Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака. Для выяснения сущности средней величины необходимо рассмотреть особенности формирования значений признаков тех явлений, по данным которых исчисляют среднюю величину.

Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков мы ни взяли, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике , варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника, тем не менее можно говорить о среднемесячной заработной плате работников разных отраслей экономики . Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.

В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя величина выступает как «обезличенная», которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Однако для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений. Следовательно, средняя величина - это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Определяя, таким образом, сущность средних величин, необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

  • качественная однородность совокупности, по которой вычислена средняя величина. Это означает, что исчисление средних величин должно основываться на методе группировок, обеспечивающем выделение однородных, однотипных явлений;
  • исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов. Это достигается в том случае, когда вычисление средней основывается на достаточно массовом материале, в котором проявляется действие закона больших чисел, и все случайности взаимно погашаются;
  • при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показа-телъ (свойство), на который она должна быть ориентирована.

Определяющий показатель может выступать в виде суммы значений осредняемого признака, суммы его обратных значений, произведения его значений и т. п. Связь между определяющим показателем и средней величиной выражается в следующем: если все значения осредняемого признака заменить средним значением, то их сумма или произведение в этом случае не изменит определяющего показателя. На основе этой связи определяющего показателя со средней величиной строят исходное количественное отношение для непосредственного расчета средней величины. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней; средние величины, рассчитанные для каждой группы, - групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику явления, складывающуюся в конкретных условиях данной группы.

Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины, основными из которых являются средняя арифметическая, средняя гармоническая и средняя геометрическая.

В экономическом анализе использование средних величин является основным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, поиска резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Виды средних величин

В статистике используют различные виды средних величин, которые делятся на два больших класса:

  • степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);
  • структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины - средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй - 7, третий - 4, четвертый - 10, пятый- 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для определения средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек , возраст которых варьируется от 18 до 22 лет, где xi - варианты осредняемого признака, fi - частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:

Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины - средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как Σfi, а время, затраченное на весь путь, - как Σ fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi - отдельные варианты; n - число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2

Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая - при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где - средняя величина; - индивидуальное значение; n - число единиц изучаемой совокупности; k - показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние - мода (Мо) и медиана (Ме).

Мода - величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; fm_ 1 - частота предшествующего интервала; fm+ 1 - частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой - больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; f - число членов ряда;

∫m-1 - сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили - на 10 равных частей. Квартилей насчитывается три, а децилей - девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Показатели вариации

Целью статистического исследования является выявление основных свойств и закономерностей изучаемой статистической совокупности. В процессе сводной обработки данных статистического наблюдения строят ряды распределения. Различают два типа рядов распределения - атрибутивные и вариационные, в зависимости от того, является ли признак, взятый за основу группировки, качественным или количественным.

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности не постоянны, более или менее различаются между собой. Такое различие в величине признака носит название вариации. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Наличие вариации у отдельных единиц совокупности обусловлено влиянием большого числа факторов на формирование уровня признака. Изучение характера и степени вариации признаков у отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Для описания меры изменчивости признаков используют показатели вариации.

Другой важной задачей статистического исследования является определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. Для решения такой задачи в статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. В практике исследователь сталкивается с достаточно большим количеством вариантов значений признака, что не дает представления о распределении единиц по величине признака в совокупности. Для этого проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Ранжированный ряд сразу дает общее представление о значениях, которые принимает признак в совокупности.

Недостаточность средней величины для исчерпывающей характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Использование этих показателей вариации дает возможность сделать статистический анализ более полным и содержательным и тем самым глубже понять сущность изучаемых общественных явлений.

Самыми простыми признаками вариации являются минимум и максимум - это наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения. Обозначим частоту повторения значения признака fi, сумма частот, равная объему изучаемой совокупности будет:

где k - число вариантов значений признака. Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты - может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Формально имеем:

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся среднее линейное отклонение, размах вариации, дисперсия, среднее квадратическое отклонение.

Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности: R = Xmax - Xmin. Этот показатель дает лишь самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Он совершенно не связан с частотами в вариационном ряду, т. е. с характером распределения, а его зависимость может придавать ему неустойчивый, случайный характер только от крайних значений признака. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних величин. Область применения этого показателя ограничена достаточно однородными совокупностями, точнее, характеризует вариацию признака показатель, основанный на учете изменчивости всех значений признака.

Для характеристики вариации признака нужно обобщить отклонения всех значений от какой-либо типичной для изучаемой совокупности величины. Такие показатели

вариации, как среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:

Абсолютное значение (модуль) отклонения варианта от средней арифметической; f- частота.

Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая - в рядах с неравными частотами.

Существует и другой способ усреднения отклонений вариантов от средней арифметической. Этот очень распространенный в статистике способ сводится к расчету квадратов отклонений вариантов от средней величины с их последующим усреднением. При этом мы получаем новый показатель вариации - дисперсию.

Дисперсия (σ 2) - средняя из квадратов отклонений вариантов значений признака от их средней величины:

Вторая формула применяется при наличии у вариантов своих весов (или частот вариационного ряда).

В экономико-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения. Среднее квадратическое отклонение (σ) представляет собой корень квадратный из дисперсии:

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражаются в тех же единицах измерения, что и варианты.

В статистической практике часто возникает необходимость сравнения вариации различных признаков. Например, большой интерес представляет сравнение вариаций возраста персонала и его квалификации, стажа работы и размера заработной платы и т. д. Для подобных сопоставлений показатели абсолютной колеблемости признаков - среднее линейное и среднее квадртическое отклонение - не пригодны. Нельзя, в самом деле, сравнивать колеблемость стажа работы, выражаемую в годах, с колеблемостью заработной платы, выражаемой в рублях и копейках.

При сравнении изменчивости различных признаков в совокупности удобно применять относительные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, получают относительные показатели колеблемости:

Наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % для распределений, близких к нормальному.

По данным выборочного обследования произведена группировка вкладчиков по размеру вклада в Сбербанке города:

Определите:

1) размах вариации;

2) средний размер вклада;

3) среднее линейное отклонение;

4) дисперсию;

5) среднее квадратическое отклонение;

6) коэффициент вариации вкладов.

Решение:

Данный ряд распределения содержит открытые интервалы. В таких рядах условно принимается величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей.

Величина интервала второй группы равна 200, следовательно, и величина первой группы также равна 200. Величина интервала предпоследней группы равна 200, значит и последний интервал будет иметь величину, равную 200.

1) Определим размах вариации как разность между наибольшим и наименьшим значением признака:

Размах вариации размера вклада равен 1000 рублей.

2) Средний размер вклада определим по формуле средней арифметической взвешенной.

Предварительно определим дискретную величину признака в каждом интервале. Для этого по формуле средней арифметической простой найдём середины интервалов.

Среднее значение первого интервала будет равно:

второго - 500 и т. д.

Занесём результаты вычислений в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х xf
200-400 32 300 9600
400-600 56 500 28000
600-800 120 700 84000
800-1000 104 900 93600
1000-1200 88 1100 96800
Итого 400 - 312000

Средний размер вклада в Сбербанке города будет равен 780 рублей:

3) Среднее линейное отклонение есть средняя арифметическая из абсолютных отклонений отдельных значений признака от общей средней:

Порядок расчёта среднего линейонго отклонения в интервальном ряду распределения следующий:

1. Вычисляется средняя арифметическая взвешенная, как показано в п. 2).

2. Определяются абсолютные отклонения вариант от средней:

3. Полученные отклонения умножаются на частоты:

4. Находится сумма взвешенных отклонений без учёта знака:

5. Сумма взвешенных отклонений делится на сумму частот:

Удобно пользоваться таблицей расчётных данных:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 480 15360
400-600 56 500 -280 280 15680
600-800 120 700 -80 80 9600
800-1000 104 900 120 120 12480
1000-1200 88 1100 320 320 28160
Итого 400 - - - 81280

Среднее линейное отклонение размера вклада клиентов Сбербанка составляет 203,2 рубля.

4) Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в интервальных рядах распределения производится по формуле:

Порядок расчёта дисперсии в этом случае следующий:

1. Определяют среднюю арифметическую взвешенную, как показано в п. 2).

2. Находят отклонения вариант от средней:

3. Возводят в квадрат отклонения каждой варианты от средней:

4. Умножают квадраты отклонений на веса (частоты):

5. Суммируют полученные произведения:

6. Полученная сумма делится на сумму весов (частот):

Расчёты оформим в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 230400 7372800
400-600 56 500 -280 78400 4390400
600-800 120 700 -80 6400 768000
800-1000 104 900 120 14400 1497600
1000-1200 88 1100 320 102400 9011200
Итого 400 - - - 23040000

Средняя величина - это обобщающая характеристика совокупности однотипных явлений по изучаемому признака.

Выбор средней определяется экономическим содержанием определенного показателя и исходных данных. В каждом конкретном случае применяется одна из средних величин:

Арифметическая

Гармоническая

Квадратичная

Геометрическая

Каждая из них может быть простой и взвешенной. Перечисленные средние относятся к классу степенных средних и определяются формулой (при различных значениях m):

При m = -1 средняя гармоническая;

m = 0 средняя геометрическая

m = 1 средняя арифметическая;

m = 2 средняя квадратическая;

Средняя арифметическая простая - это самая часто используемая средняя величина, которая получается, если подставить в общую формулу m=1. Средняя арифметическая простая имеет следующий вид:

где X - значения величин, для которых необходимо рассчитать среднее значение; N - общее количество значений X (число единиц в изучаемой совокупности).

Средняя арифметическая взвешенная вычисляется когда варианты встречаются не одинаковое число раз.

Число одинаковых значений и признаков в рядах распределения называется частотой или весом (f). Средняя арифметическая взвешенная имеет следующий вид:

Для вычисления средней арифметической взвешенной необходимо:

Каждую варианту умножить на вес признака (x*f)

Найти сумму этих произведений

Сумму произведений вариант

Средняя гармоническая простая применяется в тех случаях, когда вес каждого варианта =1, и когда индивидуальное значение обратного признака встречается по 1 разу. Средняя гармоническая простая обратная средней арифметической из обратных значений признака.

Средняя гармоническая простая применяется для расчета средней трудоемкости и средней производительности труда.

Средняя гармоническая взвешенная применятся, когда статистическая информация не содержит частой по отдельным вариантам совокупности, а представлена как их произведение, и когда имеются данные об индивидуальных значениях признака и общем объеме совокупности, но неизвестны частоты.

Средняя квадратическая простая применяется для расчета среднего диаметра стволов деревьев, клубней, труб и т.д. Т.е. она применятся для обобщения признаков, выраженных линейными мерами каких-либо площадей. Средняя квадратическая простая определяется путем деления суммы квадратов отдельных значений признаков на их число и извлечение из полученного частного квадратного корня.

Средняя квадратическая взвешенная применяется в том случае, если будет частота повторения признака.

Средняя геометрическая простая применяется в тех случаях, когда индивидуальное значение признака представляет собой относительные величины динамики. Вычисляется путем извлечения корня степени n из произведений отдельных значений признака.

Модой называется наиболее часто встречающаяся величинв признака. Определение моды зависит от того, в каком ряду представлен вальрирующий признак, если вальрирующий признак представлен в в идее дискретного ряда распределения, то для определения моды не требуется никаких вычислений. В таком ряду модой будет то значение признака, которое обладает наибольшей частотой. Если значение признака представлены в виде интервального вида, то мода определяется:

где Мо - мода;

ХНМо - нижняя граница модального интервала

;hМо - размах модального интервала (разность между его верхней и нижней границей);

fМо - частота модальноого интервала;

fМо-1 - частота интервала, предшествующего модальному;

fМо+1 - частота интервала, следующего за модальным.

Медианой называется варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда. А если упорядоченный ряд состоит из четного числа членов, то медианой будет средняя арифметическая двух вариант, расположенных в середине ряда. Медиану для интервального вариационного ряда рассчитывают:

где Ме - медиана;

НМе - нижняя граница медианного интервала;

hМе - размах медианного интервала;

fМе - частота медианного интервала;

fМе-1 - сумма частот интервалов, предшествующих медианному.

Показатели вариаций- отклонение индивидуальных показателей от средней величины.

Существуют следующие показатели вариаций:

Размах вариации или лимит изменчивости

Среднее линейное отклонение

Дисперсия

Среднее квадратическое отклонение

Коэффициент вариации

Размах вариации- разность между наибольшим и наименьшим значением вальрирующего признака.

Размах вариации показывает лишь крайние отклонения признака и не отражает отклонений всех вариантов в ряду.

Среднее линейное отклонение- сумма отклонений каждой варианты от своей средней арифметической без учета знака, деленная на число вариант. Существует простое и взвешенное.

Среднее линейное отклонение дает лишь приближенную характеристику вариации.

Дисперсия- среднее арифметическое квадратов отклонений каждого значения признака от общей средней.

Для расчета простой дисперсии находят отклонения каждой варианты от средней, затем отклонения возводят в квадрат, суммируют и делят на число вариант.

Простая дисперсия:

Взвешенная:

Среднее квадратическое отклонение- корень квадратный из дисперсии.

Среднее квадратическое отклонение обладает большей степенью точности и находит применение при любом анализе статистических совокупностей. Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность и тем более типичней будет средняя величина.

Коэффициент вариаций- относительная мера изменчивости признака. % отношение среднего квадратического отклонения к средней арифметической.

Чем больше коэффициент вариации, тем больше разброс значений признака вокруг средней, тем менее однородней совокупность по своему составу. Совокупность считается количественно однородной, если коэффициент вариаций не превышает 33%.

Средняя величина – это обобщающая характеристика варьирующего признака единиц качественно однородной совокупности.

Средние величины используются в планировании, анализе выполнения планов, расчетах экономической эффективности общественного производства и т.д. Сравнивая изменение средних уровней во времени, статистика тем самым характеризует важнейшие закономерности развития явлений.

В статистике применяются различные виды средних величин: средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя хронологическая средняя квадратическая и средняя кубическая.

Наиболее распространенным видом средних величин является средняя арифметическая. Она рассчитывается в двух формах – простой и взвешенной.

Средняя арифметическая простая называется так потому, что в основе ее вычисления лежит простое суммирование. Чтобы определить ее, все показатели варьирующего признака суммируются и делятся на их количество.

Формула средней арифметической простой:

Где х – варианты; n – число вариант.

Формула средней арифметической взвешенной:

, где х – варианты; f – веса.

Эта средняя называется взвешенной потому, что для ее определения значения признака, по которым эта средняя исчисляется, не просто складываются, а предварительно умножаются на частоту (взвешиваются).

Применяется эта средняя в том случае, если показатели в совокупности встречаются несколько раз (т.е. повторяются).

Иногда среднюю арифметическую величину исчисляют по данным интервального вариационного ряда (когда варианты представлены в виде интервалов «от – до»). Для исчисления средней нужно прежде всего получить середину интервала каждой группы, а затем расчет производится по формуле арифметической взвешенной.

Средняя гармоническая взвешенная рассчитывается по формуле:

, где х – варианты; W – объем признака.

Средняя гармоническая применяется в тех случаях, когда отсутствует показатель частоты. Она представляет собой величину обратную средней арифметической из обратных значений признака

Модой называют то значение признака, которое наиболее часто встречается в данной совокупности.

Для интервальных вариационных рядов мода определяется по формуле:

М 0 = х мо + i мо *
, где

х мо - нижняя граница интервала, содержащего моду;

i мо - величина модального интервала;

f мо - частота модального интервала;

f мо-1 - частота интервала, предшествующего модальному;

f мо+1 – частота интервала, следующего за модальным.

Медианой называют значение признака, приходящееся на середину ранжированной совокупности.

М е = х ме + i ме *
, где

х ме - нижняя граница интервала, содержащего медиану;

i ме - величина медианного интервала;

∑f - сумма частот;

S ме-1 - сумма накопленных частот, предшествующих медианному интервалу;

f ме – частота медианного интервала.

Изменение значений признака в пределах изучаемой совокупности называется вариацией .

Для характеристики величины колебания признака в статистике вычисляют следующие показатели вариации:

    размах вариации;

    среднее линейное отклонение;

    средний квадрат отклонения (дисперсия);

    среднее квадратическое отклонение;

    коэффициент вариации.

Абсолютные и относительные показатели вариации, характеризующие изменчивость значений признака, позволяют оценить степень однородности совокупности, типичности и устойчивости средней.

Размах вариации (R) – наиболее простой измеритель вариации и представляет собой разность между наибольшим и наименьшим значениями признака

R = x max – x min , где

x max – наибольшее значение признака;

x min – наименьшее значение признака.

Среднее линейное отклонение (ι) этосредняяарифметическая из абсолютных отклонений индивидуальных значений признака от общей средней.

(простое);
(взвешенное);

Средний квадрат отклонения, или дисперсия представляет собой среднюю арифметическую из квадратов отклонений вариант от общей средней

=
(простая);
=
(взвешенная)

Среднее квадратическое отклонение – квадратный корень из дисперсии

;
;

Размах вариации, среднее линейное и среднее квадратическое отклонение являются абсолютными показателями вариации

Коэффициент вариации является относительным показателем вариации, выражается в %. Он представляет собой отношение среднего квардратического отклонения к средней величине признака:

V=

Чем больше коэффициент вариации, тем менее однородна совокупность и тем менее типична средняя величина, тем менее она характеризует изучаемое явление.

Пример:

По трем предприятиям, вырабатывающим один вид изделий, известны следующие данные за отчетный месяц:

Определите: 1) среднюю выработку одного рабочего; 2) среднюю себестоимость единицы продукции; 3)среднюю численность рабочих на одно предприятие.

    Определим среднюю выработку одного рабочего:

    Определим среднюю себестоимость единицы продукции:

    Определим среднее число рабочих:

Пример:

Имеются данные о распределении 100 ткачих по дневной выработке:

На основании данных вычислите:

    среднюю дневную выработку 1 ткачихи;

    моду и медиану

Дневная выработка, м

Число ткачих

интервала (х)

Накопленные частоты

120 и выше

    Средняя дневная выработка одной ткачихи определяется по формуле средней арифметической взвешенной

    Модальное значение выработки вычислим по формуле

М 0 = х мо + i мо *

3.Значение медианы вычислим по формуле:

М е = х ме + i ме *

Пример:

По обувной фабрике имеются следующие данные:

Определите процент брака в среднем по фабрике за 1 и 2 кварталы

Сделайте вывод.

Средний процент брака за 1 квартал определяется по формуле:

Средний процент брака за 2 квартал определяется по формуле:

Вывод: удельный вес бракованной продукции во втором квартале по сравнению с первым уменьшился на 0,2%.

Пример:

Известны данные о распределении 20 заводов отрасли по стоимости основных средств:

Определите:

1) среднюю стоимость основных средств на один завод по отрасли;

2) размах вариации, среднее линейное отклонение, дисперсию, среднее квадратическое отклонение, коэффициент вариации. Сделайте вывод.

Стоимость

основных

средств (млрд. руб.)

Середина

интервала

I
I*f

(
) 2

(
) 2 *f

    Определим среднюю стоимость основных средств

млрд. руб.

    Вычислим размах вариации

R = x max – x min ,= 14 - 4 = 10 млрд. руб.

Определим среднее линейное отклонение

млрд. руб.

Дисперсию признака вычислим по следующей формуле

=

Среднее квадратическое отклонение

млрд. руб.

Коэффициент вариации

V=

Вывод: средняя стоимость основных средств по отрасли составляет 9,7 млрд. руб. Совокупность однородна, т.к. коэффициент вариации 25,4%, т.е. вариация признака умеренная.

1. Сущность и значение средних величин

2. Виды средних величин

2.1. Степенные средние

2.2. Структурные средние

3. Понятие и показатели вариации

Средняя величина – обобщающий показатель, характеризующий типичный уровень варьирующего (изменяющегося) признака в конкретных условиях места и времени.

Средняя величина всегда именованная, она имеет ту же размерность, что и признак у отдельных единиц совокупности.

Отличительной особенностью средних величин является то, что в них сглаживаются индивидуальные различия признака у отдельных единиц совокупности, в результате чего появляется возможность охарактеризовать общие черты и свойства массовых экономических явлений. Вместе с тем средние показатели иногда приводят к необъективным выводам при проведении экономико-статистического анализа, так как они игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Принципы применения средних величин:

1. Для расчета средних величин должны быть использованы массовые данные. В средней величине, рассчитанной на основе данных о большом числе единиц (массовых данных)колебания в величине признака, вызванные случайными причинами сглаживаются и проявляется типичный размер признака для всей совокупности.

2. Средние величины рассчитываются по однородным совокупностям. Для получения однородной совокупности необходима группировка данных, поэтому расчет средней величины должен сочетаться с методом группировки. Если исследуемое явление не является однородным, то его разбивают на группы, содержащие только однородные элементы. Для такого явления рассчитываются сначала средние по группам, которые называются групповые средние, они выражают наиболее типичную величину явления в каждой группе. Затем рассчитывается для всех групп общая средняя величина, характеризующая явление в целом. Она определяется как среднее значение из групповых средних, взвешенных по числу элементов совокупности, включенных в каждую группу.

На практике безусловное выполнение данного условия повлекло бы за собой ограничение возможностей статистического анализа общественных процессов, поэтому часто средние величины рассчитываются по неоднородным явлениям (например, средняя ЗП по Брянской области)

3. Общие средние величины должны подкрепляться групповыми средними, характеризующими части совокупности. Это обусловлено тем, что за средними показателями скрываются особенности различных частей изучаемой совокупности (например, средняя ЗП в каждом районе Брянской области).

4. Определение максимального и минимального значения признака в изучаемой совокупности. В случае больших отклонений между крайними значениями и средним необходимо проверить принадлежность экстремумов к исследуемой совокупности. Если сильная изменчивость признака вызвана случайными кратковременными факторами, то, возможно, крайние значения не характерны для совокупности, следовательно, их необходимо исключить из анализа, так как они оказывают влияние на размер средней величины (например, многие данные по Москве существенно отличаются от общероссийских).



Средние величины делятся на два класса: степенные средние и структурные средние

Степенные средние в зависимости от представления исходных данных рассчитываются в двух формах: простой и взвешенной. Простая средняя рассчитывается по не сгруппированным данным, а взвешаная средняя рассчитывается по сгруппированным данным, представленным в виде интервальных или дискретных рядов распределения.

Виды степенных средних.

Формулы расчета степенных средних величин смори в раздатке.

Средняя арифметическая простая применяется, когда количество вариантов по конкретному признаку встречается по одному или одинаковому числу раз.

Пример 1 . Имеются след данные о ЗП рабочих участка за сентябрь. Вычислить среднюю ЗП рабочих участка за сентябрь.

Решение: что требуется усреднить, то и признак – Х; f=1 (частота) для каждого значения признака, так как ничего не повторяется. Каждое значение признака (ЗП) встречается только один раз, поэтому применим формулу средней арифметической простой: x ср =(11700+11208+…+10870)/10=11366,5 руб.

Средняя арифметическая взвешаная применяется при условии повторения признака неодинаковое число раз.

Пример 2. Имеется распределение рабочих участка по величине ЗП за сентябрь.

Решение: Х – заработная плата; число рабочих – частота признака – f. Так как имеются повторяющиеся с разной частотой значения признака, применим формулу средней арифметической взвешенной: x ср =(10250*2+10750*6+11125*15+11575*7)/(2+6+15+7)=11097 руб.

Расчет средних величин по результатам группировки.

Часто исходные данные для анализа бывают представлены в сгруппированном виде – когда для каждого значения осредняемого Х сообщается частота его повторения. В этих случаях средняя величина рассчитывается по обычным формулам средних взвешенных (пример 2). Сложности возникают, когда в сгруппированных данных указывается не конкретное значение признака Х по каждой группе, а лишь интервал его изменения (пример 3). В данном случае правильный расчет общей средней величины возможен, если от интервалов перейти к их серединам. Таким образом, расчет средней арифметической делают по формуле: =(∑ i *f i)/∑f i , i =x min +((x max -x min)/2), где x max – верхняя граница, x min – нижняя граница. При этом величины открытых интервалов (первого и последнего) условно приравниваются к величинам интервалов, примыкающих к ним (второго и предпоследнего).

Расчет среднего значения по данным группировки требует особого внимания при выборе взвевающего показателя (частоты). Часто величины f i – частоты повторения признака х – в исходных данных либо отсутствуют, либо не совсем очевидны.

Пример 3 : имеются след данные:

Определить среднюю себестоимость изделия.

Решение: себестоимость единицы – Х, частота повторений – если с определением серединного интервала сложностей не возникает i =x min +((x max -x min)/2); 1 =110+ =112,5; 2 =115+ =117,5; 3 =122,5; 4 =127,5, то при выборе взвешивающего показателя типичной ошибкой является выбор признака «Число предприятий»; умножения себестоимости одного изделия на число предприятий экономического смысла не имеет, тогда как умножение себестоимости одного изделия на объем продукции дает реальную экономическую величину–общую сумму затрат. Таким образом, в качестве взвешивающего показателя следует взять объем продукции (четвертый столбец – f).

Тогда средняя себестоимость изделия будет равна: = . = =123,15 руб.

Средняя гармоническая – величина, обратная средней арифметической. Средняя гармоническая простая рассчитывается, если имеются похожие объекты различные по какому либо признаку.

Пример 4: два автомобиля работают на одной марке бензина. Первый автомобиль имеет удельный расход 0,05 л/км, второй 0,08 л/км. Определить средний удельный расход бензина по двум автомобилям.

Решение: = .

Средняя гармоническая взвешенная рассчитывается в случае, если по условию дано произведение признака на частоту (x*f).

Пример 5 : определить среднюю продолжительность рабочего дня на предприятии по данным таблицы.

Решение: признак – средняя фактическая продолжительность, третий столбец – x*f. = .

Средняя геометрическая: применяется в основном простая для определения среднего коэффициента роста.

Годы Производство продукции, тыс. руб. Коэффициенты роста, цепные
-
1,081
1,05

Решение: для 2009 КР не будет (не с чем сравнивать); для 2010: 400/370=1,081; для 2011: 420/400=1,05. Условные обозначения: x – третий столбец. =

Средняя квадратическая применяется для расчета среднего квадратического отклонения, являющегося показателем вариации признаков, а также в технике и, например, при сооружении трубопроводов.

Пример 7: подача жидкого топлива для технологического процесса осуществляется в цехе тремя трубопроводами с диаметром 2, 5 и 6 см. При капитальном ремонте здания цеха эти трубопроводы будут заменены на три новых, одинакового диаметра при сохранении их общей пропускной способности. Определить средний диаметр трубы (диаметр новой трубы).

Решение: определяющий показатель пропускной способности труб – их радиус. = . Д=2 ч=4,66 см.

Резюме: значения степенных средних, рассчитанных на основе одних и тех же индивидуальных значений признака при разных показателях степени, не одинаковы. Чем выше степень средней, тем больше величина самой средней – правило мажорантности средних.

Мода – числовое значение признака, которое наиболее часто встречается в ряду распределения. Может определяться по несгруппированным данным, а также для дискретного и интервального ряда распределения.

Расчет моды по несгруппированным данным

Пример 8: известно, что семь сотрудников отдела кадров имеет след стаж работы, лет: 5, 2, 4, 3, 4, 2, 2.

Решение: ранжируем исходные данные: 2,2,2,3,4,4,5. Так как чаще всего встречается стаж работы два года, он является модальным.

Расчет моды по дискретному ряду распределения:

Особенности применения моды для дискретного ряда:

1. Если все значения вариационного ряда имеют одинаковую частоту, то этот вариационный ряд не имеет моды

2. Если два соседних варианта имеют одинаковую наибольшую частоту, то мода рассчитывается как среднее арифметическое из этих вариантов

3. Если два не соседних варианта имеют одинаковую наибольшую частоту, то вариационный ряд называется бимодальным

4. Если таких вариантов более двух, то ряд полимодальный

Пример 9: имеется ряд распределения рабочих по выработке деталей:

Определить моду.

Решение: вводим условные обозначения: выработка – признак, частота – число рабочих. Поскольку наибольшее число рабочих (5 человек) имеют выработку 20 деталей, мода равна 20.

Расчет моды по интервальному ряду распределения

Для интервальных рядов распределения мода рассчитывается по формуле: , где i – величина модального интервала, fм – частота модального интервала, fм-1 – частота интервала предшествующего модальному, fм+1 – частота интервала след за модальным.

Пример 10: имеются предприятия региона, распределенные на группы по стоимости основных производственных фондов. Определить моду.

Решение: признак – группы ОПФ, число предприятий – частота повторений признака. Модальный интервал 18-20, так как для него характерно наибольшая частота (10 предприятий). млн. руб.. Вывод: предприятие, имеющее величину ОПФ в размере 18,8 млн. руб., представляют собой наибольшую группу в общем объеме рассматриваемых предприятий.

На практике мода иногда используется вместо средней арифметической или вместе с ней, например, при определении наиболее ходовых размеров одежды и обуви, что учитывается при планировании их производства.

Медиана – это величина признака, которое делит упорядоченную последовательность его значений на две равные по численности части. Рассчитывается по несгруппированным данным, а также для дискретного и интервального ряда.

Расчет медианы по несгруппированным данным

В начале для определения медианы необходимо провести ранжирование (упорядочение). Если ряд состоит из нечетного количества вариантов, место медианы определяется по формуле: , где n – количество единиц совокупности. Для четного ряда медиана рассчитывается как средняя арифметическая простая из двух значений, находящихся в середине ряда.

Пример 11: по условию примера 8 найти медиану.

Решение: проведем ранжирование исходных данных: 2 2 2 3 4 4 5. Ряд нечетный, потому что семь элементов, поэтому место медианы. Медианный стаж 3 года, то есть половина работников имеют стаж менее трех лет, другая половина – более трех лет.

Расчет медианы по дискретному и интервальному ряду распределения:

Алгоритм нахождения медианы для дискретного ряда (медианного интервала для интервального ряда):

1. Определяем общую сумму и полусумму частот

2. Для каждого значения признака (интервала) определяем сумму накопленных частот

3. Медианным будет то значение признака (тот интервал), для которого сумма накопленных частот впервые будет равна или превысит их полусумму.

Для интервального ряда медиана рассчитывается по формуле . где Sм-1 – сумма частот накопленная до начала медианного интервала, fм – частота медианного интервала.

Пример 12: по данным примера 9 найти медиану.

Решение:

1. Определяем сумму частот – 15.полусумма – 7,5

2. Смотри в таблице (третий столбец)

3. Медианой является то значение признака, для которого сумма накопленных частот впервые будет равно или превысит полусумму (11>7,5)

Вывод: таким образом, медиана равна 20 деталей (первый столбец), то есть половина рабочих имеют выработку более 20 деталей, другая половина менее 20 деталей.

Пример 13: по данным примера 10 найти медиану.

Решение:

1. Определяем сумму частот – 25, полусумма – 12,5

2. Смотри третий столбец примера 10

3. Медиана находится в том интервале, в котором сумма накопленных частот впервые будет равна или превысит полусумму (18>12,5)

Таким образом, медианный интервал 18-20. Применим формулу: млн. руб.

Медиана всегда лежит в медианном интервале!

Вывод: половина предприятий имеют стоимость ОПФ менее 18,9 млн. руб., остальные – более 18,9 млн. руб.

Медиана используется при распределении семей по величине дохода, при проектировании оптимального положения остановок общественного транспорта, складских помещений и т.д.

Мода и медиана имеют преимущество перед средней арифметической для ряда распределения с открытыми интервалами.

Для исследования колеблемости средней величины в статистике возникает необходимость изучения признаков вариации ее измерения.

Вариация – это несовпадение уровней одного и того же признака у разных объектов, принадлежащих одной совокупности (например, вариация оценок по дисциплине ЭПП в группе 11-ПИ).

Вариацией называется изменчивость только тех явлений, на которые воздействуют внешние факторы и причины. Тогда, как о явлениях, изменяющихся в силу своей внутренней природы, нельзя говорить. Что они подвержены вариации (например, рост отдельного человека, меняющийся в течение жизни. Изучение изменчивости роста, который. Допустим, к году составляет 0,8 метра, а к 20 годам 1,79 метра, путем расчета среднего роста будет некорректным, так как в начале жизни рост был небольшой в силу естественных причин).

Не следует путать с вариацией изменения размера признака по одной и той же единице совокупности, наблюдаемой в разные моменты или периоды времени. Такое изменение называется изменение во времени или динамикой явления и исследуется с помощью специальных методов.

Задачи исследования вариации в статистике

1. Выявление изменчивости размеров явления дает возможность оценить степень зависимости изучаемого явления от других факторов в свою очередь подверженных изменчивости, то есть оценить степень устойчивости явления к внешним воздействиям

2. Вариация предполагает оценку однородности изучаемого явления, то есть меру типичности, рассчитанной для этого явления статистической величины (прежде всего средней)

3. Вариация и методы ее исследования имеют важнейшее значение в изучении явлений, протекающих в обществе. Одной из главных проблем исследования общественных явлений и процессов является высокий уровень их изменчивости, так как участниками общественных процессов выступают люди, обладающие различными системами ценностей и интересов

Вариация измеряется при помощи абсолютных показателей (размах вариации, среднее линейное отклонение, среднее квадратическое отклонение и дисперсия) и относительных показателей (коэффициент вариации).

Размах вариации определяется как разница между максимальным и минимальным значением признака: R=Xmax-Xmin.

Пример 14 . Определить средний размер страховых выплатах за год по договорам страхования от несчастных случаев. Проанализировать вариацию данных.

Х=(5*11+6*17+7*23+8*30+9*18)/99=7,3 тыс. руб

R=9-5=4 тыс. руб.

Среднее линейное отклонение точнее характеризует колеблемость и представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической. Рассчитывается как простое (для дискретных рядов), так и взвешенное (для интервальных).

где Xi - значение варианта;

X - среднее значение признака;

Fi – частота повторения призака;

n - число вариантов.

d= (I(5-7,3)*11+(6-7,3)*17+(7-7,3)*23+(8-7,3)*30+(9-7,3)*18I)/99=1,07 тыс. руб.

Дисперсия – среднее квадратическое отклонение в квадрате.

Среднее квадратическое отклонение – показывает, на сколько в среднем отклоняются конкретные варианты от их среднего значения.

Т.о. страховые выплаты отклонялись от их среднего размера в среднем на 1,25 тыс. руб.

Коэффициент вариации – наиболее часто применяемый показатель колеблемости относительно среднего значения, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%.

V=1,25/7,3*100%=17,1% (совокупность по рассматриваемому признаку можно считать однородной).


Рисуем этот столбец сами, расчет тоже производим сами

П - произведение

Мода всегда лежит в модальном интервале