Недавно нашла информацию о том, как одна южнокорейская компания разработала шкаф для выращивания зелени в квартире. Этот стеклянный шкаф размером с двухстворчатый холодильник выглядит очень стильно. Растения выращиваются по методу гидропоники, то есть без почвы (за счёт питательных веществ и влаги). Система использует светодиодное освещение, а для полива забирает использованную воду из раковины, так что налицо экономия электроэнергии и воды. Давно и с интересом выискиваю материалы о том, как сконструированы «системы экономии для ленивых». И сегодня с радостью поделюсь своими находками. Не факт, что эти решения нужно сразу пытаться внедрять в собственной квартире – вода у нас пока не настолько дорога. Но, возможно, тем, кто живёт в коттеджах с выгребными ямами и регулярно вынужден платить за их откачку, эти мысли покажутся довольно интересными.

Идея 1. Из раковины и душа – в резервуар для смыва

Применяемая в некоторых американских домах система использования частично загрязнённой воды забирает воду из мойки и душа, чтобы организовать смыв в туалете. Одна домохозяйка делилась, что её система использования частично грязной воды из двух баков по 95 литров позволяет экономить по меньшей мере 416 литров в день (в доме живут четыре человека). Такая вода идёт в слив из раковины, душа и ванны в специальные вертикальные баки, а оттуда – в четыре туалета в доме. Система «масштабируется»: при появлении новых членов семьи и увеличении водопотребления можно просто установить дополнительные баки. Используя воду повторно, хозяева экономят ещё и на износе автономной системы обеззараживания воды.

Вода из ванной и душа проходит через фильтр с хлоркой и попадает в бак, откуда она может закачиваться в туалет. Можно присоединить к системе и кухонную мойку и стиральную машину, но вода из них требует дополнительной фильтрации, а по опыту для туалетов достаточно воды из одной ванной. Самая большая головная боль – мониторинг и контроль уровня хлорки в баке для хранения воды. Если будет мало хлорки, в баке заведутся бактерии, если слишком много – она убьёт бактерии, которые жизненно важны для нашего иммунитета. Проблема решается углеродным фильтром с контролем уровня хлорки: пропуская воду сквозь себя, он не даёт хлорке попадать в бак и туалет, чтобы в ванной комнате не было запаха бассейна. Кстати, подобные системы с баками-накопителями активно используются в офисных небоскрёбах: смыв той водой, которая уже использована в раковинах, даёт существенную экономию эксплуатационных издержек на транспортировку воды внутри здания.

Идея 2. Eco-urinal

Существуют разные схемы повторного использования воды

Дизайнер Yeongwoo Kim совместил туалет с раковиной, получив оригинальную и, вероятно, довольно дешёвую в изготовлении конструкцию из ровных прямоугольников и квадратов толстого стекла. Точнее сказать, он совместил писсуар с раковиной: мужчина может помочиться на наклонную стеклянную поверхность, а затем, помыв руки, смыть с этой поверхности следы своей жизнедеятельности. Вряд ли такая конструкция приживётся в обычных домах, но в офисах и торговых комплексах вполне может использоваться, экономя и место, и воду.

Идея 3. Раковина – крышка унитаза

Компания Sinkpositive выпускает пластиковую насадку на крышку бачка унитаза, являющуюся раковиной с краном. Интересен не столько факт стока использованной воды в бачок, сколько сам принцип работы раковины, не требующей отдельного подвода воды. Смыли – и пока набирается вода в бачок, она течёт из крана. Ничего выключать не надо, вода сама остановится, когда бачок заполнится. Самой большой проблемой для продвижения новинки на американском рынке компания-разработчик считает незнание рядовыми американцами принципа действия унитаза и, следовательно, неспособность без помощи профессионалов эту насадку подключить. Особо экономные россияне предлагают не создавать новую насадку из пластика, а использовать уже существующую крышку бачка (например, перевернув её и сделав в ней дополнительное отверстие).

Идея 4. Воду из ванны – в стиральную машину

Стандартные японские ново-стройки отличаются от наших домов не менее радикально, чем современные японские машины от продукции АвтоВАЗа. По отзывам очевидцев, желаемую температуру воды в тамошних смесителях можно отрегулировать с точностью до градуса. Ванны обычно «сидячие», и принимать их принято после душа. Таймер налива ванны позовёт вас приятным женским голосом. Возможен подо-

грев воды в ванне с поддержанием заказанной температуры в течение нескольких часов (это удобно, когда по очереди «греют кости» несколько членов семьи), бывают даже специальные «крышки для ванн», чтобы вода там не остывала. Как и американцы, японцы часто устанавливают раковины на крышках унитазных бачков и повторно используют вытекающую из раковин воду. Но интереснее другое: стандартное подключение стиральной машины позволяет наполнять её как из водопровода, так и той водой, которая вытекает из ванны.

Идея 5. Из стиралки – в унитаз

Инновационная стиральная машина WashUP работает по тому же принципу, что и стандартная техника. Свою «водосберегающую сущность» машина проявляет на конечном этапе стирки. Использованная вода сливается в специальный резервуар и позже применяется для смыва унитаза. Особенность конструкции позволяет подвешивать машину прямо над унитазом, что, помимо воды, существенно экономит ещё и пространство ванной.

Вопрос о возможностях повторного использования сточных вод сегодня привлекает всё большее внимание, прежде всего с точки зрения решения экологических проблем. Кроме того, водосберегающие технологии рассматриваются как средство преодоления дефицита водных ресурсов как в определенных регионах в целом, так и в масштабах отдельных сельскохозяйственных и промышленных предприятий. Наконец, всё более растущие платежи за подаваемую для бытовых и производственных целей воду весьма способствуют изысканиям и экспериментам в этом направлении.

Прежде всего, вторичное использование сточных вод ощутимо снижает общий уровень загрязнения окружающей среды тех местностей, где происходит сброс промышленных и бытовых стоков. Немаловажное значение имеет и сокращение производственных издержек. При этом очевидно, что в большинстве случаев повторной утилизации сточных вод, необходимой является их предварительная очистка. Уровень качественных показателей такой очистки определяется требованиями обязательного соблюдения установленных параметров санитарно-гигиенической безопасности и показателями экономической эффективности, прежде всего в стоимостном отношении предварительных затрат и конечного результата. Соответственно, в зависимости от планируемых качественных характеристик привлекаемых для вторичного использования сточных вод определяется и степень сложности их очистки.

Современные технические возможности позволяют довести уровень очистки до качества питьевой воды, но поскольку стоимостные параметры такого рода систем очистки сточных вод делают их применение экономически малоэффективным, то, в основном, речь сегодня может идти о вторичном использование сточных вод для технических (непитьевых) целей.

Традиционные методы обработки воды, направляемой на сброс, для обеспечения такого качества недостаточны. Сегодня появляются новые альтернативные технологии очистки и дезинфекции, при помощи которых удается снизить уровень содержания в воде микробов, питательных веществ, токсических веществ и выйти на требуемый уровень качества воды при относительно невысокой стоимости.

Двойная система – это когда параллельно с обычным водопроводом для питьевой воды монтируется специально для прошедшей соответствующую очистку параллельная вторая сеть трубопроводов. Именно такие системы в настоящее время являются наиболее популярными. При этом распределительные сети подачи очищенных сточных вод для вторичного использования должны отличаться от сетей питьевого водоснабжения, то есть быть обозначены особым образом и иметь соответствующую маркировку.

Качественные характеристики регенерированной воды позволяют применять её в следующих основных целях: – системы орошения: полив культурных растений, участков озеленения, садово-парковых зон и спортивных объектов; – гражданское назначение: мойка мостовых и тротуаров населенных пунктов, водоснабжение отопительных сетей и сетей кондиционирования воздуха, водоснабжение вторичных водораспределительных сетей (отдельно от питьевого водопровода) без права непосредственного использования такой воды в зданиях гражданского назначения, за исключением систем слива туалетов и санузлов; – промышленное назначение: снабжение систем пожаротушения, производственных контуров, моечных систем, при этом необходимо исключить такие технологические схемы, в рамках которых возможен контакт вторично используемой регенерированной воды с пищевой, фармацевтической и косметической продукцией.

Технология очистки сточных вод для вторичного использования для технических целей включает следующие последовательные этапы: осветление флокуляцией, фильтрование и дезинфекцию. При этом основные объемы отводимых на такую очистку стоков составляет обычная бытовая сточная вода, которую принято именовать «серым» сливом. Поскольку из этих бытовых стоков исключаются фекальные воды, загрязненные физиологическими отходами, то обычно не возникает необходимости в конструировании чересчур громоздких вторых сетей.

ВОДО И ЭНЕРГОСБЕРЕЖЕНИЕ В ГОРОДСКОМ ХОЗЯЙСТВЕ
ПРИМЕНЕНИЕ СОВРЕМЕННЫХ МЕМБРАННЫХ ТЕХНОЛОГИЙ

Проблема энергоресурсосбережения в жилищно-коммунальном хозяйстве - сегодня одна из самых обсуждаемых. Инженерная инфраструктура и, в частности, водное хозяйство города несет в себе большой потенциал энергоресурсосбережения, что уже достаточно хорошо освещено в литературе . В нашей статье мы хотели бы рассмотреть ряд направлений, непосредственно связанных с использованием сточной воды и ее энергетического потенциала, ее очисткой и повторным использованием.

Настоящим источником энергии являются сточные воды. По данным профессора Калифорнийского университета Джорджа Чобаноглуса, из 1 м 3 сточной воды можно получить почти 42 МДж тепловой энергии при снижении ее температуры на 10 °C, а переработка содержащихся в стоках органических веществ - от 3 до 6 МДж на 1 м 3 . Кроме того, в высотных зданиях можно использовать потенциальную энергию текущей вниз воды в канализационных стояках для частичного возмещения затрат электроэнергии на ее подъем, однако это связано с рядом объективных трудностей и пока в настоящее время серьезно не рассматривается.

Тепловая энергия сточных вод

Идея извлечения тепловой энергии из сточных вод возникла достаточно давно, однако технологии еще находятся в процессе разра-ботки и апробации. Сточные воды в зависимости от климатических условий и сезона года имеют температуру от 6-12 до 20-30 °C, т. е. являются источником низкопотенциального тепла, и для получения электроэнергии или высокопотенциального тепла для ТЭЦ, систем отопления или горячего водоснабжения требуется дополнительное оборудование - как правило, это тепловые насосы. Полученное тепло наиболее рационально использовать для первичного подогрева воды на тепловых станциях или в системах отопления и горячего водоснабжения зданий.

Интересно, что теплообменные установки, устраиваемые на бытовой канализации, служат не только для отопления зданий в зимний период, но и для эффективного отвода избыточного тепла от систем кондиционирования в теплые сезоны года (рис. 1).

В России эта технология в порядке промышленного эксперимента была опробована на районной тепловой станции (РТС) № 3 г. Зеленограда. Тепло, утилизируемое из бытовых сточных вод от главной КНС ПУ «Зеленоградводоканал», использовалось для подогрева водопроводной воды перед паровыми котлами. Для передачи тепла последовательно использовалось два теплоносителя: проме-жуточный - вода и основной (в тепловых насосах) - хладон. Необходимость в промежуточном теплоносителе возникла из-за того, что КНС была расположена в полукилометре от территории РТС-3. Тепловая мощность утилизации составила 1100-1400 кВт при расходе сточных вод 400 м 3 /ч при теоретически возможной мощности около 2000 кВт. Мощность, потребляемая теплонаносной установкой и циркуляционными насосами, составила 550-680 кВт .

Очевидный путь повышения эффективности теплоутилизационного оборудования за счет максимального сближения источника и потребителя тепла привел к появлению оригинальных решений для частных домов и квартир, использующих местные водонагреватели (рис. 2). Фактически устройство представляет собой теплообменник простой конструкции: гладкую медную трубу-вставку в канализационный трубопровод и навитую на нее тонкую медную трубку, через которую пропускается холодная вода, поступающая к водонагревателю. Очевидно, что вклад в нагрев воды и экономия энергии составят не более 30 %, однако простота конструкции и невысокая стоимость могут заинтересовать потребителей.

Наибольший успех достигнут в области получения биогаза из осадков сточных вод. Как было отмечено выше, в 1 м 3 сточной жидкости в зависимости от величин БПК и ХПК содержится от 3 до 6 МДж потенциальной тепловой энергии. Для очистки такого же количества сточных вод требуется от 1,2 до 2,4 МДж (аэрация, перекачка и обезвоживание осадков, обогрев метантенков и пр.), следовательно, энергии, содержащейся в стоках в 2-4 раза больше, чем необходимо для ее очистки. Следует заметить, что указанное количество энергии можно извлечь при полном анаэробном разложении всех органических веществ, содержащихся в бытовых стоках. В реальности на канализационных сооружениях весомая доля органики минерализуется в сооружениях биологической очистки, а на «производство» биогаза в метантенки идет осадок из первичных и вторичных отстойников. В метантенках осадок также разлагается лишь частично - минерализуется не более 40-50 % от массы органического вещества, а существенное увеличение степени распада беззольного вещества требует значительных затрат. Поэтому полностью перевести станции аэрации на самообеспечение не удастся.

В качестве яркого примера внедрения этой технологии в России можно привести теплоэлектростанцию мощностью 10 МВт, работающую на биогазе Курьяновских очистных сооружений (рис. 3). В результате реализации данного проекта 70 млн кВт.ч, или 50 % электро- и теплоэнергии, КОС стали получать за счет собственного ее производства.

Рис. 3. Мини-ТЭС на Курьяновских очистных сооружениях (Москва)

Для прямой выработки электроэнергии из сточных вод в последние годы ведутся разработки микробных топливных элементов, в которых для преобразования энергии химических связей органических веществ в электричество используются микроорганизмы. Такие элементы выполняют двойную функцию, т. к. в них одновременно происходит частичная очистка сточных вод от органических загрязнений .

Повторное использование сточных вод

Во всем мире следующей ступенью рационального расходования воды является повторное использование бытовых сточных вод. Очищенные сточные воды используются для искусственного восполнения подземных и поверхностных вод, пополнения источников питьевого водоснабжения, для орошения и в сельском хозяйстве, для технического водоснабжения промышленных предприятий, противопожарного и хозяйственного (непитьевого) водоснабжения и даже для питьевого водоснабжения!

Повторное использование сточных вод можно разделить на несколько категорий (по степени очистки воды и по назначению).

1. Техническое водоснабжение и орошение.
Здесь используются городские (бытовые) стоки, прошедшие полную биологическую очистку и упрощенную доочистку. Схема доочистки обычно включает механические решетки с мелкими прозорами, скорые фильтры и обеззараживание. Однако при использовании на основных очистных сооружениях мембранных биореакторов доочистка вообще не требуется.
Полученная техническая вода может использоваться на предприятии для получения обессоленной воды. В этом случае далее следует стандартная схема, включающая предварительную очистку (глубокое осветление и обеззараживание), одну или две ступени обратного осмоса.

2. Хозяйственное водоснабжение (уборка, полив, помывка машин, смыв туалетов и т. п.).
Для этих целей удобно использовать так называемые «серые стоки» - от ванн и умывальников. В этом случае их обработка про-изводится по упрощенной схеме, включающей механическую очистку (удаление сора и осветление) и обеззараживание.
Для общего бытового стока необходима полная биологическая очистка, дополненная третичной очисткой, описанной в п. 1.

3. Питьевое водоснабжение.
Делится в свою очередь на непрямое (пополнение запасов природных вод в источниках питьевого водоснабжения) и прямое. Здесь требуется полная биологическая очистка и глубокая третичная очистка, обычно включающая на последних стадиях обратный осмос.

Повторное использование сточных вод для непрямого питьевого водоснабжения отчасти мы можем наблюдать на любой крупной реке, где вышерасположенные по течению населенные пункты сбрасывают очищенные сточные воды, которые смешиваются с речной водой и в дальнейшем после доочистки в естественных условиях поступают на водозаборы, расположенные ниже по течению. В нашей статье мы под этим подразумеваем целевое восполнение запасов воды в непроточных источниках водоснабжения - водохранилищах, озерах и подземных горизонтах.

Что касается прямого питьевого водоснабжения, то здесь большую роль играет психологический фактор, и только серьезные причины могут побудить людей принять тот факт, что они будут пить воду, которая недавно текла по канализации.

В истории водоснабжения таких примеров немного, большая часть их осталась в рамках проводимых в разные годы за рубежом экспериментов . Вот несколько самых характерных.

«Классический» пример: г. Виндхоек, Намибия. Первая станция доочистки городских сточных вод для питьевого водоснабжения производительностью 4 800 м 3 /сут. была построена еще в 1968 г., а в 1997-2002 годах была реконструирована с увеличением подачи воды до 21 000 м 3 /сут. Решающим фактором стало отсутствие доступных источников водоснабжения - все возможные ресурсы либо уже эксплуатировались, либо их разработка была экономически невыгодна, включая сбор дождевых вод в этом засушливом и жарком регионе.

Схема очистки была очень сложной и включала дозирование порошкообразного активированного угля (ПАУ), первичное озониро-вание, дозирование коагулянта и флокулянта, флотацию, дозирование перманганата калия (KMnO4) и едкого натра (NaOH), фильтрова-ние на двухслойной зернистой загрузке, вторичное озонирование, обработку пероксидом водорода (H2O2), биосорбцию на гранулированном активированном угле (ГАУ), сорбцию на ГАУ, ультрафильтрацию и дезинфекцию жидким хлором. Себестоимость очистки воды составляла 0,76 $/м 3 . Полученная вода смешивалась с питьевой водой, полученной из традиционных источников водо-снабжения, непосредственно в распределительной сети города.

Пример 2. В 1976-1982 годах американская компания Pure Cycle Co. устанавливала в частных домах Колорадо системы полной очистки бытового стока для создания замкнутого цикла и получения питьевой воды. Установка включала сетку для механической очистки, биореактор с иммобилизированной биопленкой, тканевый (мешочный) фильтр, ультрафильтрационные мембраны, ионообменный фильтр, фильтр с ГАУ и бактерицидную лампу. Из-за финансовых трудностей компания вскоре прекратила обслуживание своих установок и их использование было прекращено, однако жители еще некоторое время продолжали их эксплуатировать и требовали от властей штата разрешение на их дальнейшее применение.

Пример 3. Международная космическая станция. В 2009 году на МКС была доставлена новая система для получения питьевой воды из мочи и конденсированной из атмосферы станции влаги (пар и пот, выделяемые человеком). Схема обработки урины включает многоступенчатую фильтрацию, дистилляцию, каталитическое окисление и ионный обмен.

Масштабы повторного использования сточных вод хорошо характеризуют следующие примеры:

  • г. Вульпен, Бельгия. 6850 м 3 /сут., доочистка городских сточных вод для восполнения запасов подземных вод, используемых для питьевого водоснабжения, схема включает микрофильтрацию, обратный осмос и обработку ультрафиолетом;
  • г. Ипсвич, Австралия. 230 000 м 3 /сут., доочистка городских сточных вод для охлаждения оборудования ТЭС, схема включает микрофильтрацию и обратный осмос;
  • г. Оранж, США. 265 000 м 3 /сут., доочистка городских сточных вод для восполнения подземных вод, схема включает микрофильтрацию, обратный осмос и обработку ультрафиолетом и пероксидом водорода;
  • Сингапур, проект «NEWater». 5 станций с суммарной производительностью около 450 000 м 3 /сут., доочистка городских сточных вод для восполнения водоисточников, используемых для питьевого водоснабжения, использования в промышленности и в качестве воды для непитьевых целей, схема включает микрофильтрацию и обратный осмос;
  • г. Сулаибия, Кувейт. Крупнейшая в мире станция по доочистке сточных вод 311 250 м 3 /сут. (по очищенной воде), схема включает сетчатые фильтры, ультрафильтрацию (8704 аппаратов X-Flow, Norit), обратный осмос (21000 аппаратов Toray), отдувку СО 2 , хлорирование. Очищенная вода используется для промышленных нужд, а концентрат обратного осмоса сбрасывается в Персидский залив. Качество очищенной воды: взвешенные вещества, БПК, азот аммонийный, нитраты (по N) - менее 1 мг/л, фосфаты (по РО4) - 2 мг/л, нефтепродукты - менее 0,5 мг/л, общее солесодержание - 100 мг/л.

Можно сделать вывод, что в настоящее время ключевой технологией повторного использования сточных вод является мембранная технология - в абсолютном большинстве случаев схемы доочистки включают одну или несколько ступеней мембранного разделения: микро- или ультрафильтрацию и обратный осмос. Можно сказать иначе: без обратного осмоса и ультрафильтрации такое масштабное применение сточных вод в водном хозяйстве было бы невозможно.

Вот уже более 10 лет во всем мире успешно развивается технология мембранного биореактора для очистки сточных вод. Изначально применение ультрафильтрации вместо вторичного отстаивания позволяло сократить размеры сооружений, повысить эффективность и стабильность очистки. Теперь мы можем рассматривать мембранные биореакторы и как технологическое решение, позволяющее сразу, в основной технологической цепочке получить воду технического качества для орошения, промышленности, хозяйственных нужд.

Интересно отметить, что три крупнейшие станции очистки сточных вод с мембранными биореакторами находятся в Китае.

Хорошим примером системного рационального использования сточных вод может служить Австралия - страна с ограниченными ресурсами пресной воды. Один из крупных проектов реализован в районе Сиднея, где параллельно хозяйственно-питьевому водопроводу проложен второй, непитьевой водопровод для хозяйственных нужд. Система обеспечивает водой более 60 тыс. человек и ее подача составляет 13000 м 3 /сут.

Технологическая цепочка состоит из следующих сооружений:

  • основные сооружения: решетка, песколовка, первичный отстойник, биореактор (аэротенк), вторичный отстойник;
  • сооружения доочистки: коагуляция сульфатом алюминия, отстойник (третичный), скорый фильтр. После скорых фильтров часть воды обеззараживается и выпускается на болотистые территории, а другая часть поступает на мембранную микрофильтрацию (0,2 мкм) и после обеззараживания направляется в распределительную сеть.

Плата за пользование доочищенной сточной водой в Сиднее составляет примерно 2,068 $/м 3 , при том, что стоимость водопроводной воды лишь немногим выше - 2,168 $/м 3 . Существует еще годовая фиксированная плата в размере $125 за подключение к городскому водопроводу и $34 за подключение к непитьевому водопроводу.

Водопровод, по которому течет дочищенная сточная вода, трубопроводы и арматура, маркируются сиреневой краской; водо-разборные точки оснащаются табличками с предупреждающими надписями: «повторно использованная вода, не пейте», «вода не питьевого качества» и т. п. (рис. 4). Аналогичная маркировка применяется в США, где системы непитьевого хозяйственного водоснабжения на основе доочищенных стоков получили широкое распространение.

Системы повторного использования воды могут абсолютно разного масштаба - от целого города до одного здания и собственной квартиры. В квартирах могут найти применение такие системы, как например AQUS Grey Water Recycling System (рис. 5) или Aqua2use Greywater System (рис. 6), которые представляют небольшой сборный резервуар с маломощным насосом и простейшей системой механической очистки. Возможная экономия воды при использовании таких установок составляет до 30 %.

Бывают и почти курьезные конструкции (рис. 7).

Вторичное сырье. Здесь имеется в виду использование осадков сточных вод многих промышленных предприятий как сырья для собственного производства или для других предприятий. Так, например, в целлюлозно-бумажной промышленности (ЦБП) хорошие результаты были получены при использовании активного ила в производстве картона, мешочной бумаги, целлюлозы.[ ...]

Вторичное использование и утилизация шламов производственных сточных вод в каждом конкретном случае представляет собственную задачу, которая должна решаться с привлечением специалистов-материаловедов, технологов и обязательно гигиенистов. Если шламы используются по новому технологическому назначению, обязательна проверка продукции на токсичность (и другие санитарные показатели в зависимости от состава шлама).[ ...]

Сточная вода, очищенная на биологических станциях, содержит активный ил (после аэротенков) или отработавшую биологическую пленку совместно с разрушенным материалом загрузки (после биофильтров или аэрофильтров). Для выделения из сточной воды этих нерастворимых примесей применяют вторичные отстойники. Они так же, как и первичные отстойники, бывают горизонтальные, вертикальные и радиальные. Активный ил, осаждающийся во вторичном отстойнике, должен перекачиваться снова в аэротенк. Количество этого циркуляционного ила составляет 30-50% очищаемой в аэротенке жидкости. Следует иметь в виду, что во вторичном отстойнике осаждается больше активного ила, чем это необходимо для циркуляции. Этот излишек следует отделять от общей массы циркулирующего ила. Количество излишнего активного ила очень велико, и при его влажности 99,2/о составляет 4 .ь си ¡ка на одного человека. Прежде чем его направить на обработку с целью дальнейшего использования, этот излишний ил следует уплотнить в специальных сооружениях, называемых илоуплотнителями.[ ...]

Вторичное использование и обезвреживание отходов на стадиях формования и получения комплексной стеклонити включает улавливание паров замасливателя, очистку сточных вод методами мембранной фильтрации и электрофлотации (снижение концентраций достигает 84-99,5 %), переработку отходов стекловолокна. Последняя занимает особое место, так как в производстве стекловолокна отходы в виде отдельных нитей, бухт, жгутов часто с включениями капель стекла и связующего сложного химического состава составляют 15 - 30 %. Задачи промышленной экологии, требования к малоотходным производствам и технологии стекловарения предопределили основные варианты рационального использования получаемых отходов как вторичных материальных ресурсов (ВМР). Неоднородный состав отходов, их специфические свойства (твердость, абразивность и др.) создают основные трудности повторного использования в качестве компонента шихты в процессах стекловарения. Например, добавление 2 - 45% ВМР в виде гранул и порошка к традиционной или компактированной шихте позволяет экономить сырье, топливо и уменьшить загрязнение окружающей среды.[ ...]

Сточные воды нефтяной и нефтехимической промышленности содержат нефть, нефтепродукты и различные химические вещества (тетраэтилсвинец, фенолы и др.). Эти сточные воды можно классифицировать по трем направлениям: в зависимости от технологических процессов, в которых они получаются, метода вторичного использования воды и извлечения полезных веществ, а также дисперсного состава загрязняющего вещества.[ ...]

Сточная вода после промывки бутадиена от аммиака также используется вторично в этом процессе. Аммиак отгоняется из воды в отпарной колонне, в канализацию сбрасывается лишь избыточное количество сточных вод. В случае применения ацетона сточные воды содержат углеводороды, ацетон (до 20 г/л). После отгонки концентрация ацетона в воде снижается до 100- 150 мг/л. При использовании ацетонитрила содержание его вводе после отгонки снижается от 1500 до 500 мг/л .[ ...]

Вторичное использование сточных вод осуществляется там, где вода применяется для охлаждения, транспортировки и промывки и когда она без больших затрат может быть использована на тех же операциях.[ ...]

Использование механически очищенных промышленных сточных вод (например, от нефтеперерабатывающих заводов - НПЗ), загрязненных даже небольшим количеством органических веществ, приводит к интенсивному биологическому обрастанию теплообменных поверхностей. Опыт применения биологически очищенных сточных вод НПЗ показывает, что вследствие выноса активного ила из вторичных отстойников необходима доочистка сточных вод . Для этой цели рекомендуется применение фильтрования.[ ...]

Сточная вода содержит взвешенные и плавающие частицы, препятствующие использованию закрытых водомерных устройств. Кроме того, сточная вода обычно пропускается по открытым каналам, а не по напорным трубопроводам. Поэтому наиболее распространенным устройством для измерения расходов сточных вод является лоток Паршаля. Типичный лоток (рис. 4.10) состоит из сужающейся, узкой и расширяющейся секций открытого канала. Для определения расхода воды, протекающей через лоток Паршаля, необходимо измерить уровень воды в канале перед этим устройством. Поплавок (или другое устройство) первичного прибора для измерения глубины воды размещается в успокоительном колодце. Первичный прибор соединен со вторичным самопишущим прибором и регистратором расхода, аналогичным показанному на рис. 4.9. В настоящее время в США лотки Паршаля имеются в свободной продаже. Преимущества лотков, установленных в открытых каналах, заключаются в том, что они обусловливают низкие потери напора и обеспечивают способность к самоочищению.[ ...]

Бытовые сточные воды поступают в усреднитель, а затем в отстойник. После осветления воду направляют в смеситель, где смешивают с производственной сточной водой, поступающей из отстойника. Д лее смесь бытовых и промышленных вод поступает в аэротенк. После отделения активного ила во вторичном отстойнике сточные воды обезвреживают хлором, затем сбрасывают в водоем или направляют для использования в производстве.[ ...]

Очистку сточных вод можно организовывать так, чтобы обеспечить возврат воды и ценных продуктов в производство. Например, для вторичного использования регенерирующих растворов в блоке обычной реагентной очистки в качестве средства доочистки можно использовать метод ионного обмена.[ ...]

Очищенные сточные воды вторично используются для промышленного водоснабжения, для сельскохозяйственых целей, для нужд лесного хозяйства и т. п. Использование их для сельскохозяйственных целей и для нужд лесного хозяйства должно предусматривать еще естественную доочистку и обезвреживание.[ ...]

Для очистки сточных вод, образующихся при полукоксовании и коксовании угля, предложена схема, предусматривающая предварительное подщелачивание воды с последующим выпариванием. Соли жирных кислот, феноляты и другие соединения остаются в. остатке, а конденсат после отгонки аммиака и доочистки активным углем может быть вторично использован на производстве. Остаток после выпаривания направляется на переработку или сожжение.[ ...]

Обычно пробу воды принято отбирать в створе реки в трех точках (у обоих берегов и в фарватере). На небольших водоемах в зависимости от характера водопользования или распределения сточных вод пробу можно отбирать в одной - двух точках. В случае централизованного водоснабжения пробу отбирают в месте водозабора по глубине и ширине реки, а при нецентрализованном водоснабжении - в 5-10 м от берега реки на глубине 0,5 м. При использовании реки для зоны рекреации отбор проб осуществляют на расстоянии 1 км вверх по течению, а на водохранилищах и озерах - 0,1-1 км в обе стороны; на водоемах в черте города - исходя из конкретной обстановки. Придонные пробы на расстоянии 0,3-0,5 м от дна отбирают для оценки вторичного загрязнения воды вредными веществами, накопленными в донном иле. Для большей надежности оценки загрязнения водоемов суперэкотоксикантами отбор проб в первую очередь проводят в наихудших гидрогеологических условиях - в межень и подледный период (при минимальном расходе воды), а также в паводок, когда происходит интенсивный смыв загрязняющих веществ с прилегающей территории. В целом при определении мест и сроков отбора проб воды из водоемов всегда необходимо учитывать конкретную ситуацию и задачи контроля.[ ...]

Для подогрева воды, поступающей на приготовление рассола, используют вторичные тепловые ресурсы - на стадии охлаждения водорода. При охлаждении водорода очищенными стоками в холодильнике смешения сточные воды нагревают до 85-88°С (при использовании поверхностного теплообменника - до 6 -70°С). Конденсат, образующийся при охлаждении водорода, направляют в сточные воды.[ ...]

Производственными сточными водами являются воды, использованные в различных технологических процессах (например, для промывки сырья и готовой продукции, охлаждения тепловых агрегатов и т.п.), а также воды, откачиваемые на поверхность земли при добыче полезных ископаемых. Производственные сточные воды ряда отраслей промышленности загрязнены главным образом отходами производства, в которых могут находиться ядовитые вещества (например, синильная кислота, фенол, соединения мышьяка, анилин, соли меди, свинца, ртути и др.), а также вещества, содержащие радиоактивные1 элементы; некоторые отходы представляют определенную ценность (как вторичное сырье). В зависимости от количества примесей сточные воды подразделяют на загрязненные, подвергаемые перед выпуском в водоем (или перед повторным использованием) предварительной очистке, и условно чистые (слабо загрязненные), выпускаемые в водоем (или вторично используемые в производстве) без обработки.[ ...]

К производственным сточным водам относят воды, использованные в технологическом процессе производства и непригодные для вторичного использования.[ ...]

Эта тонкая пыль при вторичном использовании воды в оборотном цикле, а также перед сбросом в водоем должна быть отделена. Для очистки таких сточных вод могут быть применены отстойники, описание которых приводится в разделе III, § 11. Для выделения отдельных частиц пыли из промывной воды, в соответствии с их удельным весом (тяжелые, с высоким содержанием железа и более легкие, очень мелкие частицы), необходимы более крупные осве-тлительные установки с предварительным и последующим отстаиванием. Для ускорения осаждения более мелких частиц нередко вводятся химические вещества, из которых наиболее эффективным является известь, взятая в количестве 0,1-0,2 г!л

И Очистка природных вод для питьевых целен, кондиционирование воды для технического использования (водоподготовкй) и, наконец, очистка сточных вод перед их выпуском в водные объекты охватывают ежегодно десятки кубических километров воды и представляют собой соответствующие отрасли индустрии переработки вод. Как и другим, этим отраслям сопутствуют отходы производства, которые являются вторичными загрязняющими веществами и в топ или иной мере обесценивают усилия по охране водной среды. Вторичными или сопутствующими загрязняющими веществами служат реагенты, применяемые для удаления и обезвреживания отходов, без которых невозможны индустриальные способы очистки.[ ...]

Интересным является опыт использования сточных вод на Николаевском гидролизно-дрожжевом заводе. Зимой очищенные сточные воды предприятия используют в оборотном водоснабжении завода, а летом часть их после биологической очистки направляют на поля для орошения. Осадки сточных вод из первичных отстойников передают на цементный завод, а активный ил из вторичных отстойников используют в производстве белково-витаминного кормового продукта. Эта технология позволяет использовать отходы и дает экономию свежей воды.[ ...]

На бумажных фабриках очистка сточных вод производится в конце концов не с санитарной целью, а для регенерации и повторного использования волокнистых веществ. Чтобы обеспечить их вторичное использование в чистом, неиспорченном состоянии, очистные сооружения должны быть небольших размеров с незначительной емкостью, быстрым обменом воды и немедленным удалением шлама. В технике очистки обычно применяются большие отстойники, в которых сточные воды находятся длительный период, а удаление шлама производится от случая к случаю. На бумажных фабриках они могут применяться лишь как последняя ступень очистки; образующиеся при этом осадки в большинстве случаев непригодны для использования.[ ...]

Достоинствами метода очистки сточных вод вторичной конденсацией являются: простота аппаратурного оформления, возможность повторного использования очищенной воды и применения полученной смолы в различных отраслях народного хозяйства (в качестве литейного крепителя, при производстве древесно-стружечных плит, минераловатных изделий).[ ...]

Технологические схемы очистки сточной воды с использованием системы аэротенк - вторичный отстойник могут быть различными, но многие их элементы являются обязательными. Выбор конкретной схемы определяется рядом факторов: расходом сточной воды, составом и концентрацией загрязнений, требованиями к качеству очищенной воды и т.п.[ ...]

При производстве каустической воды диафрагменным методом особое внимание уделяется повторному использованию всех минерализованных сточных вод производства. В СССР ГосНИИ "Хлорпроект" разработал схему очистки сточных вод производства каустической соды и хлора, позволяющую прекратить сброс сточных вод за пределы хлорного производства, сократить потребление свежей вода, сырья и энергетических ресурсов. Это достигается осуществлением комплекса мероприятий. Одним из них является организация рационального потребления и многократного использования свежей и оборотной воды, в том числе создание замкнутых оборотных циклов конденсации вторичного пара вакуумных корпусов выпарки шелоков и охлаждение газообразного хлора и водорода.[ ...]

Очень интересным направлением в использовании вторичных ресурсов, способствующим выполнению Продовольственной программы, экономии пресной воды, развитию мелиорации и охране окружающей среды, является использование сточных вод для орошения земельных угодий. Примером такого использования является сахарная промышленность, которая на 1 т свеклы, перерабатываемой в сахар, расходует до 5-8 т воды. До последнего времени эту, содержащую азот и фосфор, сточную воду после биологической очистки сбрасывали в водоемы. Теперь по предложению, разработанному Всесоюзным научно-производственным объединением по сельскохозяйственному использованию сточных вод (ВСНПО) «Прогресс» (пос. Старая Купавна Московской обл.), сточные воды от сахарных заводов после простейшей обработки могут использоваться для выращивания однолетних и многолетних трав, технических, кормовых, зерновых и силосовых культур, а также древесных и кустарниковых пород деревьев на земледельческих полях орошения (ЗПО). При этом происходит повышение урожайности не только из-за орошения, но и вследствие того, что поливочная вода обладает свойством удобрять почву.[ ...]

С. возможно и в популяциях видов с вторичной стратегией поведения, однако он выражен в меньшей степени и сочетается с миниатюризацией (при высокой плотности популяции часть особей выпадает, а оставшиеся имеют меньший размер). САМООЧИЩЕНИЕ ПРИРОДНЫХ ВОД (С.п.в.) - вариант биотической трансформации среды, процесс очищения воды от загрязняющих веществ путем их разложения и осаждения. С.п.в. происходит как в анаэробной среде (гниение), так и в аэробной. В последнем случае С.п.в. происходит тем более активно, чем выше содержание в воде кислорода. В С.п.в. кроме бактерий принимают участие также грибы, водоросли, животные. В проточной воде С.п.в. происходит активней, чем в стоячей. При поступлении в водоемы большого количества сточных вод (это имеет место в крупных городах РФ) способность к С.п.в. водоемов оказывается недостаточной. Необходимы специальные очистные сооружения и уменьшение сбросов за счет использования малоотходных технологий. САНИТАРНО-ЗАЩИТНАЯ ЗОНА -территория, засаженная лесом и отделяющая предприятия, загрязняющие атмосферу, от жилой части населенного пункта.[ ...]

Ш С позиций концепции о первичных и вторичных загрязняющих веществах водной среды можно рассмотреть и процессы повторного или оборотного использования воды. Считается, что использование замкнутых систем водопотреблепия гарантирует водоемы от загрязнения благодаря прекращению сбросов в них сточных вод. Напомним, что с экологических позиций основным и решающим фактором является сокращение загрязнения водных объектов. Повторное и оборотное использование воды никоим образом не может уменьшить массу первичных загрязняющих веществ, поскольку их формирование не зависит от способа протекания воды - прямотоком или в рецикле. Экологический эффект этих способов водопользования обусловлен главным образом уменьшением вторичного загрязнения, поскольку процессы очистки воды совершаются значительно реже, а сама очистка носит упрощенный характер по двум причинам: во-первых, в оборотных системах к воде предъявляются существенно менее строгие (технические) требования; во-вторых, очистка концентрированных растворов вызывает меньше экологических издержек, отнесенных, разумеется, к массе загрязняющих веществ, а не к объему очищаемой воды. Кроме того, загрязняющие вещества в оборотных системах какое-то время циркулируют вне водных объектов и сбрасываются с так называемыми продувочными водами.[ ...]

Основным источником фосфора в производственных сточных водах являются синтетические поверхностно-активные вешества. Среди различных методов очистки сточных вод от соединений фосфора наиболее эффективной является биологическая очистка в аэротенках. Остаточное количество фосфора после обработки в аэротенках и вторичных отстойниках может быть удалено обработкой сточных вод химическими реагентами - солями аммония, железа или кальция. При использовании сернокислого алюминия для химико-биологического извлечения фосфора необходимая доза реагента должна отвечать соотношению А1:? = 1,5:1 при величине pH в пределах 5,5-6,6. При этом содержание фосфора снижается до 0,3-0,7 мг/л. Благодаря действию:--засиов в качестве коагулянта достигается весьма высокая эффективность глубокой очистки, и обработка может быть проведена перед вторичным отстойником после биоочистки.[ ...]

Применение кислорода вместо воздуха для аэрации сточных вод имеет ряд преимуществ: 1) эффективность использования кислорода повышается с 8-9 до 90-95%; 2) окислительная мощность по сравнению с аэротенками возрастает в 5-6 раз; 3) для обеспечения такой же концентрации кислорода в сточной воде требуется меньшая скорость перемешивания. В этом случае улучшаются седиментационные характеристики активного ила, он состоит из крупных и плотных хлопьев, которые легко осаждаются и фильтруются, что позволяет повысить концентрацию его до 10 г/л без увеличения габаритных размеров вторичных отстойников; 4) улучшается бактериальный состав активного ила. При большой концентрации 02 не развиваются ниточные бактерии; 5) в очищенной воде остается больше растворимого кислорода, что способствует дальнейшей ее доочистке; 6) не возникает проблемы борьбы с запахом, так как процесс проводится в герметически закрытых агрегатах; 7) капельные затраты ниже.[ ...]

Существующая в настоящее время станция восстановления воды (рис. 14.4) с расчетной производительностью 28 ООО м3/сут состоит из сооружений традиционной биологической очистки и оборудования для третичной физико-химической очистки. Первичная и вторичная очистка проводится с использованием активного ила, причем избыточный активный ил обезвоживается и сжигается. Стоки освобождаются от фосфора и азота посредством обработки известью и воздушной отдувки аммиака. Для максимального осаждения фосфатов необходима дозировка извести 400 мг/ л (в пересчете на СаО). Сточная вода с получаемым высоким значением pH перекачивается через противоточные градирни для удаления азота. Затем перед фильтрованием через напорные фильтры со смешанной загрузкой проводится рекарбонизация воды для снижения pH до 7,5. Адсорберы из активного угля поглощают устойчивые растворимые органические вещества, не удаленные при коагуляции известью, а на последней стадии очистки производится окончательное хлорирование. Известковый осадок рекальцинируется для повторного использования в технологическом процессе.[ ...]

Экономичность установок обезвреживания минерализованных вод существенно повышается при комбинировании их с теплоэнергетическими агрегатами, вырабатывающими электроэнергию, утилизации тепла вторичных энергоресурсов для целей обезвреживания сточных вод и использования полученных сухих продуктов и концентратов в промышленности.[ ...]

Предлагаемая книга посвящена решению проблемы утилизации крупнотоннажных отходов - осадков сточных вод, количество которых в нашей стране составляет более 2 млрд. т в год при влажности 95%. Следует признать, что этой важной проблеме до последнего времени не уделялось должного внимания. В результате миллиарды рублей, затраченные на охрану водоемов от загрязнений путем очистки сточных вод, не дают должной эффективности, так как сами очистные станции без системы утилизации осадков являются источниками вторичных загрязнений биосферы. Только при утилизации осадков и использовании очищенных сточных вод возможно создание безотходных и во многих случаях самоокупаемых очистных комплексов, которые обеспечивали бы радикальное решение проблемы охраны природной среды.[ ...]

Всесоюзным научно-исследовательским и проектным институтом по очистке технологических газов, сточных вод и использованию вторичных энергоресурсов (ВНИПИЧЕРМЕТЭНЕРГООЧИСТКА) разработан пылеулавливающий аппарат «Вихрь-600» и рекомендован для широкого внедрения в огнеупорном, агломерационном производствах, а также в других видах промышленности.[ ...]

Очистку проводили при оптимальных токовых и гидродинамических режимных параметрах, а очищенные воды после отстаивания в течение 2 ч использовали для получения вторично загрязненных сточных вод, и так до тех пор, пока приготовленные таким образом буровые сточные воды не очищались от основных загрязнителей. Состав и свойства исходной, очищенных и последовательно-повторно использованных БСВ приведены в табл. 44.[ ...]

Важнейшим свойством ила является его способность образовывать хлопья, которые можно отделить от воды путем седиментации. Ил отделяют от воды во вторичных отстойниках, после чего он возвращается вновь в аэротенк, а очищенная вода направляется на последующую обработку. Избыток ила, т. е. тот его прирост, который образуется в процессе использования органических веществ сточной воды, удаляется из сооружений. Имеется несколько теорий хлопьеобразования, из которых наиболее удачной считается теория Маккини. По этой теории хлопьеобразование происходит в той стадии метаболизма, когда соотношение содержания питательных веществ к бактериальной массе становится низким. Низкое соотношение обусловливает и низкий энергетический уровень системы активного ила, что, в свою очередь, приводит к недостаточному запасу энергии движения. Энергия движения противодействует силам притяжения, а если она мала, то противодействие тоже мало, и бактерии взаимно притягиваются. Считается, что важными факторами флокуляции являются электрический заряд на поверхности клетки, образование бактерией капсулы и выделение слизи на поверхности клетки. Химический анализ слизи и капсулы (оболочки клетки) показал, что они в значительной степени состоят из ацетильных групп и аминогрупп.[ ...]

На некоторых предприятиях химического волокна применяется двухступенчатая схема химической очистки сточных вод с использованием горизонтальных отстойников большого объема. Такой метод при точном дозировании реагентов и наличии биохимической доочистки обеспечивает весьма высокое качество очистки, о чем свидетельствует наличие обычной прудовой фауны уже в буферных прудах. Очистная станция большой производительности (20 тыс. м3/сут) занимает территорию в несколько десятков гектаров. Реагентный узел, насосная станция и щит управления располагаются обычно между первичными и вторичными отстойниками. Газы и железо удаляются в первичных отстойниках, поэтому на их входе должна поддерживаться определенная величина pH. Следовательно, реагент должен транспортироваться на расстояние 300 - 400 м, а это создает недопустимое запаздывание в САР. В таких случаях непрерывные регуляторы не могут обеспечить стабильное значение параметра регулирования.[ ...]

Высокая реакционная способность озона привлекает внимание специалистов, работающих в области очистки сточных вод. В настоящее время целесообразность использования озона в технологии очистки воды уже не вызывает сомнений. В ряде стран в настоящее время действуют промышленные установки озонирования сточных вод. Так, на одном из заводов США (г.Канзас) ежесуточно для вторичной очистки воды от цианидов, фенолов, сульфидов и сульфитов используют озон . В Японии применяется озонирование на установках производительностью 100 м8/ч. Первая производственная установка для обезвреживания бытовых сточных вод озоном в Великобритании была пущена в начале 60-х годов. Во Франции действуют установки по очистке сточных вод озоном на заводах фирмы "Мишлен" в Клерманфер-ране и Сен-Дульмаре. В Канаде озон используется для доочистки производственных сточных вод, содержащих фенолы.[ ...]

Эффективность задержания твердой фазы осадков и влажность кека зависят от характера обезвоживаемого осадка (при обработке городских сточных вод более половины твердой фазы выносится с фугатом). Низкое качество фугата и необходимость его дальнейшей обработки являются основным недостатком метода центрифугирования. Наибольшее содержание взвешенных веществ остается в фугате при центрифугировании активного ила. Академией коммунального хозяйства предложена схема обработки активного ила, по которой ил из вторичных отстойников подвергается центрифугированию, а образующийся фугат направляется в аэротенки вместо циркуляционного активного ила или в смеси с ним. Использование фугата в качестве возвратного активного ила не ухудшает качества очистки сточных вод по сравнению с обычным вариантом и позволяет исключить из схемы уплотнение активного ила. Эта схема заложена в проекты очистных станций ряда городов Московской области.[ ...]

Система лицензирования предусматривает возможность как регламентации природопользования, так и осуществления экологической деятельности. Как было уже отмечено, под природопользованием понимается извлечение, добыча и использование различных природных ресурсов, использование природных ландшафтов, природных объектов и участков природы в основном для коллективных форм хозяйствования, а также организованный выброс в атмосферу и сброс вместе со сточными водами загрязняющих природу веществ и размещение бытовых и промышленных отходов. Под экологической деятельностью следует понимать работы по переработке различных отходов, использованию вторичных ресурсов, организации различного рода экологических услуг.[ ...]

Технические мероприятия по охране окружающей среды, которые проводились ранее, обычно планировались с целью ослабить влияние на природу уже разработанного технологического процесса. Выделение токсичных компонентов из отходящих газов и сточных вод осуществлялось в основном для перевода этих компонентов в безвредную форму и редко сочеталось с их повторным использованием. Во многих случаях пытались уменьшить концентрацию токсичных отходов при выводе их в биосферу. Меры по сокращению отходов и отходящего тепла при производстве продукции, а также по вторичному использованию этих отходов реализовались преимущественно в целях экономии материалов и энергии и не рассматривались как меры по охране оружающей среды. Постоянное увеличение использования естественных ресурсов, усиленное загрязнение окружающей среды требуют реализации стратегии безотходной технологии. Основы этой технологии заключаются в том, что неиспользованные отходы производства одновременно являются не полностью использованными природными ресурсами и источником загрязнения окружающей среды. Снижение количества используемых отходов по отношению к количеству изготовляемой продукции позволит произвести больше изделий из того же количества сырья и явится вместе с тем действенной мерой охраны окружающей среды.[ ...]

Такие системы очень привлекательны, но опыт их применения в крупных масштабах, включая транспорт, переработку (биогаз или жидкое компостирование), а также в сельском хозяйстве весьма ограничен. Одна о существует несколько небольших систем с локальным компостированием сточных вод из туалета, например, школа в Квиксунде (Швеци и пригородный поселок Аас (Норвегия), Для внедрения локальных систем по обработке и вторичному использованию сточных вод из туалета важно сотрудничество с соседними домашними хозяйствами и фермерами. Отдельному домашнему хозяйству трудно организовать и финансировать систему по переработке таких сточных вод. Если владельцы хозяйств не могут использовать конечный продукт переработки, то ключевую роль в решении этого вопроса играют местные власти и фермерские ассоциации.[ ...]

Апробация работы. Результаты работы обсуждались на II и III Республиканском конкурсе научных работ студентов вузов Республики Башкортостан “Безопасность жизнедеятельности” (Уфа, 1998, 2000); Всероссийской научно-технической конференции “Новые материалы и технологии - 98” (Москва, 1998); Республиканской научно-практической конференции “Экология и здоровье женщин и детей в республике Башкортостан” (Уфа, 1998); Международной научно-технической конференции “Наука-образование-производство в решении экологических проблем” (Уфа, 1999); XXXVII Международной научной студенческой конференции “Студент и научно-технический прогресс” (Новосибирск, 1999); Всероссийской научно-практической конференции "Экология, труд, здоровье. Взгляд в XXI век" (Уфа, 1999); Всероссийской научно-технической конференции "Прогрессивная технология и вопросы экологии в гальванотехнике и производстве печатных плат" (Пенза, 1999, 2000); Международной научно-практической конференции "Вторичные ресурсы: социально-экономические, экологические и технологические аспекты" (Пенза, 1999); Международной научно-практической конференции "Почва, отходы производства и потребления: проблемы охраны и контроля" (Пенза, 1999); Международной научно-технической конференции "Перспективы развития лесного и строительного комплексов, подготовки инженерных и научных кадров на пороге XXI века" (Брянск, 2000); Международно-практической конференции "Хозяйственно-питьевая и сточные воды: проблемы очистки и использования" (Пенза, 2000); межрегиональном постоянно действующем научно-техническом семинаре "Экологическая безопасность регионов России" (Пенза, 2000); специализированной конференции и семинаре "Промышленная экология. Международные стандарты качества 1БО серии 9001 и 14000" (Уфа, 2002); Всероссийской научно-практической конференции "Защитные покрытия в приборостроении и машиностроении" (Пенза, 2002).

ПЕРЕРАБОТКА И УТИЛИЗАЦИЯ БЫТОВЫХ СТОКОВ

Бытовые стоки в городах - одна из главных экологических и экономических проблем. В экодоме применяется автономная система переработки и утилизации стоков, использующая биоинтенсивные методы переработки органики, содержащейся в бытовых стоках.

Система переработки стоков может основываться на переработке смешанных стоков или раздельной переработке из разных источников. Стоки, содержащие органику: кухонные, серые (ванная, стирка), черные (туалет) могут предварительно раздельно перерабатываться внутри дома и/или поступать в единую систему сбора и переработки на участке с последующим дренированием жидкой части. Накапливающаяся твердая часть в виде биологического ила перерабатывается на участке по мере накопления, совместно с твердыми органическими отходами, методом компостирования.

Выбор варианта системы определяется особенностями естественного ландшафта и пожеланиями хозяина экодома.

12.1. Простейшая система накопительного типа

Простейшая система утилизации всех типов стоков осуществляется в специальной подземной емкости достаточного объема. Система представляет собой гидроизолированный (дно и стенки) котлован на приусадебном участке, заполненный гравием и песком. Сверху он засыпан грунтом, аналогично любой другой дренажной системе, в которую сливаются все стоки. В грунт над этой дренажной зоной высаживается растительность, способная за вегетационный период выкачать из него воду. Эта система используется для слива только зимой. Летом стоки отводятся в почвенные фильтры, которые будут описаны ниже. Чтобы система не забивалась, стоки предварительно направляются в отстойник для отделения грубой фракции.

Рис. 12.1. Простейшая система накопительного типа с утилизацией смешанных стоков.

12.2. Система раздельной очистки бытовых сточных вод
с использованием компостирующего биотуалета

В этой системе используется безводный биотуалет и для обработки остаются только стоки из кухни, постирочной, ванной и бидэ. Стоки из этих источников объединяются в усовершенствованном септике (объединение септика и биофильтра-усреднителя) с последующим пропуском воды через фильтрующие траншеи, расположенные ниже зоны промерзания. Затем они направляются в накопительный резервуар (пруд), если рельеф позволяет его построить. Септик необходимо располагать в обогреваемом техническом подполье.

Рис. 12.2. Система раздельной очистки бытовых сточных вод с использованием компостирующего биотуалета.

12.3. Система раздельной очистки бытовых сточных вод с использованием смывного туалета

В отличие от системы с безводным компостирующим биотуалетом, здесь применяется смывной туалет с малым расходом воды. Слив из туалета осуществляется в биофильтр-отстойник, где оседает и подвергается переработке большая часть органических частиц. Сюда же попадают пищевые отходы с кухни. Один раз в 2-3 года биофильтр нужно чистить от переработанного ила. Ил перемешивается с компостом и вносится в почву под непищевые культуры. (Биофильтр -отстойник можно заменить фильтрующей камерой со сменными контейнерами (см. п. 11.3.), но чистят ее чаще.) Еще одним дополнением системы является то, что стоки из ванной, душа пропускаются через механический песчаный фильтр и направляются в бачок смывного унитаза для повторного использования.

Рис. 12.3 Система раздельной очистки бытовых сточных вод с использованием смывного туалета.

12.4. Основные элементы систем переработки
и утилизации стоков

Система для повторного использования воды

Количество воды, используемое в смывных туалетах на одного человека немного меньше, чем он использует в ванной и душе (23 % и 18 %). Поэтому целесообразно вторичное использование для туалета воды из ванной и душа. Это приводит к снижению потребления воды на 18 %. Система состоит из двух емкостей - буферного накопителя, куда стоки из ванной попадают самотеком с предварительной очисткой через механический песчаный фильтр, и сливного бачка унитаза, в который стоки закачиваются с помощью насоса. Бачок делается существенно больше, чем обычный, а слив дозируется.

Замечание. Система должна быть так устроена, чтобы стоки не застаивались. Эта конструкция должна быть удобна для промывки и профилактики.

Рис. 12.4. Варианты системы вторичного использования воды из ванной для смывных туалетов.

Жироуловитель

В бытовых стоках содержится много жиров. Поэтому, чтобы в трубах и других элементах конструкции системы переработки стоков на стенках не откладывался жир на, входе в систему устанавливается жироуловитель. Как правило, он устанавливается перед септиком и предназначен для отделения жиров из сточных вод. Жироуловитель - это устройство, имеющее простую и удобную для профилактической очистки конструкцию (Рис. 12.5.). Устройство состоит из грязеуловителя и собственно жироуловителя.

Рис. 12.5. Жироуловитель.

Фильтр для стоков от стиральной машины

Фильтр для стоков стиральной машины предназначен для отделения частиц одежды, жиров, пыли и др. компонентов при стирке грязной одежды. Фильтр должен быть простой, быстрозаменяемый. Песок из фильтра утилизируется на биоботанической площадке.

Рис. 12.6. Фильтр для стоков от стиральной машины.

Эффективный септик, совмещенный с фильтром

Главным элементом двух последних систем очистки стоков является трехкамерный септик, совмещенный с фильтром, расположенный в техническом подполье. Септик обеспечивает накопление стоков и медленное их движение и эффективную очистку. Для каждого расхода стоков, подбирается объем септика (3-5 м. куб.). Температура в септике должна быть такой, чтобы обеспечивать стабильную работу микрофауны и максимально возможную очистку. Целесообразно дополнить септик на выходе камерой с отсорбирующим материалом (например, цеолит или другие аналогичные материалы), чтобы в дренажную систему попадали максимально очищенные стоки. Летом роль фильтра выполняет почва.

Замечание. Если система используется для очистки только серых стоков, то ее размеры могут быть уменьшены на 30 - 40 %. Компостирующий биотуалет существенно упрощает обработку бытовых стоков. Также, как и биотуалет, септик лучше всего располагать в отапливаемом техническом подполье. С этой целью в проекте экодома предусматривается солнечный обогрев септика. Септик должен быть удобно расположен для обслуживания, которое сводится к очистке и удалению осадков.

Рис. 12.7. Эффективный трехкамерный септик.

Фильтрующая траншея

Когда стоки обработались в септике и прошли через фильтр, они направляются в фильтрующую траншею. Траншея устраивается так, чтобы после прохождения через нее вода выходила в накопительный объем (пруд). Устройство фильтрующей траншеи традиционно (Рис. 12.8). Для экодома устраиваются две траншеи: зимняя и летняя. В зимнем варианте дренажная траншея закладывается ниже глубины промерзания грунта. Летняя траншея - поверхностная и может сочетаться с почвенным фильтром. Если стоки направить в почвенный фильтр без обработки в септике и фильтре, то в почвенном фильтре будут возникать специфические запахи.

Рис. 12.8. Фильтрующая траншея.

Фильтрующая кассета

Фильтрующая кассета представляет собой подземную воздушную полость, накрытую сверху ребристой железобетонной плитой, в которую вставлены вытяжные трубы, обеспечивающие вентиляцию полости, чтобы в ней протекал аэробный процесс (Рис. 12.9.). В нижней части полости, на границе с грунтом, укладывается сначала песок, а над ним гравий. Такие системы используются на слабофильтрующих грунтах. Объем фильтрующей кассеты рассчитывается под объемы стоков от дома. Для экодома фильтрующая кассета применяется для сброса стоков в зимнее время.

Рис. 12.9. Фильтрующая кассета.

Механический фильтр после душа и ванной

Вода после ванной, душа, полоскания белья (кроме постирочной воды с моющими веществами) содержат достаточно мало разных органических взвесей и поэтому, после простого фильтрования, ее можно использовать вторично в смывных туалетах, а летом ее избыток может использоваться для полива. Это устройство входит в состав системы обработки и утилизации стоков, в которой используется смывной туалет. Устройство механического фильтра простое, с легко заменяемым песчаным фильтром (Рис. 12.4).

Замечание. Фильтр делается небольшого размера. Его задача - отделить органическую часть стоков и обеспечить необходимое количество воды для смывных бачков в туалетах.

Почвенно-песчаный фильтр

Летом для утилизации воды можно, в качестве предварительного очистного сооружения пред накопительным прудом, использовать песчано-почвенный фильтр (Рис. 12.10). Сточные воды фильтруется не в траншее, а в специально насыпанном слое песка на поверхности почвы, внутрь которого подается сточная вода. Профильтрованная вода просачивается через песок в почву и, просачиваясь через почвенный слой, доочищается в нем.

Рис. 12.10. Почвенно-песчаный фильтр.

Ботаническая площадка

Сточная вода из септика попадает в фильтрующие траншеи и, проходя через них, попадает в пруд. Для повышения качества очистки стоков ее предварительно можно пропустить через ботаническую площадку (Рис. 12.11). Устройство ботанической площадки на любом типе грунта включают гидроизоляцию, гравий, трубу для подвода сточной воды, сбор очищенной воды и направление ее в накопительный пруд.

Рис. 12.11. Ботаническая площадка.

Накопительный пруд

Летние стоки обычно больше, чем зимние. Кроме того, очищенную и профильтрованную воду можно доочищать в накопительных прудах (или, если не будет хватать стоков, в заболоченном месте). Кроме сточных вод в этот пруд будут отводиться поверхностные стоки, а весной источником воды будет снег. В этом небольшом пруду может оставаться вода, сохранившаяся с предыдущего года.

Очистка стоков в биопруде будет осуществляться путем естественного развития растительности и за счет высаживания водных гиацинтов. Осенью пруд очищается от растительности, которая используется на производство компоста. Для создания пруда необходимо использовать рельеф и строить его в низких местах, рассчитывая объем этого искусственного водоема с тем, чтобы стоки сохранялись в нем (примерно 100 м 3). Для исключения загнивания воды в пруде необходимо устроить небольшой фонтан, работающий от солнечной батареи (аналогично системе вентиляции в воздушной системе солнечного обогрева).