тантал менее устойчив — горячие растворы едких щелочей разъедают металл. Соли танталовых кислот (танталаты) выражаются общей формулой: xMe 2 O·yТа 2 О 5 ·H 2 O, к ним относятся метатанталаты МеТаО 3 , ортотанталаты Ме 3 ТаО 4 , соли типа Me 5 TaO 5 , где Me — щелочной металл; в присутствии перекиси водорода образуются также пертанталаты. Наиболее важны танталаты щелочных металлов — КТаО 3 и NaTaO 3 ; эти соли — сегнетоэлектрики.

О высокой коррозионной стойкости тантала говорит и его взаимодействием с кислородом воздуха, а точнее высокая стойкость против данного воздействия. Металл начинает окисляться лишь при 280 °С, покрываясь защитной плёнкой Ta 2 O 5 (пентаоксид тантала — единственный стабильный окисел металла), которая защищает металл от действия химических реагентов и препятствует протеканию электрического тока от металла к электролиту. Однако с повышением температуры до 500 °С оксидная пленка постепенно становится пористой, расслаивается и отделяется от металла, лишая поверхность защитного слоя от коррозии. Поэтому целесообразно горячую обработку давлением производить в вакууме, так как на воздухе металл окисляется на значительную глубину. Присутствие азота и кислорода увеличивает твердость и прочность тантала, одновременно снижая его пластичность и делая металл хрупким, причем, как говорилось ранее, с кислородом тантал образует твердый раствор и оксид Ta 2 O 5 (с увеличением содержания O 2 в тантале происходит резкое повышение прочностных свойств и сильное снижение пластичности и коррозионной стойкости). С азотом тантал реагирует с образованием трех фаз — твердый раствор азота в тантале, нитриды тантала: Ta 2 N и TaN — в интервале температур от 300 до 1 100 °С. Избавиться от азота и кислорода в тантале возможно в условиях высокого вакуума (при температурах выше 2 000 °С).

С водородом тантал реагирует слабо вплоть до нагревания до 350 °С, скорость реакции значительно возрастает лишь с 450 °С (образуется гидрид тантала и тантал становится хрупким). Избавиться от водорода помогает все то же нагревание в вакууме (свыше 800 °С), при котором происходит восстановление механических свойств тантала, а водород полностью удаляется.

Фтор действует на тантал уже при комнатной температуре, фтористый водород также вступает в реакцию с металлом. Сухие хлор, бром и йод оказывают химическое действие на тантал при температуре 150 °С и выше. Активно взаимодействовать с металлом хлор начинает при температуре 250 °С, бром и йод при температуре 300 °С. С углеродом у тантала начинается взаимодействие при очень высоких температурах: 1 200—1 400 °С, при этом происходит образование тугоплавких карбидов тантала, которые весьма устойчивы к кислотам. С бором тантал соединяется в бориды — твердые тугоплавкие соединения, устойчивые к воздействию царской водки. Со многими металлами тантал образует непрерывные твердые растворы (молибден, ниобий, титан, вольфрам, ванадий и другие). С золотом, алюминием, никелем, бериллием и кремнием тантал образует ограниченные твердые растворы. Не образует никаких соединений тантал с магнием, литием, калием, натрием и некоторыми другими элементами. Чистый тантал устойчив к действию многих жидких металлов (Na, K, Li, Pb, к сплавам U-Mg и Pu-Mg).