При раскрое твердых и прочных материалов важное значение имеет способ резки. Традиционные способы (дисковая либо ленточная пила) обеспечивают высокое качество и скорость работы, но подходят лишь для линейного раскроя.

При изготовлении заготовок сложной геометрической формы применяются иные способы:

  • Фреза позволяет резать материал с кромкой, не нуждающейся в последующей обработке, но диаметр фрезы влияет на потери материала (слишком широкий рез). К тому же, от этого диаметра зависит размер заготовок, мелкие детали получить не удастся. Фреза быстро изнашивается, возрастает стоимость работ (необходимо регулярно менять расходники).
  • Резка кислородом (автоген) относится к недорогим и эффективным методам, но оплавленные края реза требуют последующей обработка. Годится лишь для грубого раскроя.
  • Плазморез лишен перечисленных недостатков, но стоимость оборудования слишком высока, да и энергозатраты немалые. К тому же, плазмой обрабатываются только проводники. Камень или стекло разрезать не получится.
  • Наиболее сбалансированный способ – гидроабразивная резка. Высокая скорость работ, точность раскроя, недорогое оборудование. Кроме того, тонкая струя позволяет обрабатывать изделия небольшой площади с высокой точностью.

Пример работы гидрообразивной резки по металлу – видео

На последнем способе остановимся подробнее.

Принцип действия гидроабразива

Попытки использовать давление воды для дробления материала осуществлялись столетия назад. На угольных шахтах впервые был применен водяной аппарат для добычи угля.

Затем инженеры догадались добавить в струю воды абразивные вкрапления, и «водяной нож» превратился в точный инструмент для обработки любой прочной заготовки.

Как работает гидроабразивная резка? Основа гидроабразивного резака – сопло, или форсунка. Именно этот элемент формирует режущую струю, способную разрушать даже сверхпрочные материалы.

Конструктивно форсунка состоит из следующих элементов:

  1. Входной штуцер для воды, объединенный с первичной камерой создания сверхдавления. Мощный насос подает воду в камеру, затем происходит переход воды из отверстия большого диаметра в меньшее. При неизменном давлении воды, скорость потока увеличивается пропорционально разнице в диаметрах отверстий. Давление на входе составляет 2000-5000 атмосфер.
  2. Штуцер для подачи абразивного материала. В качестве рабочего элемента применяются мелкие фракции песка. Он может быть обычным, силикатным, либо состоять из дробленых твердых минералов: например, граната.
  3. Узел смешивания. В этой камере, поток воды увлекает за собой частицы абразива, формируя основу гидроабразивной резки: водно-песчаную взвесь. Регулируя давление воды и скорость подачи абразива, можно устанавливать различную мощность резака. Принцип работы камеры смешивания напоминает пескоструйную машину, только параметры намного мощнее, и в качестве носителя абразива выступает не воздух, а вода.

Уникальность технологии гидроабразивной резки заключается в том, что с ее помощью можно раскроить практически любые виды материалов. Важно отметить, что гидроабразивная резка является альтернативой не только механической, но и лазерной, плазменной, а также ультразвуковой резке, и в некоторых случаях является единственно возможной.

При гидроабразивной резке материал обрабатывается тонкой сверхскоростной струей воды. Для увеличения разрушительной силы водяной струи в нее добавляются частицы высокотвердого материала – абразива. Иногда гидроабразивное оборудование называют «гидрорезка», «водоструйная резка», «водорезка», «ГАР» или «waterjet». В промышленности такие станки используются с 1982 года, а их прототипы, появились еще в 1970 году.

В чем же суть процесса гидроабразивной резки? Если обычную воду сжать под давлением около 4000 атмосфер, а затем пропустить через отверстие диаметром меньше 1 мм, то она потечет со скоростью, превышающей скорость звука в 3-4 раза. Будучи направленной на обрабатываемое изделие, такая струя воды становится режущим инструментом. С добавлением частиц абразива ее режущая способность возрастает в сотни раз, и она способна разрезать почти любой материал.

Технология гидроабразивной резки основана на принципе эрозионного (истирающего) воздействия абразива и водяной струи. Их высокоскоростные твердофазные частицы выступают в качестве переносчиков энергии и, ударяясь о частицы изделия, отрывают и удаляют последние из полости реза. Скорость эрозии зависит от кинетической энергии воздействующих частиц, их массы, твердости, формы и угла удара, а также от механических свойств обрабатываемого материала.

Технология резки

Вода, нагнетаемая насосом до сверхвысокого давления порядка 1000-6000 атмосфер, подается в режущую головку. Вырываясь через узкое сопло (дюзу) обычно диаметром 0,08-0,5 мм с околозвуковой или сверхзвуковой скоростью (до 900-1200 м/c и выше), струя воды поступает в смесительную камеру, где начинает смешиваться с частицами абразива - гранатовым песком, зернами электрокорунда, карбида кремния или другого высокотвердого материала. Смешанная струя выходит из смесительной (смешивающей) трубки с внутренним диаметром 0,5-1,5 мм и разрезает материал. В некоторых моделях режущих головок абразив подается в смесительную трубку. Для гашения остаточной энергии струи используется слой воды толщиной, как правило, 70-100 сантиметров.

В качестве абразива применяются различные материалы с твердостью по Моосу от 6,5. Их выбор зависит от вида и твердости обрабатываемого изделия, а также следует учитывать, что более твердый абразив быстрее изнашивает узлы режущей головки. При гидроабразивной резке разрушительная способность струи создается в гораздо большей степени за счет абразива, а вода выполняет преимущественно транспортную функцию. Размер абразивных частиц подбирается равным 10-30% диаметра режущей струи для обеспечения ее эффективного воздействия и стабильного истечения. Обычно размер зерен составляет 0,15-0,25 мм (150-250 мкм), а в ряде случаев - порядка 0,075-0,1 мм (75-100 мкм), если необходимо получение поверхности реза с низкой шероховатостью. Считается, что оптимальный размер абразива должен быть меньше величины (dс.т.- dв.с.)/2, где dс.т.- внутренний диаметр смесительной трубки, dв.с.- внутренний диаметр водяного сопла.

Характерная область применения технологий резки водой

Гидрорезка Гидроабразивная резка
Кожа, текстиль, войлок (обувная, кожаная, текстильная промышленность) Листы из сталей, металлов
Пластики, резиновые изделия (автомобильная промышленность) Различные металлические детали (отливки, шестерни и др.)
Электронные платы Сплавы алюминия, титана и др., композитные материалы, толстостенные пластмассы (авиационная и космическая промышленность)
Ламинированные материалы (авиационная и космическая промышленность) Бетон, железобетон, гипсовые блоки, твердая брусчатка и др. строительные материалы
Теплоизоляционные, уплотнительные и шумопонижающие материалы Камень, гранит, мрамор и др.
Продукты питания - замороженные продукты, плотные продукты, шоколад, выпечка и др. Стекло, бронированное стекло, керамика
Бумага, картон Комбинированные материалы, материалы с покрытием
Дерево Дерево
Термо- и дуропласт Армированные пластики


Типичная область применения некоторых абразивных материалов при резке

Наименование Характерная область применения
Гранатовый песок (состоит из корунда Al 2 O 3 , кварцевого песка SiO 2 , оксида железа Fe 2 O 3 и других компонентов) Широко распространен для резки различных материалов, в особенности высоколегированных сталей и титановых сплавов
Зерна электрокорунда (состоит преимущественно из корунда Al 2 O 3 , а также примесей) или его разновидности Искусственные материалы с очень высокой твердостью по Моосу. Используются для резки сталей, алюминия, титана, железобетона, гранита и др. материалов
Зерна карбида кремния (SiC) - зеленого или черного
Кварцевый песок (SiO 2) Резка стекла
Частицы силикатного шлака Резка пластика, армированного стекло- либо углеродными волокнами


Преимущества, недостатки и сравнительная характеристика

С помощью гидроабразивной или водной струи можно разрезать практически любые материалы. При этом не возникают ни механические деформации заготовки (так как сила воздействия струи составляет лишь 1-100 Н), ни ее термические деформации, поскольку температура в зоне реза составляет около 60-90°С. Таким образом, по сравнению с технологиями термической обработки (кислородной, плазменной, лазерной и др.) гидроабразивная резка обладает следующими отличительными преимуществами:

  • более высокое качество реза из-за минимального термического влияния на заготовку (без плавления, оплавления или пригорания кромок);
  • возможность резки термочувствительных материалов (ряда пожаро- и взрывоопасных, ламинированных, композитных и др.);
  • экологическая чистота процесса, полное отсутствие вредных газовых выделений;
  • взрыво- и пожаробезопасность процесса.

Гидроабразивная струя способна разрезать материалы толщиной до 300 мм и больше. Резка может выполняться по сложному контуру с высокой точностью (до 0,025-0,1 мм), в том числе для обработки объемных изделий. С ее помощью можно делать скосы. Она эффективна по отношению к алюминиевым сплавам, меди и латуни, из-за высокой теплопроводности которых при термических способах резки требуются более мощные источники нагрева. Кроме того, эти металлы труднее разрезать лазером из-за их низкой способности поглощать лазерное излучение.

К недостаткам водно-абразивной резки относятся:

  • существенно меньшая скорость разрезания стали малой толщины по сравнению с плазменной и лазерной резкой;
  • высокая стоимость оборудования и высокие эксплуатационные затраты (характерно и для лазерной резки), обусловленные расходом абразива, электроэнергии, воды, заменами смесительных трубок, водяных сопел и уплотнителей, выдерживающих высокое давление, а также издержками по утилизации отходов;
  • повышенный шум из-за истечения струи со сверхзвуковой скоростью (характерно и для плазменной резки).

Почему не все пользуются станками ГАР?

Если у станков ГАР столько очевидных преимуществ, почему далеко не все применяют их на своем предприятии? Ответ скрывается не в самом процессе резки струёй воды с абразивным материалом, а в возможности контролировать этот процесс. До сих пор применение установок требовало от пользователя одновременно умения программировать и навыков опытного оператора.

Линейная скорость сопла станка ГАР должна изменяться в зависимости от изменений формы деталей. Слишком высокая скорость или ее резкое изменение может привести к снижению качества обработки. В прошлом применение гидроабразивной обработки требовало ручной установки программ для того, чтобы контролировать скорость передвижения режущей головки.

Однако даже самая лучшая программа требовала для обслуживания установок опытных операторов, которые могли бы контролировать их скорость. Когда струя абразивного материала продвигалась вдоль линии реза, оператор подбирал скорость движения сопла и таким образом оптимизировал процесс.

Слишком высокая скорость отрицательно сказывалась на качестве кромок и точности. При слишком низкой снижалась точность и повышались затраты времени. Если сопло установки ГАР проходило угол слишком быстро, это могло плохо повлиять на форму и качество резки.

В результате станки гидроабразивной резки применялись в массовом производстве, не требующем высокой точности обработки, например, для изготовления сотней деталей с помощью хорошо проверенной программы либо для резки материалов, не поддающихся обработке с помощью иных технологий. Появившиеся станки компании «WaterJet Corp.» (Италия) значительно упростили этот процесс. Гидроабразивная обработка стала гораздо более доступной, а оборудование - простым в эксплуатации.

Кроме того, компания выпускает установки с 4-мя и 5-тью управляемыми осями (рисунок №1), позволяющими осуществлять сложную резку деталей из листового материала. Например: вырезку деталей с внутренними и наружными фасками по любым криволинейным поверхностям, вырезку наклонных отверстий любого профиля с прямолинейной образующей и обработку сложных криволинейных пазов.

Помимо 4-х и 5-ти координатной резки деталей из листового материала, реализуемых с помощью режущей головки, Water Jet выпускает станки для объёмной 5-ти координатной гидроабразивной резки, имеющей возможность направлять гидроабразивную струю под любым углом к поверхности стола, в том числе горизонтально.


Примеры обработки




7 основных причин, по которым стоит выбрать установку гидроабразивной резки:

Установки гидроабразивной резки - долгое время считались оборудованием, предназначенным лишь для высококвалифицированных специалистов. Однако за несколько последних лет это оборудование сильно изменилось. Благодаря новым технологиям практически каждая механическая мастерская или производственное предприятие может позволить себе приобрести и эффективно использовать высокоточную систему гидроабразивной резки, даже обладая небольшим опытом или вообще не имея такой практики. Компания «WaterJet Corp.» совершила переворот в промышленности, предложив первую действительно доступную систему, сочетающую в себе возможности струи абразивного материала и высокоточной обработки.

  • 1. Широкий спектр обрабатываемых материалов

Гидроабразивная резка подходит для различных материалов, в том числе металлов, керамики, композита, стекла, мрамора и гранита.

  • 2. Высокое качество обработки краёв

После резки на установках гидроабразивной резки «WaterJet Corp.» края материала получаются такие же гладкие, как при пескоструйной обработке. Нет острых кромок, заусенцев, неровных краёв.

  • 3. Отсутствие нагревания в процессе обработки

В связи с тем, что станки гидроабразивной резки используют воду и абразив, в процессе резки обрабатываемый материал почти не нагревается. Поэтому она идеальна для материалов, которые под влиянием высокой температуры деформируются или реагируют на тепло каким-либо иным образом (например, титан).

  • 4. Безопасность для окружающей среды

Столь широко распространённые процессы плазменно-дугового разделения материалов имеют свои ограничения. Например, электрическая дуга весьма нестабильна: при работе с металлами повышенной электропроводности (меди, латуни) операция во многих случаях характеризуется оплавлением боковых краёв. Наличие газов – побочных продуктов плазменной резки – вынуждает проводить дополнительные мероприятия по экологической защите участка такой резки. Плазменный раскрой материалов – диэлектриков (стекла, камня и т.д.) вообще невозможен. В подобных ситуациях нет альтернативы процессам гидрорезки. Наибольшую популярность среди такой группы методов получила гидроабразивная резка.

Сущность способа и варианты его практической реализации

Разъединение материалов при гидравлической резке происходит вследствие воздействия на поверхность раздела узконаправленного потока жидкости — воды — высокого давления. При этом для интенсификации процесса в технологическую зону может одновременно подаваться мелкодисперсная абразивная среда (чаще всего с этой целью применяют различные виды песка). Соединяясь, эти два потока образуют чрезвычайно жёсткую струю, давление в которой (благодаря повышенной скорости движения) локально превышает предел прочности разрезаемого материала. Если перемещать инструментальную головку, в которой происходят все вышеописанные механические процессы, по определённой траектории, то можно с требуемым качеством и точностью получать весьма сложные конфигурации контура.

Гидроабразивная резка металла с применением воды обычно производится при следующих рабочих характеристиках:

  1. Давление — 2000…5000 ат (меньшие значения – для более мягких преимущественно тонколистовых материалов).
  2. Скорость водного потока – до 1000…1200 м/с.
  3. Расход абразива – до 50 г/с
  4. Средний размер абразивной частицы в плане – 100…600 мкм (с увеличением этого параметра точность разъединения материалов снижается).
  5. Расход воды – до 4 л/мин.
  6. Гидроабразивная обработка осуществляется в следующей последовательности. Разрезаемый материал укладывается в ванну, заполненную водой, и фиксируется по трём координатам относительно инструментальной головки. Это может выполняться своими руками на неавтоматизированной установке, а на оборудовании с ЧПУ – при помощи предварительно набранной программы разъединения материала.

Далее инструментальная головка погружается в ванну, после чего включается интенсивная подача воды соответственных значений скорости и давления. Жидкость, проходя через сопло резака, смешивается там с тангенциально подаваемым потоком абразива. Обе струи смешиваются, и через отверстие в нижнем торце сопла направляются на поверхность разъединяемого материала. Вручную или программно происходит сближение сопла, в результате чего результирующее давление струи резко увеличивается, производя размерное разрушение краёв.

Частицы материала увлекаются в образовавшийся зазор, после чего, теряя свою скорость, попадают на дно ванны, откуда откачиваются специальным насосом, предусмотренным конструкцией рабочей установки. В процессе откачки происходит отделение фракций абразива от воды, с последующей его фильтрацией и сушкой. Ввиду достаточной ёмкости баков для воды гидроабразивная резка может производиться непрерывно, и с увеличенными скоростями струи.

Ванна оборудования, в которой производится гидроабразивная обработка, выполняет две функции:

  • Снижает уровень шума при разрезании (до 78…80 дБ против 130…140 дБ в случае обработки вне водяной среды);
  • Гасит энергию и скорость струи воды.


Технологические возможности способа

Рассматриваемая технология наиболее эффективна в следующих случаях:

  1. Для материалов-диэлектриков, а также токопроводящих изделий, изготовленных из цветных металлов и сплавов на основе меди. Это объясняется тем, что параметры электропроводности медных сплавов не позволяют применять для резки электрическую дугу или лазер.
  2. При необходимости разъединения деталей весьма большой толщины – до 250…300 мм: в этом случае при плазменно-дуговой резке всегда происходит оплавление края.
  3. Для обеспечения должной точности поверхности раздела: при правильном подборе режима шероховатость кромки находится в пределах Ra 0,5…Ra 1,25, что заметно превышает возможности любого другого высокоэнергетического метода.
  4. При недопустимости коробления готового изделия, что неизбежно при любом из вариантов технологии термической резки.

Гидроабразивная резка металла имеет свои ограничения, поэтому технология разрабатывается с учётом следующих возможностей, в частности, по толщине:

  • Для цветных металлов и сплавов, а также нержавеющей стали – не более 120…150 мм;
  • Для углепластиков, композитных материалов – не более 150…200 мм;
  • Для искусственного и природного камня (мрамора, гранита, базальта и т.п.) – не более 270…300 мм.

При разработке технологии следует учитывать, что токопроводящие материалы относительно небольшой толщины (до 5…10 мм) струя, вырабатываемая рабочей установкой, режет плохо: сказывается заметная энергоёмкость, при производительности, сравнимой с плазменно-дуговой или лазерной обработкой. Однако это не означает, что рассматриваемая технология неприменима для разделения тонких пластин или листов: в этом случае абразивный поток отключается, и отделение выполняется непосредственно водяной струёй. В результате поверхность не нагревается, что исключает окалинообразование, высокотемпературное оплавление лини раздела и прочие недостатки, характерные для всех технологий термического разделения материалов.

Оборудование гидроабразивной резки

Станок гидроабразивной резки – сложное и энергоёмкое оборудование, содержащее следующие узлы:

  1. Инструментальную головку, оснащаемую функцией поворота резака под определённым углом, что позволяет обрабатывать с заданной скоростью поверхности сложной конфигурации.
  2. Насосную установку для прокачки воды с системой её фильтрации.
  3. Компрессорную станцию подачи абразивных фракций под давлением.
  4. Рабочий стол с устройством трёхкоординатного позиционирования (для небольшого оборудования эту работу выполняет своими руками оператор установки).
  5. Ванну с водой, которая конструктивно связана со станиной оборудования.
  6. Рабочие ёмкости для воды и абразива.
  7. Управляющее устройство ЧПУ, или пульт для ручного позиционирования заготовки своими руками.

Наибольшей популярностью пользуются аппараты гидроабразивной резки итальянской фирмы WaterJet Cоrp. Inc., которая выпускает оборудование консольного и портального типов. Первое предназначено для резки относительно небольшой по размерам продукции, второе, отличающееся повышенными точностью и жёсткостью, подходит для обрабатываемых изделий большей толщины.

WaterJet Cоrp. Inc производит не только сами силовые установки, но и насосное оборудование к ним. Ходовой портал аппаратов фирмы оснащается автоматизированным позиционированием, и позволяет одновременно выполнять разделение материалов, разных не только по своему химическому составу, но и по толщине – качество, невозможное в принципе для оборудования термической резки.

Гидроабразивная резка во многих случаях считается единственным способом получения пространственных деталей. Например, только рассмотренной технологией возможно производить разделение практически без нагрева заготовки (максимальное повышение температуры кромки составляет 600 °С, а при обработке в водяном баке – и того меньше). Подобным оборудованием можно выполнить разделение толстолистового стекла, керамики, твёрдых сплавов – материалов, которые весьма чувствительны к повышенным температурам. Хорошее качество конечного результата исключает потребность в последующих переходах, а весьма малая толщина струи – до 0,8 мм – минимизирует потери материала. Высокие давления, создаваемые в зоне разъединения, не вызывают появление остаточных напряжений в заготовке, и способствуют последующему повышению её эксплуатационной долговечности.


Непрерывное расширение номенклатуры конструкционных металлических, неметаллических и композиционных материалов, используемых в промышленности и строительстве, требует новых технологий их обработки. Одной из таких технологий является резка высокоскоростной струей воды под большим давлением — водоструйная резка.

Возможность использования струи жидкости под сверхвысоким давлением в качестве режущего инструмента для обработки различных материалов впервые была описана в СССР. Произошло это в 1957 году. Но запатентован такой способ обработки материалов был только через четыре года, и не в Союзе, а в США.

Природный инструмент

Инструментом водоструйной резки материалов является определенным образом сформированная струя жидкости, исходящая из специального сопла диаметром 0,08-0,5 мм со сверхзвуковой скоростью (1000 и более м/с) и обеспечивающая рабочее давление на заготовку в 400 МПа и более. Поскольку расстояние от среза сопла до поверхности материала составляет несколько миллиметров, давление струи превышает предел прочности материала — за счет этого и осуществляется резка.

Существуют два способа водоструйной резки материалов:

  • резка водой, или гидрорезка — waterjet cutting;
  • гидроабразивная резка (вода плюс абразив) — abrasive waterjet cutting.

Наличие абразива в струе увеличивает ее технологические возможности — жидкостно-абразивной суспензией можно резать твердые и труднообрабатываемые материалы значительной толщины.

Режимы водоструйной резки, осуществляемой обоими способами, могут быть расширены за счет подвода к струйной головке хладагента, способствующего образованию в струе льдинок, которые придают ей абразивные свойства.

При водоструйной резке учитывается и угол атаки — угол между направлением струи и обрабатываемой поверхностью. Максимальная режущая способность и производительность процесса достигаются при угле атаки в 90°.

Материалы и области применения

С помощью водоструйной резки могут обрабатываться практически все материалы: бумага и картон, ткани, кожа и резина, стекло и керамика, гранит и мрамор, бетон и железобетон, все виды полимерных материалов, в том числе композиционные, фольгированные и металлизированные пластики, все виды металлов и сплавов, включая труднообрабатываемые — нержавеющие и жаропрочные стали, твердые и титановые сплавы.

За рубежом спектр отраслей, в которых сегодня применяются технологии водоструйной резки, широчайший. Прежде всего это: космическая отрасль и ракетостроение, оборонная промышленность, авиа-, судо-, автомобиле- и приборостроение, электротехника и микроэлектроника, легкая (в том числе кожевенно-обувная) и пищевая промышленность, строительство, медицина.

Особенно часто водоструйная резка применяется для осуществления следующих технологических операций (здесь приводится далеко не полный перечень):

  • в оборонной промышленности — утилизация устаревших образцов вооружений (разрезание корпусов ракет, боевой техники, судов и подводных лодок), разрезание корпусов снарядов и вымывание взрывчатых веществ;
  • в электронной промышленности — резание электронных плат (применение водоструйной резки позволило достичь размера пропила до 0,1 мм и обеспечить отсутствие пыли, а также решить проблему расслоения материала), снятие облоя с корпусов микросхем;
  • в автомобильной промышленности — резание фальш-потолков, ковриков, приборных досок, бамперов из пластика и пр.;
  • в строительстве — резка бетонных конструкций для их последующего демонтажа, расчистка швов и т. д. Водоструйная резка часто используется для производства сложных контуров в мраморе и граните (узкий пропил позволяет создавать инкрустации при изготовлении декора);
  • в пищевой промышленности — резка продуктов глубокой заморозки, различных плотных пищевых продуктов, шоколада.

Плюсы и минусы

Основные достоинства водоструйной обработки состоят в следующем.

1. Нивелирование теплового воздействия. Генерируемое в процессе резания тепло практически мгновенно уносится водой. В результате не происходит заметного повышения температуры в заготовке. Эта характеристика является решающей при обработке особо чувствительных к нагреву материалов. Небольшие сила (1-100 Н) и температура (+60...+90°С) в зоне резания исключают деформацию заготовки, оплавление и пригорание материала в прилегающей зоне. Заметим, что ни одна технология, кроме гидроабразивной резки, не может обеспечить отсутствие термического влияния на металл вблизи пропила.

2. Универсальность обработки. Жидкостно-абразивная струя особенно эффективна при обработке многих труднообрабатываемых материалов, таких как, например, титановые сплавы, различные виды высокопрочных керамик и сталей, а также композитных материалов. При гидроабразивной резке последних не создается разрывов в структуре материала, который, таким образом, сохраняет свои первоначальные свойства. Именно при помощи струи воды режутся различные сэндвич-конструкции. Гидроабразивные системы способны резать металлы толщиной до 300 мм, камень и бетон — до 1000 мм. При этом достигается достаточно высокая точность обработки — 0,1 мм при резке металлов толщиной до 100 мм.

3. Способность воспроизводить сложные контуры и профили. При высокоструйной обработке можно воспроизводить очень сложные формы или скосы под любым углом. Струя жидкости по своим техническим возможностям приближается к идеальному точечному инструменту, что позволяет обрабатывать сложный профиль с любым радиусом закругления, поскольку ширина реза составляет 0,1-3,0 мм.

При резании хрупкого материала — стекла — гидроабразивная обработка позволяет создавать неповторимые другими технологиями формы и контуры; хотя водоструйная технология и уступает алмазу, когда делаются прямые резы стекла, зато никакая другая технология не позволяет получать сложные контуры непосредственно в процессе резания.

4. Хорошее качество поверхности. Можно получать финишную поверхность с шероховатостью Ra 0,5-1,5 мкм, т. е. во многих случаях отпадает необходимость в дополнительной обработке.

5. Технологичность процесса. Инструмент резки (струя воды или вода плюс абразив) не нуждается в переточке; ударная нагрузка на изделие минимальна, отсутствует обратная реакция на режущий инструмент, так как между изделием и инструментом нет непосредственного контакта; различные операции (например, сверление и резку) можно выполнять одним и тем же инструментом; низкое тангенциальное усилие на деталь позволяет в ряде случаев обойтись без зажима этой детали; существует возможность резки на расстоянии около 200 метров от насоса, а также возможность резки от одного насоса высокого давления одновременно двумя и более режущими головками на одном столе или несколькими головками на разных столах; резку можно осуществлять на высоте и на глубине до нескольких сотен метров, в том числе и под водой.

6. Экономичность процесса. Скорость резания — высокая. (Скорости резки различных материалов зависят от многих факторов, средние значения этих скоростей для различных материалов приведены в таблице). Рез можно начинать в любой точке заготовки и при этом не нужно предварительно делать отверстие. Малая ширина реза позволяет экономить дефицитные материалы при их раскрое. Среднее потребление воды в абразивно-жидкостном режущем устройстве невелико — около 3-4 л/мин, несмотря на высокие давления использования (400 МПа и более).

7. Автоматизация процесса. Достаточно легко использовать системы компьютерного управления, оптические следящие устройства и полномасштабных шестикоординатных роботов.

8. Доступность. Использование таких относительно недорогих компонентов, как вода, и, например, кварцевый песок в качестве абразива, делает процесс доступным.

9. Безопасность. Поскольку нет тепла, накапливаемого при абразивно-жидкостной струйной обработке, процесс взрыво- и пожаробезопасен. Отсутствует радиационное излучение, опасность вылета шлаковых или мелкодисперсных частиц. Переносимая по воздуху пыль фактически устранена. Уровень шума колеблется в пределах 85-95 дБ.

К недостаткам технологии гидрорезания можно отнести: конструктивные трудности, возникающие при создании высокого давления жидкости, довольно низкую стойкость сопла и сложность его изготовления.

Факторами, сдерживающими практическое внедрение водоструйной техники на предприятиях, являются:

  • высокая энергоемкость по сравнению с рядом других типов резания;
  • несоответствие реальных характеристик заявленным (например, меньшая скорость струи, не позволяющая выполнять процесс резания определенных материалов);
  • отсутствие у некоторых потенциальных потребителей необходимого масштаба производства, что делает установку гидрорежущего оборудования нерентабельной;
  • довольно высокая стоимость по сравнению с другим, например, электромеханическим, оборудованием для резки.

Скорость водоструйной резки, м/мин

Толщина материала, мм

Алюминий

Нержавеющая сталь

Луч или струя?

Водоструйная резка — альтернатива не только механической, но и лазерной, плазменной, ультразвуковой резке, а в некоторых случаях это, как уже говорилось, и вовсе единственно возможный вид обработки.

В настоящее время водоструйная и лазерная резка машиностроительных материалов, применяемых в сходных областях, являются конкурирующими технологиями. В том и в другом случаях режущий инструмент формируется в самой машине за счет конструктивных особенностей соответствующих узлов, а затем, перемещаясь по энергетическому каналу или трубопроводам, подходит к узлу, где процесс его формирования завершается. При применении обеих технологий отпадает необходимость в хранении, заточке и перестановке рабочего инструмента — он постоянно обновляется за счет непрерывности его образования во времени.

Не углубляясь в анализ достоинств и недостатков этих технологий, необходимо отметить, что лазерное излучение более универсально (резка, маркировка, упрочнение и т. п.), хотя и область применения высокоскоростной струи жидкости не ограничивается только гидрорезанием (в ряде случаев импульсная струя жидкости используется для упрочнения труднодоступных поверхностей сложной формы).

Определенное преимущество гидрорезания перед лазерной резкой состоит в отсутствии области термовлияния на кромках обработанных деталей, но не всегда это условие является определяющим. Так, установлено, что при лазерной резке деталей из конструкционных сталей типа 20, 30 ХГС и др. повышается их усталостная прочность и долговечность по сравнению с механически вырезанными деталями.

Возникает закономерный вопрос: а существуют ли какие-либо рекомендации по использованию той или иной технологий? Опыт производителей и пользователей говорит: да, существуют.

С точки зрения экономической целесообразности применение водоструйной технологии наиболее оправданно при резке хрупких (стекло, камень) заготовок толщиной 40-100 мм, фанеры, древесины, композиционных материалов во всем диапазоне допустимых толщин, при больших объемах раскроя: нержавеющей стали при толщине листа свыше 6-10 мм, меди — свыше 2-3 мм, алюминиевых сплавов — свыше 5-6 мм.

При контурном раскрое тонкого листа практически всегда более эффективны лазерные системы, поскольку себестоимость лазерной резки заготовок с малой толщиной значительно ниже, чем себестоимость резки гидроабразивной.

В конечном счете, области применения лазерной и водоструйной технологий резки в машиностроении будут разделены их технологическими и экономическими показателями. Бесспорно одно: при сегодняшнем уровне развития машиностроения объемы применения водоструйной резки (в США, Европе, странах АТР) постоянно увеличиваются.

Основные компоненты гидрорежущего оборудования

В комплекс для водоструйной резки входят: насос высокого давления; режущая головка; координатный стол и приводы перемещений режущей головки; разводка высокого давления; система подачи абразива (для гидроабразивной резки); система числового программного управления. Дополнительно комплекс может оснащаться: устройством для предотвращения столкновений режущей головки с заготовкой; системой из нескольких режущих головок; механической системой предварительного просверливания; ловушкой струи воды, гасящей ее энергию и служащей также для сбора отработанного абразива, и рядом других.

Гидрорежущее оборудование обладает разной степенью универсальности и автоматизации, в том числе изготавливается и в виде роботизированных комплексов.

Насос высокого давления обеспечивает создание сверхзвуковой струи жидкости как режущего инструмента. Разработана универсальная принципиальная гидравлическая схема, где в качестве усилителя давления используется специальный мультипликатор двустороннего или одностороннего действия (рис. 1). Выбор компоновки зависит от конкретных условий обработки (например, от допустимой величины перепада давления, требуемого расхода жидкости), что позволяет достичь заданных результатов как по производительности, так и по качеству. Кроме того, используются стандартные регулирующие, распределительные, контрольные и вспомогательные гидравлические устройства.

Для обработки крупногабаритных или отдельно стоящих изделий в условиях завода, порта, полигона, для выполнения работ под водой насос высокого давления может монтироваться на любом транспортном средстве — электрокаре, автомобиле, судне. В этом случае подвод жидкостной струи к изделию, расположенному, как правило, на некотором расстоянии от насоса высокого давления, осуществляется с помощью гибкого шланга.

Режущая (струйная) головка осуществляет окончательное формирование высоконапорной тонкой струи как режущего инструмента по своим геометрическим и энергетическим параметрам. Конструктивные особенности струйной головки (взаиморасположение деталей, характер их соединения и герметизация), оказывая влияние на гидродинамические характеристики и компактность формируемой струи, определяют качество и надежность ее работы.

Существует множество конструкций струйных головок для гидрорезания материалов, что объективно свидетельствует о многообразии предъявляемых к ним эксплуатационных требований и одновременно — об отсутствии оптимальных конструкций. Приведем следующую классификацию:

  • струйные головки с улучшенными динамическими характеристиками для жидкостной обработки материалов (снабжены специальными конструктивными элементами);
  • жидкостно-абразивные струйные головки. Наиболее совершенными считаются конструкции со свободным вводом абразива в рабочую струю жидкости с минимальными нарушениями их гидродинамических характеристик;
  • струйные головки с подводом хладагента с целью охлаждения истекающей жидкости. В конструкцию введены каналы для подвода хладагента, предназначенного для придания абразивных свойств рабочей жидкости. Это позволяет не только усилить режущие возможности струи за счет образования льдинок в струе, но и повысить износостойкость сопла благодаря образованию замороженного слоя на его поверхности;
  • комбинированные сопловые головки.

На рис. 2 показаны принципиальные схемы режущих головок как для гидро-, так и для гидроабразивной резки.

Кстати, опция — до четырех режущих головок, работающих одновременно, — используется в конструкции систем водоструйных установок, выпускаемых практически всеми ведущими мировыми производителями оборудования.

Формирование сверхзвуковой струи жидкости как режущего инструмента осуществляется с помощью сопла . Разработана универсальная методика анализа гидравлических характеристик сопел с различными профилями внутреннего канала. Теоретические и экспериментальные исследования показали, что наиболее рациональным внутренним профилем сопла, повышающим производительность водоструйной обработки различных материалов примерно на 20%, является катеноидальный профиль.

Обычно сопла изготавливаются из искусственных камней — сапфира, алмаза, корунда. Их стойкость составляет 250-500 часов. На рис. 3 показана режущая головка модели Paser 3 американской компании Flow International Corporation.

Разводка высокого давления. Вода под высоким давлением подается от насоса высокого давления к режущей головке системой неподвижных и подвижных труб. Для обеспечения плотности соединений при движении портала и рабочей головки используются специальные шарниры высокого давления или спиральные трубки специальной формы.

Система подачи абразива. Используются две системы подачи абразива — вакуумная, работающая по принципу пульверизатора, и та, что работает под давлением. Абразив засыпается в бункер, находящийся рядом с рабочим столом, и подается к рабочей головке по гибким шлангам. В качестве абразива обычно используют порошки твердых сплавов, карбидов, окислов. Выбор абразива зависит от вида и твердости разрезаемого материала. Так, для высоколегированных сталей и титановых сплавов применяют особо твердые частицы граната, для стекла — соответствующие фракции обычного песка, для пластмасс, армированных стекло- или углеродными волокнами, — частицы силикатного шлака.

Производители

Российский рынок оборудования для водоструйной резки материалов способен удовлетворить практически любые запросы. Представленная на нем продукция таких специализированных зарубежных фирм, как американской Flow International Corporation (с множеством филиалов во всем мире), шведской Water Jet Sweden АВ, итальянской Waterjet Corporation, чешской PTV, а также таких известных в мире производителей оборудования для обработки листа, как швейцарский концерн Bystronic, германская компания Trumpf, позволяет решать практически любые задачи. Тем не менее, данный сегмент рынка оборудования развивается достаточно активно, о чем свидетельствует появление на нем в последнее время продукции еще целого ряда зарубежных производителей, среди которых компании: Sato Schneid-systeme (Германия), Aliko (Финляндия), Trenntec (Германия), ESAB Welding & Cutting Productions (Швеция), Digital Control (Франция).

Из производителей гидравлических устройств и, в первую очередь, насосов высокого давления следует отметить компанию Ingersoll Rand (США) — безусловного мирового лидера продукции этого класса. Естественно, что такие ведущие производители гидрорежущего оборудования, как, например, Water Jet Sweden АВ, в качестве основных узлов, связанных с созданием самого потока струи, используют оборудование Ingersoll Rand. Например, насос высокого давления модели Strimline серий SL IV этой фирмы создает необходимое давление воды в 4000 бар, которое затем с помощью сапфира с диаметром проходного сечения 0,08-0,5 мм превращается в кинетическую энергию струи со скоростью 900 м/с.

Лидером российского гидрорезания является город Владимир, где на базе разработок Владимирского госуниверситета в исследовательской лаборатории гидрорезания и ОАО СКТБ ПО «Вектор» создано несколько моделей установок для водоструйной резки.

Промышленные установки выпускают ЗАО «Лазерные комплексы» (г. Шатура), ОАО «Туламашзавод», ОАО ЭНИМС (Москва), белорусское СП ООО «СПожиток». Еще недавно некоторые специализированные системы водоструйной резки производились Институтом горного дела (г. Хабаровск), украинским НПП «Индрис», Московским университетом, АО «Пеллемаш», однако сегодня об этой продукции ничего не слышно. Так или иначе, какой-никакой выбор и среди отечественной продукции есть. Хотя, положа руку на сердце, следует признать, что до лучших мировых образцов наше оборудование пока не дотягивает.

Лидер

Группа Flow International в 1971 году выпустила первую в мире установку водоструйной резки, а в 1981-м разработала метод введения абразива в водную струю, что значительно расширило возможности резания. По оценкам специалистов, станки компании имеют наилучшую точность позиционирования (порядка 0,07-0,08 мм), а, следовательно, и точность обработки.

Продукция компании позволяет решать практически все проблемы резки:

  • система WMC Waterjet Machining Center предназначена для любой двумерной резки, в том числе в промышленных масштабах. Ее главная отличительная особенность — увеличение производительности, достигающееся за счет запатентованной быстроподъемной оси Quicklift Z со встроенным сенсором и противоударным устройством;
  • для небольших работ по металлу и камню создана установка Inregratred Flaying Bridge;
  • компактная установка Bengal предназначена для водоструйной и гидроабразивной резки и подходит для лабораторного применения, изготовления инструментов и выпуска небольших партий изделий;
  • модульная система трехмерной резки Dragon применяется как для водоструйной резки мягких материалов, так и для гидроабразивной резки металла, камня, стекла, композитов.

Компания разработала новую технологию гидрорезания, позволяющую, как утверждают разработчики, увеличить скорость резки практически на 300%. Система Dynamic Waterjet, обеспечивающая активный контроль точности, создана на основе математической модели, используемой для управления положения «руки» с рабочей головкой. Эта система автоматически исключает образование скосов при резке и обеспечивает требуемую точность детали с учетом заданных допусков. Система исключает необходимость дополнительной обработки после водоструйной резки и позволяет сократить машинное время резки металлов и композиционных материалов толщиной 1,25-480 мм. Кроме того, благодаря повышению точности резки, сокращаются потери листового материала при раскрое.

Альтернатива

Несмотря на признанный статус лидера, конкуренты у компании Flow есть, и весьма серьезные.

Одним из них является шведская компания Water Jet Sweden АВ. В качестве сопла фирма Water Jet применяет собственную запатентованную режущую головку, а также использование сопла Avtoline фирмы Ingersoll Rand. В настоящее время наиболее популярна в механическом секторе установка NC3015S с используемой поверхностью стола 3010 x 1510 м. Управляемая ось Z — стандарт для всех систем. А выпускаемые фирмой установки с четырьмя и пятью управляемыми осями позволяют осуществлять такую обработку, как, например, прорезание пазов с профилем притуплённого конуса.

Начав работу, как дилер фирмы Flow, компания PTV за прошедшее время освоила собственное (т. е. чешское) производство большей части этого оборудования. В первую очередь это относится к координатным столам, которые сегодня проектируются и изготавливаются на фирме PTV. Кроме того, все вспомогательное оборудование также проектируется и производится в Чехии. Сейчас PTV закупает в США только гидравлическое оборудование высокого давления — насосы, аккумуляторы, трубки и т. п., что составляет менее 50% от общей стоимости системы. Компания PTV использует на своих установках разработанное чешскими фирмами программное обеспечение в сочетании с системами управления фирмы Siemens.

Диапазон возможных скоростей резки (т. е. фактически регулируемый диапазон скоростей передвижения режущей головки над столом) на установке фирмы PTV колеблется от 1 до 30000 мм в минуту, что делает возможным качественную и точную резку на одной и той же установке деталей самых разных размеров и толщин.

Универсальная установка итальянской компании Waterjet Corporation для гидроабразивной резки WJ 1630/50 портального типа создает давление струи в 4130 бар. Режущая головка способна вести пятикоординатную обработку. Другие портальные машины компании предназначены для резки труб с двойной рабочей областью (резка шестиметровых труб осуществляется с автоматическим вращением трубы и задним упором), а также для роботизированных операций (станок с двумя режущими головками и с автоматической загрузкой и выгрузкой).

Устройства гидроабразивной резки Byjet Bystronic имеют мощную специализированную систему ЧПУ, обеспечивающую автоматический выбор и оптимизацию параметров обработки при резке различных материалов по любому контуру, автоматическое управление подачей абразива и давлением воды в реальном времени в зависимости от особенностей конфигурации обрабатываемого контура, а также свойств материала и толщины. Благодаря применению специального дозатора системы Byjet Bystronic могут использовать абразив практически любого типа с, зернистостью от 0,05 до 0,3 мм. Применение специальной системы управления насосом высокого давления обеспечивает отсутствие пульсаций воды на выходе, что позволяет достичь наилучшего качества обработки.

В потенциале

И еще несколько слов об установках, представляющих, по нашему мнению, потенциальный интерес для отечественных производителей.

Установка Quickjet, созданная германской Trenntec, имеет жесткую сварную конструкцию, которая в сочетании с закаленными и шлифованными направляющими обеспечивает точность позиционирования 0,1 мм на 1 м длины и точность воспроизведения (повторяемости) в пределах 0,05 мм. Регулирование по оси Z можно осуществлять вручную на длине 150 мм. Имеется насос высокого давления, система воздушного охлаждения, резервуар с абразивом, вмещающий 50 кг, устройство автоматической подачи абразива в режущую головку. Расход воды — 2,6 л/мин под давлением 380 МПа.

Французская Digital Control представляет станок для водоструйной резки под давлением 380 МПа. Для мягких материалов предназначена резка водяной струей, а для твердых материалов — гидроабразивная резка. Площадь обработки — 1500 х 1000 мм. Станок оснащен насосом высокого давления мощностью 22 кВт, режущей головкой с системой подачи абразива и цифровой системой управления Cyborg 2000. В системе управления имеется постпроцессор для преобразования файлов, для обеспечения возможности подготовки программ вне станка, для обеспечения ручного или автоматического раскроя листов.

Отечественная продукция

Исследовательская лаборатория гидрорезания (г. Владимир) представляет полуавтоматический станок с ЧПУ для разрезки листовых труднообрабатываемых материалов (стекло-, угле-, боропластиков, титана, керамики, стекла, магнитных и твердых сплавов), вырезки отверстий произвольной формы и деталей сложного контура. Станок состоит из двух модулей: привода главного движения — станции высокого давления и привода подач — двухкоординатного стола. Привод подач оснащен системой ЧПУ, обеспечивающей точное перемещение стола по двум взаимно перпендикулярным координатам и получение отверстий и деталей различной конфигурации по заданной программе.

Кроме того, владимирская лаборатория производит полуавтоматический станок с ЧПУ для обработки неметаллических материалов (кожи, картона, винила, резины и др.), полуавтоматический станок для снятия облоя с корпусов микросхем, полуавтоматический станок для очистки барабанов множительной техники, четырехпозиционный станок для очистки капиллярных отверстий наконечников, двухконтурный станок для расснаряжения военной техники.

ОАО «Туламашзавод» представляет технологическую установку гидроабразивного резания, предназначенную для резки сложнофасонных форм деталей толщиной до 150 мм из любых металлов и сплавов, раскроя неметаллических листовых материалов (мрамор, гранит, пластик, картон, стекло, керамика) со следующими габаритами рабочей поверхности стола — длиной до 4000 мм, шириной до 2000 мм.

Рабочая зона обработки установок ЗАО «Лазерные комплексы» ГЛ-250/5М и ГЛ-400/ЗМ составляет от 1200 х 800 мм до 6000 х 1500 мм.

ОАО ЭНИМС принимает заказы на изготовление как отдельных узлов установок для водоструйной резки, так и всей установки в комплекте.

Цена успеха

На вопрос о стоимости подобного оборудования однозначный ответ получить не просто. Все зависит от модификации модели, комплектации, наличия-отсутствия отдельных функций и т. д., и т. д. Разброс может быть весьма значительным. Но в любом случае стоить дешево такая техника не может. Например, в компании, представляющей интересы чешской фирмы PTV, называет такие цифры: от 5 до 10 миллионов рублей за установку. Представители компании утверждают, что при нормальной загрузке системы (в среднем 2500-3000 рабочих часов в год) время возврата инвестиций (как говорят в США, «payback time») составит полтора-два года. Отечественная продукция дешевле. В частности, ОАО ЭНИМС называет от 40 до 100 тысяч у. е. (читай: долларов или евро). В любом случае, делая выбор, стоит учесть информацию Water Jet: эксплуатационные расходы системы гидроабразивной резки типа NC3015S составляют примерно 0,26 тех же условных единиц в минуту.

А в заключение сказать, пожалуй, можно только одно. Если верить многочисленным организациям, анализирующим мировой рынок продукции машиностроения, производство оборудования для водоструйной резки — самый быстрорастущий сегмент станкостроительной промышленности.

Гидроабразивная резка металла и алюминия представляет собой такой способ их обработки, при котором рабочим инструментом является смесь абразива и воды, подаваемая под высоким давлением с высокой скоростью.

1 Суть и технология гидроабразивной резки

Базируется данная технология на принципе влияния эрозионного плана абразивных твердых элементов и водяного направленного высокоскоростного потока на материал, подвергаемый резке. С точки зрения физики процесс обработки заключается в отрыве частиц материала из полости реза скоростной струей частиц, находящихся в твердой фазе.
Эффективность данной операции, а также стабильность ее протекания зависят от грамотного подобранных значений:

  • размера и расхода абразивных элементов;
  • расхода и давления воды.

При сжатии обычной воды под нагрузкой примерно 4 тысячи атмосфер и последующем ее пропускании через малое по сечению сопло (до 1 миллиметра), ее скорость в 3–4 раза превысит скорость звука. Если направить такой поток сжатой воды на какую-либо поверхность, он будет представлять собой мощнейшее режущее приспособление. А если еще дополнительно добавить в поток специально подобранные абразивы, он сможет без труда разрезать изделия из прочного металла толщиной от 10 и выше сантиметров.

Гидроабразивная резка своими руками ничем не отличается от процесса, предлагаемого в наши дни многими фирмами и предприятиями. Для обработки материала нужно приобрести специальное оборудование, которое функционирует по следующему принципу:

  • в режущую головку агрегата при помощи нагнетательного механизма подается вода под давлением от 1000 до 1600 атмосфер;
  • через дюзу малого сечения (от 0,08 до 0,5 мм) вода на сверхзвуковой либо близкой к ней скорости (около 1200 м/с) идет в устройство, где происходит ее смешивание с карбидами кремния, частицами электрокорунда или песка, иного материала с высокой твердостью;
  • из смесительного отсека, который имеет диаметр (внутренний) сопла, полученная смесь подается на материал и разрезает его.

Остаточная энергия режущего потока гасится 70–100-сантиметровым слоем воды. Стоит отметить, что в некоторых агрегатах для резки абразивный материал смешивается с водой не в отдельной камере, а непосредственно в трубке, откуда он поступает на обрабатываемое изделие. При обычной гидрорезке абразивных частичек нет, и вода сразу направляется на поверхность, которую планируется разрезать.

2 Особенности резки изделий водой с абразивами

Струя при описываемой технологии обретает свой разрушительный потенциал в основном за счет абразивных составляющих потока. А уже сугубо транспортная функция ложится на воду. Частицы абразива при этом по размеру подбираются таким образом, чтобы быть не более 10–30 процентов от показателя сечения струи. Именно при таких условиях гарантируется стабильный поток и высокий эффект обработки.

В тех случаях, когда требуется получить малую шероховатость поверхности реза, используют частицы размером от 75 до 100 мкм, в остальных – от 150 до 250 мкм. В целом же, "идеальный" показатель абразива высчитывают как разницу между внутренними сечениями трубки для смешивания агрегата и водяного сопла, разделенную на два.

Выбор твердости абразивных элементов производят с учетом твердости детали, которая подвергается обработке, и вида материала, из которого она сделана. Не рекомендуется применять абразивы твердостью менее 6,5 единиц по шкале Мооса. При этом следует помнить, что режущая головка и ее отдельные компоненты изнашиваются намного быстрее, если используется очень твердый абразив.

Интересующий нас вид резки дает возможность обрабатывать:

  • гранит, прочный камень, мрамор и аналогичные материалы;
  • металлические, стальные, ;
  • армированные пластики;
  • используемые в космической и авиационной сфере титановые, композитные и алюминиевые сплавы, пластмассы с особо толстыми стенками;
  • деревянные изделия;
  • керамические конструкции;
  • любые стройматериалы, включая высокотвердую дорожную брусчатку, железобетон и бетон, блоки из гипсовых композиций;
  • изделия со специальными покрытиями;
  • бронированное и обычное стекло;
  • шестерни и аналогичные детали из металла.

Как правило, разные материалы режутся струей, содержащей определенные виды абразива:

  • армированный углеродными либо стеклянными волокнами пластик обрабатывают потоком с силикатным шлаком;
  • гранит, железобетон, стальные поверхности и прочие высокотвердые материалы – черным либо зеленым кремниевым карбидом, а также частицами электрокорунда;
  • сплавы на основе титана и высоколегированные стали – гранатовым песком.

Большую часть трубок для смешения воды и абразива выпускают из специальных сплавов, которые характеризуются высоким уровнем прочности. Эксплуатироваться без замены они могут до 200 часов непрерывной работы. А сопла производят, как правило, из драгоценных камней – рубина, сапфира, алмаза. Алмазные конструкции без проблем выдерживают до 1,5–2 тысяч часов использования, остальные рассчитаны на 150–200 часов.

3 Гидроабразивная резка металла и других материалов – плюсы и минусы технологии

К самым важным достоинствам процесса резки с применением струи воды и абразива относят:

  • отличное качество реза, обеспечивающее показатель 1,6 Ra (средняя величина шероховатости обработанной кромки материала);
  • абсолютная взрыво- и пожаробезопасность операции;
  • малые потери материалов при обработке;
  • отсутствие в легированных и и сплавах на их основе явления выгорания легирующих добавок;
  • отсутствие выделений газов при резке, как следствие, экологическая "безупречность" процесса;
  • в зоне обработки нет термовоздействия (материал в данной области нагревается максимум до 90 градусов по Цельсию);
  • большой спектр толщин материалов, которые можно разрезать (до 30 сантиметров включительно);
  • высокая производительность (допускается упаковывать материалы небольшой толщины в общую связку и производить их разрезание за один проход потока);
  • нет пригорания и плавления металлов в прилегающей к зоне реза областях, как, впрочем, и непосредственно в месте обработки;
  • режущая головка делает минимум холостых ходов, что увеличивает общую эффективность применения технологии.

Описываемая резка признается оптимальной для изделий из меди, алюминия, латунных сплавов, которые имеют высокую теплопроводность. При других вариантах их обработки необходимо применять мощные нагревающие источники, что влечет за собой повышение стоимости работ. Даже лазерная резка медных и алюминиевых конструкций не так эффективна, как гидроабразивная.

Кроме того, такая обработка подходит для:

  • выполнения скосов на обрабатываемых изделиях;
  • резки объемных конструкций и высокоточного разрезания деталей по сложному контуру.

К недостаткам использования гидроабразивного оборудования относят:

  • обусловленный огромной скоростью высокий уровень шума во время работы агрегата;
  • малая (по сравнению с лазерной и плазменной технологиями) скорость резки тонколистовой стали;
  • недолговечность головки для резания и иных компонентов оборудования;
  • высокие затраты на эксплуатацию установки.