Наиболее перспективная в области автоматической идентификации на настоящий момент для транспорта RFID-технология (Radio Frequency Identification) занимает пока не более четверти рынка.

Коммерческое использование этой технологии стало возможным с появлением в 1958 г. интегральной микросхемы, которая позволила существенно уменьшить размеры радиочастотной метки. Суть интегральной микросхемы заключается в интеграции нескольких электронных компонентов в монолитном кристалле полупроводника. Это позволяет заменить устройство, состоящее из корпуса со множеством электронных компонентов одной тонкой пластинкой. С 1970-х гг. радиочастотные метки стали применяться для идентификации текстильных товаров, животных, грузовых контейнеров, автомобилей и т.п.

Область применения системы определяется ее частотой. RFID-системы делятся на следующие группы, представленные в табл. 2.4.

Таблица 2.4

Области применения RFID

Как правило, стоимость радиочастотных меток возрастает с повышением рабочей частоты. Наименьшими размерами и стоимостью обладают низкочастотные пассивные метки класса read-only (только чтение).

Для считывания данных с радиочастотных меток могут использоваться стационарные считыватели, которые устанавливаются в определенных местах и считывают данные автоматически со всех меток, попадающих в их радиус действия или по команде оператора. В случае необходимости считывания данных на складах или терминалах могут использоваться переносные терминалы сбора данных, аналогичные сканерам штрихового кода.

RFID-терминал считывает информацию с радиочастотных меток, декодирует ее, выводит на экран и передает в информационную систему (рис. 2.16). При использовании соответствующих классов меток («чтение- запись») с помощью такого терминала можно редактировать или добавлять информацию, хранимую в метке.

Рис. 2.16.

Основные преимущества RFID-технологии заключаются в следующем:

  • для считывания данных не нужен контакт или прямая видимость; данные могут считываться через грязь, краску, пар, воду, пластмассу, древесину и т.н.;
  • высокое быстродействие и точность считывания данных большого объема с возможностью редактирования, удаления и добавления информации;
  • пассивные транспондеры (без автономного питания) имеют фактически неограниченный срок эксплуатации;
  • RFID-метки несут большой объем информации и могут быть интеллектуальными (например, сообщать определенным считывателям разные части записанных данных);
  • записанная в радиочастотной метке информация может быть зашифрована и недоступна посторонним считывателям;
  • радиочастотные метки надежно защищены от внешних воздействий;
  • расположение метки может быть свободным относительно считывателя.

Наряду с неоспоримыми достоинствами радиочастотной идентификации присущи и следующие недостатки:

  • относительно высокая стоимость по сравнению со штриховым кодированием;
  • невозможность размещения под металлическими и электропроводными поверхностями;
  • взаимное влияние разных меток, одновременно находящихся в зоне действия считывателя;
  • подверженность помехам в виде электромагнитных полей;
  • влияние на здоровье человека в виде электромагнитного излучения.

Принципиальная схема работы системы RFID представлена на рис. 2.17.

Процесс радиочастотной идентификации выполняется следующим образом:

  • считыватель непрерывно или с заданным интервалом времени излучает радиосигнал на определенной частоте (синхроимпульсы);
  • пассивный транспондер, попадая в зону действия радиосигнала, использует его энергию для электропитания (заряжает конденсатор), считывает код из запоминающего устройства и модулирует ответный радиосигнал (конденсатор разряжается); активный транспондер использует собственный источник энергии (батарейку);
  • считыватель принимает данные от транспондера, при необходимости расшифровывает и проверяет их и передает в приложение, управляющее системой;
  • компьютерное приложение анализирует полученные данные, заносит их в БД и при необходимости формирует управляющие воздействия в системе.

Рис. 2.17.

Наибольшее распространение в мире получили пассивные транспондеры благодаря небольшим размерам, отсутствию необходимости их обслуживания и дешевизне. В то же время активные транспондеры могут передавать данные на большее расстояние с более надежной связью, обладают широкими возможностями обработки записанных в них данных, но требуют периодической замены элемента питания.

Одной из основных проблем в системах радиочастотной идентификации является устранение ситуации, когда несколько транспондеров одновременно передают свои данные. В противном случае сигналы нескольких транспондеров появятся на входе считывателя и произойдет их взаимное искажение. Это явление называется коллизией. Для выделения и идентификации отдельного транспондера из группы аналогичных устройств применяют различные антиколлизионные методы доступа, характеристика которых приведена в табл. 2.5.

Антиколлизионные процедуры

В настоящее время достаточно большое количество компаний выпускают собственные устройства радиочастотной идентификации, при этом считыватели производства какой-либо фирмы могут считывать информацию только своих фирменных меток и не понимают метки других фирм. В отсутствие стандартов оборудование различается по рабочим частотам, по форматам хранимых данных, по алгоритмам работы и способам шифрования данных. Таким образом, в системе радиочастотной идентификации могут использоваться оборудование и метки производства только одной фирмы. Этот существенный недостаток RFID-технологии по сравнению со штриховым кодированием в настоящее время преодолевается путем разработки соответствующих стандартов. Стандарты помимо унификации интерфейсов передачи данных, частот и других технических параметров должны обеспечить единые форматы и структуры данных с используемыми системами штрихового кодирования и электронного обмена данными.

Разработкой международных стандартов занимаются рабочие группы технических комиссий ISO. Международным органом по стандартизации в области RFID является «Рабочая группа N4» (WG4), которая работает совместно с Европейской ассоциацией товарной нумерации EAN и Советом по единому коду UCC. Последними в 2003 г. была основана некоммерческая организация «EPCglobal» - международный консорциум, одной из целей которого является разработка единых стандартов для систем RFID и штрих-кодирования.

Практическое применение

Одной из существенных проблем, снижающих пропускную способность платных автомобильных дорог, является процедура взимания платы за проезд. Пункты оплаты на дорогах с интенсивным движением, несмотря на наличие нескольких пунктов оплаты, вызывают необходимость остановки автомобиля, и дальнейшее его движение возможно только после расчета, который может занять существенное время в случае необходимости размена крупных купюр и г.д.

На платной дороге в г. Санкт-Петербурге «Западный скоростной диаметр» для снижения времени задержек автотранспорта на пунктах оплаты внедрена RFID-технология.

Постоянные пользователи магистрали могут приобрести транспондеры, которые устанавливаются в автомобиле, и перевести на свой лицевой счет предварительную оплату. При проезде пункта оплаты транспондер передает на считыватель номер лицевого счета, и необходимая сумма автоматически списывается с лицевого счета пользователя и зачисляется на счет оператора.

Пользователь тем самым экономит время, ему нс надо думать о подготовке денег для оплаты, а оператор может сократить количество обслуживающего персонала, повысить пропускную способность пунктов оплаты и привлекательность использования магистрали.

Для стимулирования использования транспондеров, учитывая меньшую себестоимость процедуры взимания платы, оператор устанавливает для таких пользователей более низкие тарифы.

Компания «Benetton Group», занимающаяся продажей одежды, начала оснащать свои изделия и упаковки RFID-этикетками с 2003 г.

Идентификаторы RFID встраиваются непосредственно в ярлыки для одежды и этикетки на упаковочных коробках, куда впечатывается антенна и полупроводниковая микросхема толщиной около 1 мм. Компания торгует только собственными товарами, что ликвидирует проблему совместимости RFID-этикеток и считывающего оборудования. Новая система позволит существенно усовершенствовать логистику фирмы за счет того, что в процессе доставки товаров в 5 тыс. магазинов «Benetton», расположенных в 120 странах, в любом пункте можно за считанные минуты ввести самые подробные данные о поступившем товаре (цвете, размере, фасоне и т.п.). Это позволит существенно быстрее реагировать на спрос в различных магазинах, а в самих магазинах значительно сократит время па поиск и распаковывание нужного товара.

  • Вейс Т. Электронные «интеллектуальные ярлыки» Benetton // Computerworld Россия.2003. № 3. С. 37.

Пока в стране идут новогодние праздники и все отдыхают наконец соберу весь накопленный материал в одну кучку. Я давно не писал в блог, постараюсь исправиться в нынешнем году. Я не пишу о политике, философии, событиях моей жизни, только о железках. Увы о железах на работе я писать не могу в силу определенных причин, но копится материал научно-популярного и просветительского толка. Очень сложно написать лучше, чем уже написано в той же википедии.

RFID – R adio F requency ID entification – радиочастотная идентификация. На сегодня RFID метки это более широкое понятие и сюда приплетают в том числе и беспроводные сенсоры, хотя идентификация – не их основное занятие. RFID метка – это небольшое устройство, которое позволяет на расстоянии, в отсутствие прямой видимости считать сохраненные на нем данные, тем самым идентифицировать объект. Это как штрихкод, наклеенный на товар, только работающий по радио.

RFID метки бывают разных типов. По способу электропитания различают пассивные (полностью получают питание для работы от излучения считывателя) и активные (имеют на себе батарейку). Само собой у пассивных дальность действия ниже, зато срок службы ничем не ограничен. У активных все лучше, и дальность действия, и начинка поинтеллектуальнее, но батарейку нужно будет менять.

По радиочастотному диапазону различают LF (125 кГц), HF (13.56 МГц) и UHF (860-960 МГц).

Принцип действия

Считыватель и метка имеют катушки индуктивности, образующие колебательный контур. Когда считыватель создает переменное магнитное поле своей катушкой, магнитный поток проходя через катушку метки возбуждает в ней ток. Точно так же как работает к примеру беспроводная зарядка. Метка от возбужденного в катушке тока получает питание, и используя транзистор может на некоторое время (питаясь в это время от накопленного в конденсаторе заряда) замыкать катушку накоротко, тем самым меняя значение амплитуды тока в катушке считывателя. Считыватель фиксирует эти изменения, тем самым принимая сигнал от метки.

Устройства UHF диапазона работают аналогично, только вместо катушек – диполи:

(Иллюстрация из книги RFID Handbook by Klaus Finkenzeller 2 редакция)

Само собой это означает что весь обмен данными между меткой и считывателем происходит публично, и при решении задач определения подлинности нужно это учитывать.

Активные метки более разнообразны по устройству, некоторые вообще по сути являются радиомаяками, по несколько раз в секунду просто посылая в эфир свой номер (parsec). RFID метка помимо микроконтроллера, обеспечивающего передачу уникального номера может быть оснащена различными датчиками. Например датчиком давления. Такой датчик можно разместить в шину автомобиля и непрерывно контролировать давление воздуха в шине.

С каждым днем RFID меткам находят все больше применений. Начиная от использования в качестве ключей для домофона заканчивая противокражными метками в магазинах самообслуживания. Именно увеличение спроса, снижение стоимости из-за массового производства позволяет находить все новые и новые применения.

Метка передает считывателю в ответе на запрос свой уникальный номер. Более сложные метки имеют немного памяти на борту и могут хранить какую либо информацию, например количество оставшихся поездок, что избавляет от необходимости создания центрального сервера и поддержки его на связи всегда. Метка также может иметь на борту криптопроцессор и обеспечивать проверку подлинности или обмен секретными данными. Изучается вопрос добавления RFID меток к банкноты как дополнительная мера защиты.

В будущем возможно все продукты будут снабжены RFID метками на стадии производства, а холодильник RFID считывателем. Тогда взяв вечером спросонья из холодильника пакет молока он молвит человеческим голосом “Сдурел? Выкинь, оно во мне уже пол года лежит, испортилось давно”.

Примеры

Екарта – проездная карточка на все виды транспорта в г.Екатеринбурге. Представляет собой карточку Mifare. Внешний вид:

Немного ацетоновых ванн и видно катушку индуктивности по периметру. Система полностью децентрализованная и информация о количестве денег хранится на самой карте в зашифрованном виде.

Московский метрополитен. Конструкция попроще для удешевления, карточка одноразовая:

Брелок от домофона “Факториал”

Внутри тоже RFID чип от Texas Instruments

При этом при каждом открывании двери данные в ключе перезаписываются, таким образом невозможно увеличить количество ключей. Копия будет работать, но после первого открывания перестанет работать оригинал, так как данные в ключе меняются. Этим хитрым апгрейдом факториал разом сделал бизнес копирования домофонных ключей невозможным.

Активные метки parsec

Представляют собой герметичный контейнер с микроконтроллером, батарейкой и радиомодулем, который посылает в эфир пару раз в секунду свой уникальный номер. Закрепив такой на автомобиле можно определять какие авто на данный момент сейчас находятся к примеру в гараже. Основная задача этих меток в автоматическом открывании ворот и шлагбаумов.

При этом вариант на последнем фото снабжен еще и пассивной меткой, можно повесить как брелок для ключей, и открывать не только ворота но и двери.

Правда безопасность автомобиля, основанная на наличии такой метки уязвима .

Если разберем ключ от автомобиля то найдем в нем чип иммобилайзера, который по сути тоже RFID метка:

Справа на крышке. Надежность и секретность механических замков ограничивается точностью механической обработки и достигла своего предела. Электронные замки и ключи имеют значительно большее число комбинаций.

RFID метки могут внедряться на стадии производства, например гитар:

Производитель таким образом не только облегчает себе отслеживание продукции на складах, но и гарантирует себе способ отличить свою продукцию от подделок.

Вот шапка с RFID меткой пришитой при производстве:

Еще одна от куртки:

Немного растворителей и достаем метки:

Отдельного слова заслуживают так называемые противокражные метки, или 1-битные транспондеры. Это RFID метка которая передает всего 1 бит – информацию о своем наличии. Такие метки используются для защиты товара от краж. Я про одну такую. Чаще всего встречаются метки электромагнитной системы (метка – колебательный контур), и акустомагнитной. Метки других типов в наших краях встречаются редко.

Если вы параноик

Возможно вам пригодится RFID Zapper . Перманентно отключить метку можно также в микроволновке, просто включив на пару секунд. Пассивные метки считываются на расстоянии в несколько метров (для LF и HF вообще не более 20 см). Что бы считать метку на расстоянии 100 метров в считыватель придется закачивать неприлично большие мощности.

16.01.2014

Аббревиатура RFID расшифровывается как Radio Frequency Identification (в переводе с английского: радиочастотная идентификация). RFID (метод радиочастотной идентификации) – технология, которая для автоматической идентификации объектов использует радиоволны. Она может распознавать не только живые существа, но и неодушевленные предметы, к примеру, транспортные средства, контейнеры, одежду и многое другое. Другим примером Auto-ID являются штрих коды или биометрические методы (сканирование сетчатки глаза, использование отпечатков пальцев), а также система оптического распознавания символов и идентификация голоса.

Технология RFID широко применялась еще во времена Великой Отечественной войны. Тогда на самолетах только появились первые системы опознавания, которые позволяли распознавать и отличать свои воздушные войска от войск противника. После окончания войны технология больше не имела коммерческого успеха, но за последние годы все круто изменилось. Ею заинтересовались транспортные и логистические компании, что вывело стандарт на новый уровень.

Где используется технология RFID?

Решения на основе RFID можно использовать:

  • В сфере розничной торговли: для контроля за перемещением товара между складом и магазином, предотвращения краж, удобства проведения инвентаризации.
  • В отрасли производства и продажи меховых изделий: для обязательной маркировки шуб и меховых изделий контрольным идентификационным знаком.
  • В складских и логистических комплексах: для отслеживания перемещения товаров, увеличения скорости приемки и отгрузки, снижения влияния человеческого фактора.
  • На производствах: для контроля за персоналом и транспортом, обеспечения безопасности и предотвращения нештатных ситуаций, учета сырья.
  • В системах контроля доступа и платежных системах: для реализации бесконтактного автоматического доступа, оплаты услуг с помощью терминалов.

Применение технологии RFID:

  • приложения контроля доступа;
  • приложения контроля и учета рабочего времени ;
  • идентификация транспортных средств;
  • автоматизация производства;
  • автоматизация складской обработки.

Принцип работы RFID

Основа работы технологии: взаимодействие RFID-метки (RFID-тега) и RFID-считывателя (RFID-ридера). RFID-метка – миниатюрный чип, который хранит уникальный номер тега и информацию и обладает возможностью для передачи данных RFID-ридеру. Как только RFID-метка попадает в зону действия RFID-ридера, ридер фиксирует факт передачи данных, считывает информацию с метки и передает ее в учетную систему, которая анализирует данные по заранее заданным алгоритмам.

При этом между RFID-меткой и RFID-ридером может быть расстояние до 300 метров (системы, работающие на расстоянии от 5 до 300 метров относят к системам дальней идентификации, от 20 см до 5 м – идентификации средней дальности, до 20 см – системы ближней идентификации).

Преимущества технологии RFID

  • Большое расстояние считывания
  • Независимость от ориентации метки и ридера
  • Скорость и точность идентификации
  • Возможность работы через материалы, пропускающие радиоволны, нет необходимости в прямой видимости
  • Возможность считывания метки с двигающегося объекта
  • Возможность хранения дополнительной информации на метке и ее перезаписи
  • Сложность подделки RFID-меток
  • Одновременное чтение нескольких меток (при наличии антиколлизионной фунции)
  • Устойчивость к воздействиям окружающей среды, длительный срок эксплуатации

Система RFID состоит из:

  • RFID-Считыватель;
  • RFID-Метка;
  • Программное обеспечение.

Считыватель занимается генерированием и распространением электромагнитных волн в окружающее пространство. Данный сигнал принимается RFID-меткой, которая создает обратный сигнал, улавливающийся антенной считывающего устройства, затем полученная информация расшифровывается и обрабатывается электронным блоком. Объект, оснащенный RFID-меткой, идентифицируется с помощью уникального цифрового кода, который хранится в памяти электронной метки. К примеру, можно в считанные секунды получить индивидуальные данные пользователя или идентификационный номер того или иного товара.

RFID-метки: классификация

Источник питания

Основная используемая классификация RFID-меток основана на источнике питания – согласно ей, теги делятся на пассивные, активные и полупассивные.

Пассивные RFID-метки не имеют собственного источника питания и используют для работы энергию поля считывателя. В зависимости от архитектуры RFID-метки и типа ридера, пассивные теги работают только на небольшом расстоянии - до 8 метров, но при этом отличаются компактностью и доступной ценой.

Именно пассивные низкочастотные RFID-метки наиболее часто встречаются нам на товарах в магазинах – над повышением компактности тегов и снижением их стоимости работают представители ведущих мировых торговых сетей.

Активные RFID-метки оснащены собственным источником питания, поэтому могут получить дополнительные функции, работают на большем расстоянии и менее требовательны к считывателю. К их недостаткам, по сравнению с пассивными метками, можно отнести большой размер и ограниченное время работы источника питания (правда, на сегодняшний день речь идет о сроке жизни батареи до 10 лет), однако они незаменимы там, где необходим большой радиус работы (до 300 метров).

Активные RFID-метки по праву считаются более надежными, они могут передавать сигнал даже через воду или металл, а также их можно оснастить встроенными сенсорами для оценки температуры, влажности, уровня освещенности и других параметров окружающей среды. Таким образом, RFID-метки могут помочь отслеживать, к примеру, соблюдение условий хранения определенных категорий товаров.

Полупассивные RFID-метки работают по тому же принципу, что и пассивные, но оснащены батареей для питания чипа. Можно сказать, что такое решение является компромиссным в плане стоимости, размера и характеристик RFID-меток.

Исполнение

По исполнению RFID-метки могут представлять собой пластиковые карты, брелоки, корпусные метки, а также самоклеящиеся этикетки из бумаги или термопластика. Существует также формат «невидимой» этикетки, которая фактически вшивается в упаковку товара непосредственно на этапе производства.

Тип памяти

По типу памяти RFID-метки делятся на предназначенные только для идентификации (RO, Read Only), разработанные для считывания блока информации (WORM, Write Once Read Many) и перезаписываемые (RW, Read and Write).

RO RFID-метки используются исключительно для идентификации – данные уникального идентификатора записываются при изготовлении тега, поэтому скопировать их и подделать метку практически невозможно.

WORM RFID-метки позволяют однократно записать какие-либо данные, которые впоследствии можно будет многократно считывать и использовать. Это позволяет пользователю при получении дополнить метку своей информацией, которая затем будет использоваться при считывании.

RW RFID-метки содержат блок памяти, который позволяет многократно записывать и считывать информацию. Идентификатор RFID-метки при этом остается неизменным.

Рабочая частота

Классификация RFID-меток по рабочей частоте выглядит следующим образом:

  • Метки диапазона LF (125-134 кГц)

Характеризуются доступными ценами и определенными физическими характеристиками, которые позволяют использовать такие RFID-метки для чипирования животных. Обычно это – пассивные системы, которые работают только на маленьких расстояниях.

  • Метки диапазона HF (13,56 МГц)

RFID-метки такой частоты используются в основном для идентификации личности, в платежных системах, для решения простых бизнес-задач (например, для идентификации продукции на складе). Большинство RFID-систем, работающих на частоте 13,56 МГц, работает в соответствии со стандартом ISO 14443 (A/B) – именно на этом стандарте работает, к примеру, система оплаты проезда в общественном транспорте Парижа.

К недостаткам RFID-систем описанного диапазона можно отнести отсутствие достойного уровня безопасности, а также возможные проблемы со считыванием на большом расстоянии, в условиях высокой влажности, через металлические проводники.

  • Метки диапазона UHF (860-960 МГц)

Разработанные специально для работы с товарами на складах и в логистических системах, RFID-метки этого диапазона изначально не имели собственного уникального идентификатора. Предполагалось, что в качестве него будет использоваться EPC-номер товара, однако это не позволило бы контролировать подлинность метки, поэтому развитие систем на базе UHF-диапазона позволило усовершенствовать систему.

При этом к особенностям RFID-меток указанного диапазона относится высокая дальность и скорость работы и наличие антиколлизионных механизмов. Сегодня стоимость RFID-меток диапазона UHF является минимальной, однако цена прочего оборудования для работки в обозначенном диапазоне достаточно велика.

К отдельной категории UHF RFID-меток можно отнести теги ближнего поля. Используя магнитное поле антенны, технически они не относятся к радиометкам и могут считываться при высокой влажности и в присутствии металла. Массовое применение меток ближнего поля ожидается, например, в работе с фармацевтическими товарами, нуждающимися в контроле подлинности и строгом учете.

Разновидности RFID меток

Электронные метки бывают активными и пассивными. Активные идентификаторы снабжены собственным источником питания, дальность считывания таких устройств не зависит от энергии ридера. Пассивные метки не имеют своего источника питания, потому питаются от энергии электромагнитного сигнала, который распространяет считыватель. Дальность идентификации данных меток напрямую зависит от энергии, которую излучает ридер.

Каждый из этих видов устройств характеризуется своими преимуществами и недостатками. Пассивные метки хороши своим большим сроком эксплуатации, а также дешевизной в сравнении со своим активным аналогом. К тому же, пассивные идентифицирующие устройства не нуждаются в замене элементов питания. Недостатком устройства является необходимость в использовании более мощных считывателей.

Активные идентифицирующие устройства характеризуются высокой дальностью считывания информации в отличие от пассивных меток, а также возможностью распознавать и считывать данные при движении электронной метки на высокой скорости относительно считывающего устройства. Недостатком активных меток является высокая цена и громоздкость.

Типы RFID-идентификаторов в зависимости от рабочей частоты:

  • (ВЧ) Высокочастотные RFID-метки, работающие на частоте 13,56 МГц;
  • (УВЧ) Ультравысокочастотные RFID-метки, работающие в диапазоне частот 860-960 МГц. Данный диапазон используется в России, в Европе RFID-метки работают в диапазоне 863-868 МГц.

Способы записи информации на идентификатор (метку):

  • ReadOnly-устройства - идентификаторы, на которые можно записать информацию лишь единожды, дальнейшее изменение или удаление информации невозможно;
  • WORM-устройства - RFID-метки, которые позволяют однократно записывать и многократно считывать данные. Изначально в памяти устройства не хранится никакой информации, все необходимые данные вносит пользователь, но после записи перезаписать или удалить информацию невозможно;
  • R/W-устройства – идентификаторы, которые позволяют многократно считывать и записывать информацию. Это наиболее прогрессивная группа устройств, так как подобные метки позволяют перезаписывать и удалять ненужную информацию.

Технология RFID широко используется в производстве, розничной торговле , системах управления и контроля доступом, системах защиты от подделки документов и других областях. Она позволяет экономить время и сводит к минимуму использование ручного труда.

Особенности

Несмотря на достаточно высокую стоимость использования RFID-систем, их внедрение целесообразно везде, где важен высокий уровень безопасности и быстрая идентификация объектов. При этом особое внимание следует уделить выбору конкретного решения, который будет зависеть от множества факторов:

    Расстояние между RFID-метками и ридерами

    Наличие экранирующих поверхностей (например, металлических)

    Необходимость одновременного считывания данных с нескольких меток (защиты от коллизий)

    Необходимость защищенного исполнения меток, скрытого размещения меток

    Высокие требования к безопасности меток

    Хранение и перезапись данных

    Простота интеграции с используемой инфраструктурой

Please enable JavaScript to view the

Министерство образования и науки Украины

Донецкий национальный университет

Кафедра Радиофизики

РЕФЕРАТ

На тему:

«Системы радиочастотной идентификации»


План

Введение

1 Классификация систем радиочастотной идентификации (РЧИ) и области применения

2 Состав системы РЧИ, физические принципы работы

3 Преимущества и недостатки радиочастотной идентификации

4 Характеристики систем РЧИ и её элементов. Международные стандарты

Список литературы


Введение

RFID (англ. Radio Frequency IDentification, радиочастотная идентификация)- метод автоматической идентификации объектов, в котором посредством радиосигналов считываются или записываются данные, хранящиеся в так называемых транспондерах, или RFID-метках.

Любая RFID-система состоит из считывающего устройства (считыватель, ридер или интеррогатор) и транспондера (он же RFID-метка, иногда также применяется термин RFID-тег).

Большинство RFID-меток состоит из двух частей. Первая - интегральная схема (ИС) для хранения и обработки информации, модулирования и демодулирования радиочастотного (RF) сигнала и некоторых других функций. Вторая - антенна для приёма и передачи сигнала.

C введением RFID-меток в повседневную жизнь связан ряд проблем. Например, потребители, не обладающие считывателями, не всегда могут обнаружить метки, прикреплённые к товару на этапе производства и упаковки, и избавиться от них. Хотя при продаже, как правило, такие метки уничтожаются, сам факт их наличия вызывает опасения у правозащитных и религиозных организаций.

Уже известные приложения RFID (бесконтактные смарт-карты в системах контроля управления доступом и в платёжных системах) получают дополнительную популярность с развитием интернет-услуг.

В 1945 году Лев Сергеевич Термен изобрёл для Советского Союза устройство, которое позволило накладывать аудиоинформацию на случайные радиоволны. Звук вызывал колебание диффузора, которое незначительно изменяло форму резонатора, модулируя отражённую радиочастотную волну. И хотя устройство представляло лишь пассивный передатчик (т. н. «жучок»), это изобретение причисляют к первым предшественникам RFID-технологии.

Технология, наиболее близкая к данной - система распознавания «свой-чужой» IFF (Identification Friend or Foe), изобретённая Исследовательской лабораторией ВМС США в 1937 году. Она активно применялась союзниками во время Второй мировой войны, чтобы определить, своим или чужим является объект в небе. Подобные системы до сих пор используются как в военной, так и в гражданской авиации.

Ещё одной вехой в использовании RFID-технологии является работа Гарри Стокмана (Harry Stockman) под названием «Коммуникации посредством отражённого сигнала» (англ. "Communication by Means of Reflected Power") (доклады IRE, стр. 1196-1204, октябрь 1948). Стокман отмечает, что «…значительные работы по исследованию и разработке были сделаны до того, как были решены основные проблемы в связи посредством отражённого сигнала, а также до того, как были найдены области применения данной технологии».

Первая демонстрация современных RFID-чипов (на эффекте обратного рассеяния), как пассивных, так и активных, была проведена в Исследовательской Лаборатории Лос Аламоса (англ. Los Alamos Scientific Laboratory) в 1973 году. Портативная система работала на частоте 915 МГц и использовала 12 битные метки.

Первый патент, связанный собственно с названием RFID, был выдан Чарльзу Уолтону (Charles Walton) в 1983 году (патент США за № 4,384,288).

1 Классификация систем РЧИ и области применения

Классификация RFID-систем

Существует несколько способов систематизации RFID-меток и систем:

1) По диапазону частот;

2) По типу источника питания;

3) По типу памяти;

4) По исполнению.

Диапазон частот.

Частоты электромагнитного излучения считывателя и обратного сигнала, передаваемого меткой значительно влияют на характеристики работы радиочастотной системы в целом. Как правило, чем выше диапазон рабочих частот системы RFID, тем больше дальности, на которых считывается информация с радиочастотных меток.

Сегодня RFID-системы используют четыре частотных диапазона: 125-150 кГц, 13,56 МГц, 862-950 МГц и 2,4-5 ГГц. Чем объясняется выбор этих диапазонов частот? Это те частоты, для которых в большинстве стран разрешено вести коммерческие разработки. Для примера отметим, что диапазон 2,45 ГГц – это частоты, на которых работают беспроводные устройства стандарта Bluetooth и Wi-Fi.

Для каждого из упомянутых частотных диапазонов действуют свои стандарты со своей степенью проработки. Наиболее общие их характеристики представлены в таблице.

Низкочастотные метки имеют встроенные антенны в виде многоконтурных (несколько сотен) обмоток. Пассивные системы данного диапазона имеют низкие цены, и в связи с физическими характеристиками, используются для подкожных меток при чипировании животных, людей и рыб. Однако, в связи с длиной волны, существуют проблемы со считыванием на большие расстояния, а также проблемы, связанные с появлением коллизий при считывании.

Системы средних частот (13МГц) дешевы, не имеют экологических и лицензионных проблем, хорошо стандартизованы, имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. Для частоты 13,56 МГц разработан стандарт ISO 14443 (виды A/B). В отличие от Mifare 1К в данном стандарте обеспечена система диверсификации ключей, что позволяет создавать открытые системы. Используются стандартизованные алгоритмы шифрования.

На основе стандарта 14443 В разработано несколько десятков систем, например, система оплаты проезда общественного транспорта Парижского региона.

Для существовавших в данном диапазоне частот стандартов были найдены серьёзные проблемы в безопасности: совершенно отсутствовала криптография у дешёвых чипов карты Mifare Ultralight, введённая в использование в Нидерландах для системы оплаты проезда в городском общественном транспорте OV-chipkaart, позднее была взломана считавшаяся более надёжной карта Mifare Classic.

Как и для диапазона низких частот, в системах, построенных в диапазоне средних частот, существуют проблемы со считыванием на большие расстояния, считывание в условиях высокой влажности, наличия металла, а также проблемы, связанные с появлением коллизий при считывании.

Метки данного диапазона обладают наибольшей дальностью регистрации, во многих стандартах данного диапазона присутствуют антиколлизионные механизмы. Ориентированные изначально для нужд складской и производственной логистики, метки диапазона UHF не имели уникального идентификатора. Предполагалось, что идентификатором для метки будет служить EPC-номер (Electronic Product Code) товара, который каждый производитель будет заносить в метку самостоятельно при производстве. Однако скоро стало ясно, что помимо функции носителя EPC-номера товара хорошо бы возложить на метку ещё и функцию контроля подлинности. То есть возникло требование, противоречащее самому себе: одновременно обеспечить уникальность метки и позволить производителю записывать произвольный EPC-номер.

Долгое время не существовало чипов, которые бы удовлетворяли этим требованиям полностью. Выпущенный компанией Philips чип Gen 1.19 обладал неизменяемым идентификатором, но не имел никаких встроенных функций по паролированию банков памяти метки, и данные с метки мог считать кто угодно, имеющий соответствующее оборудование. Разработанные впоследствии чипы стандарта Gen 2.0 имели функции паролирования банков памяти (пароль на чтение, на запись), но не имели уникального идентификатора метки, что позволяло при желании создавать идентичные клоны меток.

Наконец, в 2008 году компания NXP выпустила два новых чипа, которые на сегодняшний день отвечают всем выше перечисленным требованиям. Чипы SL3S1202 и SL3FCS1002 выполнены в стандарте EPC Gen 2.0, но отличаются от всех своих предшественников тем, что поле памяти TID (Tag ID), в которое при производстве обычно пишется код типа метки (и он в рамках одного артикула не отличается от метки к метке), разбито на две части. Первые 32 бита отведены под код производителя метки и её марку, а вторые 32 бита - под уникальный номер самого чипа. Поле TID - неизменяемое, и, таким образом, каждая метка является уникальной. Новые чипы имеют все преимущества меток стандарта Gen 2.0. Каждый банк памяти может быть защищен от чтения или записи паролем, EPC-номер может быть записан производителем товара в момент маркировки.

В высокочастотных RFID-системах по сравнению со среднечастотными и низкочастотными ниже стоимость меток, при этом выше стоимость прочего оборудования.

В настоящее время частотный диапазон УВЧ открыт для свободного использования в Российской Федерации в так называемом «европейском» диапазоне - 863-868 МГЦ.

Высокочастотные метки имеют одноконтурные обмотки (диполь-антенна).

Метки ближнего поля (англ. UHF Near-Field), не являясь непосредственно радиометками, а используя магнитное поле антенны, позволяют решить проблему считывания в условиях высокой влажности, присутствия воды и металла. С помощью данной технологии ожидается начало массового применения RFID-меток в розничной торговле фармацевтическими товарами (нуждающимися в контроле подлинности, учёте, но при этом зачастую содержащими воду и металлические детали в упаковке).

Наименьшими размерами и стоимостью обладают пассивные метки класса Read Only (только чтение) и малой дальности (расстояние до считывателя не более 2 метров).

По типу источника питания RFID-метки делятся на пассивные, активные полупассивные

Активные и пассивные метки.

Радиочастотная метка обычно включает в себя приемник, передатчик, антенну и блок памяти для хранения информации. Приемник, передатчик и память конструктивно выполняются в виде отдельной микросхемы (чипа), поэтому внешне кажется, что радиочастотная метка состоит всего из двух частей: многовитковой антенны и чипа. Иногда в состав конструкции метки включается источник питания (например, литиевая батарейка).

Метки с источниками питания называются активными (Active). Дальность считывания активных меток не зависит от энергии считывателя.Они имеют большие размеры и могут быть оснащены дополнительной электроникой. Однако, такие метки наиболее дороги, а у батарей ограничено время работы.

Активные метки в большинстве случаев более надёжны и обеспечивают самую высокую точность считывания на максимальном расстоянии. Активные метки, обладая собственным источником питания, также могут генерировать выходной сигнал большего уровня, чем пассивные, позволяя применять их в более агрессивных для радиочастотного сигнала средах: воде (включая людей и животных, которые в основном состоят из воды), металлах (корабельные контейнеры, автомобили), для больших расстояний на воздухе. Большинство активных меток позволяет передать сигнал на расстояния в сотни метров при жизни батареи питания до 10 лет. Некоторые RFID-метки имеют встроенные сенсоры, например, для мониторинга температуры скоропортящихся товаров. Другие типы сенсоров в совокупности с активными метками могут применяться для измерения влажности, регистрации толчков/вибрации, света, радиации, температуры и газов в атмосфере (например, этилена).

Пассивные метки (Passive) не имеют собственного источника питания, а необходимую для работы энергию получают из поступающего от считывателя электромагнитного сигнала. Дальность чтения пассивных меток зависит от энергии считывателя.

Электрический ток, индуцированный в антенне электромагнитным сигналом от считывателя, обеспечивает достаточную мощность для функционирования кремниевого CMOS-чипа, размещённого в метке, и передачи ответного сигнала.

Коммерческие реализации низкочастотных RFID-меток могут быть встроены в стикер (наклейку) или имплантированы под кожу (см. VeriChip).

В 2006 Hitachi изготовила пассивное устройство, названное µ-Chip (мю-чип), размерами 0.15х0.15 мм (не включая антенну) и тоньше бумажного листа (7.5 мкм). Такого уровня интеграции позволяет достичь технология «кремний-на-изоляторе» (SOI). µ-Chip может передавать 128-битный уникальный идентификационный номер, записанный в микросхему на этапе производства. Данный номер не может быть изменён в дальнейшем, что гарантирует высокий уровень достоверности и означает, что этот номер будет жёстко привязан (ассоциирован) с тем объектом, к которому присоединяется или в который встраивается этот чип. µ-Chip от Hitachi имеет типичный радиус считывания 30 см (1 фут). В феврале 2007 года Hitachi представила RFID-устройство, обладающее размерами 0,05 х 0,05 мм, и толщиной, достаточной для встраивания в лист бумаги.

Компактность RFID-меток зависит от размеров внешних антенн, которые по размерам превосходят чип во много раз и, как правило, определяют габариты меток. Наименьшая стоимость RFID-меток, которые стали стандартом для таких компаний, как Wal-Mart, Target, Tesco в Великобритании, Metro AG в Германии и Министерства обороны США, составляет примерно 5 центов за метку фирмы SmartCode (при покупке от 100 млн штук). К тому же, из-за разброса размеров антенн, и метки имеют различные размеры - от почтовой марки до открытки. На практике максимальная дистанция считывания пассивных меток варьируется от 10 см (4 дюймов) (согласно стандарту ISO 14443) до нескольких метров (стандарты EPC и ISO 18000-6), в зависимости от выбранной частоты и размеров антенны. В некоторых случаях антенна может быть изготовлена печатным способом.

Производственные процессы от Alien Technology под названием Fluidic Self Assembly, от SmartCode - Flexible Area Synchronized Transfer (FAST) и от Symbol Technologies - PICA направлены на дальнейшее уменьшение стоимости меток за счёт применения массового параллельного производства. Alien Technology в настоящее время использует процессы FSA и HiSam для изготовления меток, в то время как PICA - процесс от Symbol Technologies - находится ещё на стадии разработки. Процесс FSA позволяет производить свыше 2 миллионов ИС пластин в час, а PICA процесс - более 70 миллиардов меток в год (если его доработают). В этих технических процессах ИС присоединяются к пластинам меток, которые в свою очередь присоединяются к антеннам, образуя законченный чип. Присоединение ИС к пластинам и в дальнейшем пластин к антеннам - самые пространственно чувствительные элементы процесса производства. Это значит, что при уменьшении размеров ИС монтаж (англ. Pick and place) станет самой дорогой операцией. Альтернативные методы производства, такие как FSA и HiSam, могут значительно уменьшить себестоимость меток. Стандартизация производства (англ. Industry benchmarks) в конечном счёте приведёт к дальнейшему падению цен на метки при их широкомасштабном внедрении.

Некремниевые метки могут изготавливаться из полимерных полупроводников. В настоящее время их разработкой занимаются несколько компаний по всему миру. Метки, изготавливаемые в лабораторных условиях и работающие на частотах 13.56 МГц, были продемонстрированы в 2005 году компаниями PolyIC (Германия) и Philips (Голландия). В промышленных условиях полимерные метки будут изготавливаться методом прокатной печати (технология напоминает печать журналов и газет), в результате чего они будут дешевле, чем метки на основе ИС. В конечном счёте это может закончиться тем, что для большинства сфер применения метки станут печатать так же просто, как и штрих-коды, и они станут такими же дешёвыми.

Пассивные метки УВЧ и СВЧ диапазонов (860-960 МГц и 2,4-2,5 ГГц) передают сигнал методом модуляции отражённого сигнала несущей частоты (англ. Backscattering Modulation - модуляция обратного рассеяния). Антенна считывателя излучает сигнал несущей частоты и принимает отражённый от метки модулированный сигнал. Пассивные метки ВЧ диапазона передают сигнал методом модуляции нагрузки сигнала несущей частоты (англ. Load Modulation - нагрузочная модуляция). Каждая метка имеет идентификационный номер. Пассивные метки могут содержать перезаписываемую энергонезависимую память EEPROM-типа. Дальность действия меток составляет 1-200 см (ВЧ-метки) и 1-10 метров (УВЧ и СВЧ-метки).

Преимуществом активных меток по сравнению с пассивными является значительно большая (не менее, чем в 2-3 раза) дальность считывания информации и высокая допустимая скорость движения активной метки относительно считывателя.

Преимуществом пассивных меток является практически неограниченный срок их службы (не требуют замены батареек). Недостаток пассивных меток в необходимости использования более мощных устройств считывания информации, обладающих соответствующими источниками питания.

Полупассивные RFID-метки, также называемые полуактивными, очень похожи на пассивные метки, но оснащены батареей, которая обеспечивает чип энергопитанием. При этом дальность действия этих меток зависит только от чувствительности приёмника считывателя и они могут функционировать на большем расстоянии и с лучшими характеристиками.

Способы записи информации на метки.

Информация в устройство памяти радиочастотной метки может быть занесена различными способами. Способ записи информации зависит от конструктивных особенностей метки. В зависимости от этого различают следующие типы меток:

Read Only - метки, которые работают только на считывание информации. Необходимые для хранения данные заносятся в память метки изготовителем и не могут быть изменены в процессе эксплуатации.

WORM - метки ("Write Once Read Many") для однократной записи и многократного считывания информации. Они поступают от изготовителя без каких-либо данных пользователя в устройстве памяти. Необходимая информация записывается самим пользователем, но только один раз. При необходимости изменить данные потребуется новая метка.

R/W - метки ("Read/Write") многократной записи и мнократного считывания информации.

2 Состав системы РЧИ, физические принципы работы

В состав системы входят: антенна для приема и передачи сигнала, считывающее устройство (считыватель, ридер) и RFID-метка для хранения информации.

Низкочастотная идентификация

Данный метод РЧИ работает на несущих частотах от сотен килогерц, до единиц мегагерц. У нас в стране на это выделено 2 частотные зоны: 125 кГц (LF), и 13,56 МГц (HF).

Принцип работы меток предельно прост и описывается как работа обычного трансформатора. Все мы знаем что трансформатор – это элемент позволяющий изменять величину протекающего по нему тока и поданного на его первичную обмотку напряжения в соотношении количества витков его первичной и вторичной обмотки U1/U2=N1/N2. А вот импеданс обмоток меняется уже в совершенно другой пропорции: Z1/Z2=(N1/N2)^2. соответственно небольшое изменение импеданса в нагрузке будет явно выражено для опрашивающего устройства. Соответственно получаем следующую систему: приёмо-передающий модуль, в качестве антенны у которого некая обмотка (первичная). Метка – это чип, со вторичной обмоткой соответственно. При поднесении считывателя к метке, через обмотку метки начинает течь ток и от него запитывается чип, который изменяя импеданс в нагрузке обмотки передаёт информацию считывателю.


Наиболее функциональна, из представленных, технология РЧИ на частоте 13,56 МГц. Она обладает высокой скоростью передачи данных и большими объёмами хранимой информации на метке (единицы килобайт).

Минус этой системы – малое расстояние считывания информации с метки – обычно не превышающее 30 см, а средний показатель не превышает 10 см. Один из самых ярких примеров применения этой технологии – билеты Московского Метрополитена.

Высокочастотная идентификация

В Российской Федерации есть ещё один стандарт РЧИ – 868 МГц (UHF). Принцип действия этой технологии уже совершенно иной, нежели у низкочастотных методов. Тут мы имеем дело с нелинейной радиолокацией. Этот метод был обкатан десятилетиями применения в технических разведках, таких как Агентство Национальной Безопасности США, и в нашем славном Комитете Государственной Безопасности СССР. Для технологии РЧИ он был просто удешевлён и миниатюризирован, но остался по сути тем же что и для специальных применений.

Высокочастотный метод работает по следующему принципу. Считыватель радиометок представляет собой активное приёмопередающее устройство с непрерывным излучением несущей частоты. Приёмная часть соответственно так же включена постоянно. Колебательная энергия излучается в эфир через антенную систему.

Радиометка представляет собой чип снабженный антенной системой – обычно полуволновой, или четверть волновой диполь.

Радиометка принимает посредством собственной антенной системы высокочастотную энергию переданную считывателем. В чипе находится мостовой выпрямитель (банальный линейный блок питания с небанальными микроскопическими размерами) и с его помощью часть принятого УВЧ сигнала служит питанием микросхемы. После того как микросхема запитывается, начинается активный опрос метки считывателем. Ответная информация высылается меткой посредством амплитудной модуляции отражённого сигнала, которая получается с помощью изменения эффективной поверхности рассеяния (ЭПР) метки с помощью нелинейного элемента - варикапа (диод с переменной ёмкостью).


Технология РЧИ в УВЧ диапазоне позволяет: производить считывание пассивных меток на расстоянии до 10 метров. Среднее же расстояние считывание меток в промышленных условиях составляет от полуметра до 3-х метров. Единовременно в поле считывателя может находиться до 200…300 меток, и ВСЕ(!!!) они будут идентифицированы. Огромная скорость опроса меток – до 100…200 опросов в секунду в зависимости от применяемого оборудования. Объем памяти пассивной УВЧ радиометки в наши дни достигает единиц килобайт. Кроме того, в чип размером 0,5х0,5х0,2 мм встроен собственный криптопроцессор, позволяющий защитить эфирный канал передачи данных «метка-считыватель».

Ограничения же данной технологии лежат исключительно в свойствах маркируемых ими материалов. Естественно, что идеальными для маркировки являются диэлектрики. Они позволяют не задумываться о размещении метки, и её типе. Совсем другую задачу ставят металлы и водосодержащие материалы. Но и для них существуют специальные УВЧ метки для сложных материалов.

Во всём мире эта технология внедряется повсеместно в производстве, торговле, логистике… К сожалению, в России продвижение технологии УВЧ РЧИ идет в прямом смысле со скрипом. Связано это с обилием дешёвой рабочей силы, и отсутствием в заинтересованности учета товара, груза и прочего (иначе говоря в банальной непорядочности методов и средств работы отечественного бизнеса).

Кроме того, ходит тьма мифов о самой технологии РЧИ, которые так же мешают её внедрению в повседневную жизнь.

3 Преимущества и недостатки радиочастотной идентификации

Преимущества радиочастотной идентификации

1. Возможность перезаписи. Данные RFID-метки могут перезаписываться и дополняться много раз, тогда как данные на штрих-коде не могут быть изменены - они записываются сразу при печати.

2. Отсутствие необходимости в прямой видимости. RFID-считывателю не требуется прямая видимость метки, чтобы считать её данные. Взаимная ориентация метки и считывателя часто не играет роли. Метки могут читаться через упаковку, что делает возможным их скрытое размещение. Для чтения данных метке достаточно хотя бы ненадолго попасть в зону регистрации, перемещаясь в том числе и на довольно большой скорости. Напротив, устройству считывания штрих-кода всегда необходима прямая видимость штрих-кода для его чтения.

3. Большее расстояние чтения. RFID-метка может считываться на значительно большем расстоянии, чем штрих-код. В зависимости от модели метки и считывателя, радиус считывания может составлять до нескольких сотен метров. В то же время подобные расстояния требуются не всегда.

Больший объём хранения данных. RFID-метка может хранить значительно больше информации, чем штрих-код. На микросхеме площадью в 1 см² может храниться до 10000 байт информации, в то время как штриховые коды могут вместить 100 байт (знаков) информации, для воспроизведения которых понадобится площадь размером с лист формата А4.

4. Поддержка чтения нескольких меток. Промышленные считыватели могут одновременно считывать множество (более тысячи) RFID-меток в секунду, используя так называемую антиколлизионную функцию. Устройство считывания штрих-кода может единовременно сканировать только один штрих-код.

5. Считывание данных метки при любом её расположении. В целях обеспечения автоматического считывания штрихового кода, комитеты по стандартам (в том числе EAN International) разработали правила размещения штрих-меток на товарной и транспортной упаковке. К радиочастотным меткам эти требования не относятся. Единственное условие - нахождение метки в зоне действия считывателя.

6. Устойчивость к воздействию окружающей среды. Существуют RFID-метки, обладающие повышенной прочностью и сопротивляемостью жёстким условиям рабочей среды, а штрих-код легко повреждается (например, влагой или загрязнением). В тех сферах применения, где один и тот же объект может использоваться неограниченное количество раз (например, при идентификации контейнеров или возвратной тары), радиочастотная метка оказывается более приемлемым средством идентификации, так её не требуется размещать на внешней стороне упаковки. Пассивные RFID-метки имеют практически неограниченный срок эксплуатации.

7. Интеллектуальное поведение. RFID-метка может использоваться для выполнения других задач, помимо функции носителя данных. Штрих-код же не программируем и является лишь средством хранения данных.

8. Высокая степень безопасности. Уникальное неизменяемое число-идентификатор, присваиваемое метке при производстве, гарантирует высокую степень защиты меток от подделки. Также данные на метке могут быть зашифрованы. Радиочастотная метка обладает возможностью закрыть паролем операции записи и считывания данных, а также зашифровать их передачу. В одной метке можно одновременно хранить открытые и закрытые данные.

Недостатки радиочастотной идентификации

1. Стоимость системы выше стоимости системы учёта, основанной на штрих-кодах.

2. Сложность самостоятельного изготовления. Штрих-код можно напечатать на любом принтере.

3. Подверженность помехам в виде электромагнитных полей.

4. Недоверие пользователей, возможности использования её для сбора информации о людях.

5. Установленная техническая база для считывания штрих-кодов существенно превосходит по объёму решения на основе RFID.

6. Недостаточная открытость выработанных стандартов.

4 Характеристики систем РЧИ и её элементов

Характеристики технологии RFID Штрих-код
Необходимость в прямой видимости метки Чтение даже скрытых меток Чтение без прямой видимости невозможно
Объём памяти От 10 до 10 000 байт До 100 байт
Возможность перезаписи данных и многократного использования метки Есть Нет
Дальность регистрации До 100м До 4м
Одновременная идентификация нескольких объектов До 200 меток в секунду Невозможна
Устойчивость к воздействиям окружающей среды: механическому, температурному химическому, влаге Повышенная прочность и сопротивляемость Зависит от материала, на который наносится
Срок жизни метки Более 10 лет Зависит от способа печати и материала, из которого состоит отмечаемый объект
Безопасность и защита от подделки Подделка практически невозможна Подделать легко
Работа при повреждении метки Невозможна Затруднена
Идентификация движущихся объектов Да Затруднена
Подверженность помехам в виде электромагнитных полей Есть Нет
Идентификация металлических объектов Да Возможна
Использование как стационарных, так и ручных терминалов для идентификации Есть Да
Возможность введения в тело человека или животного Возможна Затруднена
Габаритные характеристики Средние и малые Малые
Стоимость Средняя и высокая Низкая

Международные стандарты

Существует огромное множество компаний, выпускающих собственные устройства радиочастотной идентификации, при этом считыватели производства какой-либо фирмы могут считывать информацию только своих фирменных меток и не понимают метки других фирм. В отсутствие стандартов оборудование различается по рабочим частотам, по форматам хранимых данных, по алгоритмам работы и способам закрытия данных.

В настоящее время оборудование радиочастотной идентификации, выпущенное двумя любыми компаниями, несовместимо друг с другом.

Выпускаемые в настоящее время сканеры штрихового кода "понимают" практически все существующие символики. Однако по взглядам EAN International существующее положение в области штрихового кодирования не является удовлетворительным: число основных, наиболее часто используемых кодов достигло четырех (EAN-13, EAN-8, UPC-A, UPC-E), в то время как в идеальном для пользователей случае это мог бы быть один единственный код EAN-13.

Областью деятельности EAN International является товарная нумерация, в которой RFID - это лишь один из способ обозначения номера товара наряду со штриховым кодированием, оптической, биометрической, магнитной идентификацией и т.д. Поэтому EAN International видит цель стандартизации RFID в том, чтобы новая система, во-первых, была совместима с существующей системой EAN/UCC и затраты пользователей при внедрении EAN/UCC не пропали даром.

Во-вторых, стандарты радиочастотной идентификации в идеальном случае должны обеспечивать единый формат представления данных. Заслуживает внимания предложение Gencod-EAN FRANCE об использовании в качестве единого формата данных в радиочастотных метках справочников международного стандарта ЭДИФАКТ ООН/ EANCOM.

В-третьих, при стандартизации технических требований к устройствам RFID была бы крайне нежелательной ситуация, при которой в качестве международного стандарта были бы закреплены чьи-то фирменные технологии, защищенные патентами.

Международным органом по стандартизации в области RFID является Рабочая группа N4 (WG 4), образованная в августе 1997 года в составе подкомитета по автоматической идентификации (SC 31) объединенного технического комитета N1 (JTC1) Международной организации по стандартизации (ISO) -

ISO/JTC1/SC31/WG4. Председателем ISO/JTC1/SC31/WG4 утвержден технический директор EAN International Анри Бартель, что свидетельствует о признании ведущей роли международной ассоциации EAN International и стандартов EAN/UCC в области разработки стандартов радиочастотной идентификации.

ISO/JTC1/SC31/WG4 приступила к разработке стандартов радиочастотных систем, гарантирующие их совместимость. Первый шаг - стандартизация интерфейса ("air interface") между считывателем и радиочастотной меткой. На этом этапе должны быть стандаризированы рабочие частоты, физические характеристики среды и сигналов, которыми обмениваются считыватели и метки (транспондеры). Разработкой стандартов "air interface" занимается специальная группа TF3 в составе ISO/JTC1/SC31/WG4. В работе WG4/ТF3 наряду с Австрией, Германией, Данией, США, Францией и Японией принимают участие представители ЮНИСКАН/EAN РОССИЯ/AIM РОССИЯ. Анализ характеристик выпускаемого оборудования RFID и опрос международных экспертов выявил основные диапазоны рабочих частот, вокруг которых начались работы по стандартизации для воздушного интерфейса. К ним относятся:

менее 135 кГц 13,56 MГц 2,45 ГГц 5,5 ГГц

Другим первоочередным направлением работы в области стандартизации RFID является определение структуры, состава и характеристик элементов данных, записываемых на радиочастотную метку. ISO/JTC1/SC31/WG4 работает в этом направлении совместно с рабочей группой WG2 "Элементы данных", возглавляемой генеральным секретарем ICODIF/EAN БЕЛЬГИЯ-ЛЮКСЕМБУРГ Этьеном Боне. Первое совместное заседание специалистов WG4 и WG2 состоялось 8-9.07.98 в г.Осло (Норвегия), в нем приняли участие и представители ЮНИСКАН/EAN РОССИЯ/AIM РОССИЯ.

Список литературы

1. http://ru.wikipedia.org/wiki/RFID; Википедия.

2. http://www.indel.by/ru/book/print/117 Indel.by - официальный сайт ЗАО «ИнделКо».

3. http://rfidforyou.com/index/o_tekhnologi_rfid/0-4; RFID4YOU О технологии Радиочастотной Идентификации по-русски и доступно – 2010.

Из всем полюбившейся (по крайней мере, я на это очень надеюсь) серии «Взгляд изнутри» - больше полугода. Не то, чтобы не было, о чём написать или рассказать, просто одолели дела, которые станут предметом одной из следующих моих статей на Хабре (надеюсь, что её не отправят в утиль, так как посвящена она будет не совсем ИТ-тематике). А пока есть свободная минуточка, давайте разберёмся, что же такое RFID (Radio-frequency identification) – к ним примкнут более простые метки – или как один небольшой шаг в технологиях круто изменил жизнь миллионов и даже миллиардов людей по всему миру.

Предисловие

Сразу хотелось бы оговориться.

Перед началом работы над этой статьёй, я очень надеялся, что по микрофотографиям, а особенно по оптике, информации, найденной на просторах Интернета, и некоторому багажу знаний от прошлых публикаций удастся определить, где и какие элементы микросхемы находятся. Хотя бы на «бытовом» уровне: мол, вот это - память, вот это - схема питания, а вот тут происходит обработка информации. Действительно, казалось бы, RFID – простейшее устройство, самый простейший «компьютер», который только можно придумать…

Однако жизнь внесла свои коррективы и всё, что удалось мне найти: общая схема устройства нового поколения меток , фотографии того, как, например, должна выглядеть память – даже не знаю, почему я не уделил этому внимание (может быть ещё представится возможность исправиться?!), ну и скандалы-интриги-разоблачения процессоров A5 от chipworks .

Часть теоретическая

По традиции начнём с некоторой вводной части.
RFID
История технологии радиочастотного распознавания – пожалуй, именно так можно назвать все мыслимые и немыслимые варианты RFID (radio-frequency identification) – уходит своими корнями в 40-ые года XX века, когда в СССР, Европе и США активно велись разработки вообще любых видов электронной техники.

В то время, любое изделие, работающее на электричестве, было всё ещё в диковинку, так что перед учёными лежало не паханое поле: куда не ткни, как в Черноземье, черенок от лопаты – вырастет дерево. Судите сами: свои законы Максвелл предложил всего-навсего полвека назад (в 1884 году). А теории на основе этих уравнений стали появляться спустя 2-3 десятилетия (между 1900 и 1914), в том числе и теории радиоволн (от их открытия, до моделей модуляции сигнала и т.д.). Плюс подготовка и ведение второй мировой войны наложили свой отпечаток на данную область.

В результате к концу 40-х годов были разработаны системы распознавания «свой-чужой», которые были несколько побольше, чем описанные , но работали фактически по тому же принципу, что и современные RFID-метки.

Первая демонстрация близких к современных RFID была проведена в 1973 году в Исследовательской Лаборатории Лос Аламоса, а один из первых патентов на подобного рода систему идентификации получен спустя десятилетие – в 1983 году. Более подробно с историей RFID можно ознакомиться на Wiki и некоторых других сайтах ( и ).

Активные метки за счёт встроенной батарейки имеют существенно больший радиус работы, габариты, более сложную «начинку» (можно дополнить метку термометром, гигрометром, да хоть целый чип GPS-позиционирования) и соответствующую цену.

Классифицировать метки можно по-разному: по рабочей частоте (LF – низкочастотные ~130КГц, HF – высокочастотные ~14MГц и UHF – ультравысокочастотные ~900МГц), по типу памяти внутри метки (только чтение, однократно записываемая и многократно записываемая). Кстати, так любимый всеми производителями и продвигаемый NFC относится к HF диапазону, который имеет ряд хорошо известных проблем.

Прочие метки
К сожалению, стоимость RFID-меток по сравнению с другими видами идентификации довольно высока, поэтому, например, продукты питания и прочие «ходовые» товары мы по-прежнему покупаем с помощью баркодов (или штрих-кодов), иногда QR-кодов, а защиту от краж обеспечивают так называемые противокражные метки (или EAS – electronic article surveillance)

Самых распространённых три вида (все фото взяты с Wiki):

Впереди нас ждёт много чудных открытий, подчас совершенно неожиданных и конечно же hard geek porn в формате HD !

Если кому-то показалось мало теории, добро пожаловать на данный англоязычный сайт .

Часть практическая

Итак, какие метки удалось найти в окружающем нас мире:


Левый столбец сверху вниз: карта московского метро, проездной аэроэкспресс, пластиковая карта для прохода в здание, RFID-метка, представленная компанией Перекрёсток на выставке РосНаноФорум-2011. Правый столбец сверху вниз: радиочастотная EAS-метка, акустомагнитная EAS-метка, бонусный билет на общественный транспорт Москвы с магнитной полосой, RFID-карта посетителя РосНаноФорума содержит даже две метки.

Первой заявлена карточка московского метрополитена – приступим.

В круге первом. Билет московского метрополитена
Сначала вымачиваем карту в обычной воде, чтобы удалить бумажные слои, скрывающие самое сердце данной «метки».


Раздетая карта московского метрополитена

Теперь аккуратненько посмотрим на неё при небольшом увеличении в оптический микроскоп:


Микрофотографии чипа карты для прохода в московский метрополитен

Чип закреплён довольно основательно и хочу обратить внимание, что все 4 «ноги» присоединены к антенне – это нам пригодится далее для сравнения с другой RFID-меткой. Сложив пластиковую основу пополам в месте, где находится чип, и слегка покачав из стороны в сторону, он легко высвобождается. В итоге имеем чип размером с игольчатое ушко:


Оптические микрофотографии чипа сразу после отделения от антенны

Что ж, поиграемся с фокусом:


Изменение положения фокуса с нижнего слоя на верхний

Теперь немного интриг.

Ходят слухи, что Микрон разрабатывает и производит чипы для московского метро собственного силам по сходной технологии Mifare (как минимум, различается крепление к антенне – ножки другой формы). 22 августа без объявления войны и вероломно направил обращение в Микрон за разъяснениями, можно ли где-то в принципе увидеть данный чип, к 3.11 ответа не поступило. Один из журналистов (а именно, Александр Эрлих) на форуме IXBT тоже собирался уточнить данную информацию у представителей Микрона, но на данный момент воз и ныне там, то есть официальные представители Микрон уклоняются от ответа на прямо поставленный вопрос.

Рассмотренный выше билет, по всей видимости, изготовлен (или только смонтирован на антенну?) на предприятии Микрон (г. Зеленоград) - см. ссылки ниже - по технологии известной в RFID-кругах фирмы NXP, о чём собственно недвусмысленно намекают 3 огромные буквы и год выпуска технологии (а может и год производства) на верхнем слое металлизации чипа. Если полагать, что 2009 относится к году запуска технологии, а аббревиатуру CUL1V2 расшифровать как Circuit ULtralite 1 Version 2 (данное предположение также подтверждается этой новостью), то на сайте NXP можно найти подробное описание данных чипов (последние две строки в списке)

Кстати, в прошлом году для участников Интернет-олимпиады по Нанотехнологиям была организована экскурсия на завод Микрон (фото- и видео отчёты), поэтому говорить, что там оборудование простаивает смысла нет, но и заявление «дядечки в белом халате», что производят они метки по стандартам 70 нм, я бы поставил под сомнение…

Согласно статистике, собранной после анализа чипов 109 билетов метро (довольно репрезентативная выборка), согласно нормальному распределению шансы найти «необычный» билет ~109^1/2 или около 10%, но они тают с каждым вскрытым билетиком…

Внимательный взгляд уже приметил главное отличие двух чипов Mifare – надпись Philips2001. В самом деле, в далёком 1998 году компания Philips купила американского производителя микроэлектроники – Mikron (не путать с нашим, зеленоградским Микроном). А в 2006 году от Philips отпочковалась компания NXP.

Также несложно заметить пометку CLU1V1C, что, исходя из вышеописанного, означает Circuit ULtralite 1 Version 1C. То есть эта метка является предшественницей Mifare, используемой московским метрополитеном, а, следовательно, совместима с ней по основным параметрам. Однако, как и в предыдущем случае 2001 – это указание на год разработки и внедрения технологии или год производства. Странно, что Аэроэкспресс использует устаревшие метки…

В круге третьем. Пластиковая карта
Как-то раз, решил я одной своей знакомой показать статьи и фотографии на Хабрахабре. После чего спросил, а есть ли у неё какая-нибудь ненужная карта для следующей статьи про RFID. Она к тому времени как раз перебралась учиться в EPFL и подарила мне карточку, по которой осуществляется проход в одно из зданий МГУ. Карта, соответственно, без какой-либо маркировки, и я даже не уверен, что на ней записано хоть что-то, кроме обычно ключа для прохода в здание.
Карточка полностью пластиковая, поэтому сразу кладём её в ацетон буквально на пару десятков минут:


Принимаем ацетоновые ванны

Внутри всё довольно стандартно – антенна да чип, правда, он оказался на маленьком кусочке текстолита. К сожалению, без каких-либо опознавательных знаков – типичный китайский noname. Единственное, что можно узнать об этом чипе и карте, что они изготовлены/относятся к некоторому стандарту TK41. Таких карт полно на распродажах типа ali-baba и dealextreme.

В круге четвёртом. Перекрёсток
Далее я хочу рассмотреть две метки, представленные на выставке РосНаноФорум 2011. Первую из них представили с большим пафосом, сказав, что это чуть ли не панацея от воров и краж в магазинах. Да и вообще, данная метка позволит полностью перевести магазины на самообслуживание. К сожалению, эффективный менеджер оказался чуть более, чем полностью некомпетентен в вопросах школьной физики. И после предложение проверить эффективность его и метки с помощью сильного магнита, приложенного к метке, быстро замял тему…

После пары покупок в SmartShop, у меня в распоряжении осталось несколько меток. Очистив одну из них от клея и белого защитного слоя видим следующее:


Новая метка сети магазинов «Перекрёсток»

Поступаем так же как и Mifare аккуратно отсоединяем от полимерной основы и антенны и кладём на столик оптического микроскопа:


Оптические микрофотографии метки, предполагаемой к использованию в SmartShop

По счастливой случайности (то ли клей подкачал, то ли так задумано), метку удалось оторвать от основы быстро, а поверхность её осталась без каких-либо следов клея. Хотелось бы обратить внимание, что если у Mifare все 4 контакта прикреплены к антенне (по 2 контакта на каждый её конец), то здесь мы видим, что два контакта присоединены к двум небольших площадкам, которые не контактирую с антенной.

Немножко поиграем с фокусом в разных частях метки:


Меняем фокусировку…


Максимальное увеличение оптического микроскопа

На последнем фото слева вверху, по всей видимости, запечатлён модуль EEPROM памяти, так как он занимает около трети поверхности чипа и имеет «регулярную» структуру.