ВВЕДЕНИЕ

Оптика лазерных систем специфична и разнообразна. Она отличается от наших представлений об оптике объективов, очков и биноклей.
Отличается прежде всего по назначению. Её основное назначение не получение изображения, а формирование лазерного пучка с нужными характеристиками, доведение его от выхода лазерного излучателя до точки лазерного воздействия, обеспечение этого воздействия в разных режимах.
Например, пучок можно расширять, диафрагмировать или ослаблять фильтрами, добавлять к пучку луч лазера-пилота, фокусировать в волокно, выводить из волокна, прерывать заслонками и модуляторами, фокусировать на обрабатываемую поверхность, разворачивать с помощью подвижных или вращающихся зеркал, прочерчивая линии или зачерчивая площади на обрабатываемой поверхности, совмещать с системами визуального контроля и наблюдения за процессом, и многое другое. И всё это делается с помощью оптических элементов - линз, призм и зеркал, стоящих не вместе, а рассредоточенных на пути следования лазерного пучка. И всю эту систему надо рассчитывать, чтобы всё происходило оптимально простым и эффективным способом.
Принципиальные решения могут быть самыми разными, и все их нужно должным образом просчитать и сравнить. Возможно это будет не окончательный просчёт, но просчёт быстрый и эргономически удобный.

Существует множество научных работ, обзоров и учебных пособий (взглянем например сюда - http://optics.sinp.msu.ru/co/toc.html#par27) с могучей математикой, но совершенно не приспособленных к практическим целям. Поскольку в настоящее время никто не считает по аналитическим формулам и не мучается с составлением собственных программ, если существуют программы готовые. Но где они, эти удобные программы в этих современных пособиях? Их нет.
Поэтому хочу представить Вам свою программу, классику можно сказать, написанную на Турбо бейсике, достаточно простую и, вместе с тем, эффективную. Программа сопровождена файлом Help на русском.

ПРОГРАММА Opt_Alt

Программа рассчитывает распространение лучей в меридиональной плоскости оптической системы (позволяя анализировать и аберрации), рассчитывает матрицы по формулам параксиальной матричной оптики, а также прохождение одномодовых и многомодовых лазерных пучков по формулам Когельника и Ли (Когельник Г., Ли Т. Световые пучки, резонаторы и типы колебаний. //Справочник по лазерам под ред. А.М.Прохорова. М.: Сов. радио, 1978, с.11-24). А также проводит расчёт конструктивных параметров линз.
Программа может быть использована как для практических, так и для учебных целей.
Краткая инструкция к программе вызывается нажатием клавиши F1.

ЭРГОНОМИКА

Эргономика, удобства работы с программой - пожалуй, решающий фактор успешной работы с ней. Пользователь должен быть сосредоточен именно на проблемах оптической системы, а не преодолевать трудности поиска информации на экране или трудности ввода и вывода данных. Существует несколько общих эргономических требований.

Наглядность. Оптическая система в программе наглядно представлена в виде пар чередующихся строк. Первая строка в паре описывает оптический элемент, вторая указывает расстояние до вершинной плоскости следующего элемента, в ней же содержатся результаты счёта, они же - исходные данные для продолжения счёта (можете поменять и, пожалуйста - считайте дальше).
Всё вместе. Не нужно искать радиусы линз в одном столбце, показатели преломления - в другом, а высоты лучей - в третьем. Всё наглядно видно.

Однотипность представления и вариабильнось. При однотипном представлении оптических элементов в первых строках пар, информация во вторых строках различна, в зависимости от выбранного режима счёта.

Если считаются меридианальные лучи (до 6 лучей сразу), то в этих строках содержатся по выбору:
нажать H - высоты луча, расстояния от оптической оси
нажать T - тангенсы угла наклона лучей к оси
нажать S - расстояния до пересечения лучей с осью
Пользователь не должен быть загружен излишней информацией, он видит и анализирует только то, что ему нужно. Хотите в одном и том же сечении видеть и высоты и наклоны - жмите Insert и создайте ещё одно сечение, совпадающее с первым.
В одном смотрите H, в другом - T.

Если считается матрица, то во вторых строках пары содержится по выбору:
нажать A - задаются и показываются элементы матрицы A B C D
в качестве начальной матрицы следует задать 1 0 0 1 , но необязательно, можно и другую, если вы её знаете.
нажать F - показываются соответствующие матрице классические параметры < FSS" >
угловые скобки показывают на то, что эти значения задать невозможно, на них можно только посмотреть (и вывести как результат, нажав F4).

Если считаются лазерные пучки (один или два пучка сразу), то:
нажать D - показываются и могут быть введены DM, 1/R, K - диаметр моды, кривизна волнового фронта, произведение диаметра пучка в перетяжке на расходимость излучения K = DMo*2Ф
нажать O - показываются < DMo,Z,K>: - диаметр пучка в перетяжке DMo , Z - расстояние до перетяжки и K = DMo*2Ф

Третьем принципом эргономики является разнообразие представления.
Одну и ту же линзу вы можете представить так:
2
или так:
2 ПОВЕРХНОСТЬ_R(+29.65)____N1(1.506)___N2(0)
L=6
3 ПОВЕРХНОСТЬ_R(-22.49)____N1(1)_______N2(0)

Но вы можете представить линзу и идеальным фокусирующим элементом (задав только фокусное расстояние), или матрицей, или задать градан (элемент с распределённой фокусирующей силой). При таком, упрощённом задании, лучи будут просчитываться по формулам параксиальной оптики.
Строки очищаются нажатием на пробел. Элементы в первых строках задаются нажатием русских начальных букв (в отличие от вторых строк, где вид представления задаётся латиницей).
Эргономические принципы делают расчёт удобным и легко понимаемым.

Если хотите, продолжим знакомство с программой на двух примерах.

РАСЧЁТ КОРОТКОФОКУСИРУЮЩЕГО ОБЪЕКТИВА

Запускаем программу. Возникает большое чёрное поле, а на нём - иконка:

РАСЧЁТ ОПТИЧЕСКОЙ СИСТЕМЫ
1 - меридианальные лучи
2 - лазерный пучок
3 - матрица

Не хотите работать во весь экран - жмите Alt/Sift, переходите в окно
застопорился курсор в окне - подвигайте окно чуть-чуть по экрану компьютера

Выбираем режим "меридианальные лучи" - жмём "1"
Появляется столбик из номеров строк для задания оптических элементов и строк L , где указывается расстояние от выходной плоскости оптического элемента (если это линза, значит от выходной вершинной плоскости) до следующей плоскости. Для этой следующей плоскости в этой же строке L можно указать параметры луча - H , высота луча (расстояние до оси) или T - тангенс угла наклона луча к оси.

Но мы загрузим систему из каталога. На первой строке жмём F5, потом жмём F10.
Нажимая клавишу "стрелочка вниз" доходим до файла * OO8.OPT - заметьте, все буквы должны быть латиницей, дальше идёт описание файла, здесь латиница не обязательна, но изменять описание можно только вне программы, вызвав файл каталога DIR.OPT с помощью Ворда. В нём и изменяйте. Звёздочка означает, что файл защищён от записи. Если захотите его переписать, то прежде удалите звёздочку.
Жмём F6 , считываем систему из файла.

На экране присутствуют все линзы в перемешанном виде. Но нам нужен объектив из последних двух линз. Поудаляйте, нажимая Delete, парами все лишние строки кроме первой с элементом СРЕДА - в нём задаются начальные показатели преломления, и двух последних строк.
Зададим в первой дополнительной строке вслед за L=0 высоты луча. Входим в строку клавишей "стрелочка вправо" , пропускаем поле L, и вводим - 3 Enter, 4 Enter, 5 Enter, 3 Enter, 4 Enter, 5 Enter.
Первые три луча (длина излучения 1064 нм) будут просчитываться для показателя преломления N1, а вторые три (длина излучения 632 нм) - для N1. Посмотрите на их значения, первая линза - крон, вторая линза - флинт, видите разницу?
Нажимая на той строке, где мы ввели значения высот лучей, клавишу F2 мы запускаем программу на счёт. Вот что получилось в последней строке:

L=32.6 H: -.01091 -.00984 -.01893 -.01236 -.00906 -.0148
мы видим, что точно в точку фокуса мы не попали - все высоты, хоть и маленькие, но отрицательные. Мы находимся дальше точки фокуса. Насколько дальше?
Жмем на этой строке клавишу "S" , смотрим на расстояния от нашей выходной плоскости до точек пересечения лучей с оптической осью. Можно подвинуться назад на 0.1 мм. Заменяем 32.6 на 32.5 и считаем от начала (можно и от любой промежуточной плоскости):

1 СРЕДА_N1(1)_______N2(1)
L=0 H: 3 4 5 3 4 5
2
L=.15 H: 2.72344 3.57414 4.33235 2.71997 3.56806 4.32047
3
L=32.5 H: -.00253 .001361 -.00482 -.00399 .002132 -7.1E-4
L=32.5 : -.03033 .012153 -.03423 -.04765 .019043 -.00507
L=32.5 TG: -.08373 -.11205 -.14108 -.08374 -.112 -.14093
жмём на F3 - выводим все строки в файл RESULT.OPT,
жмём "S" и нажимая F4 выводим только одну строку, указывающую значения S,
жмём "T" и F4 - выводим значения тангенсов углов наклона.

Посмотрим, что получилось. Максимальный тангенс угла наклона для пучка лучей диаметром 10 мм равен 0.14, что соответствует углу сходимости излучения 16 градусов.
Объектив ахроматизирован - лучи красного излучения 632 нм и лучи чёрного излучения 1064 нм фокусируются в одной плоскости. Объектив скорректирован на сферическую аберрацию - все лучи фокусируются практически в одну точку с погрешностью в несколько десятков микрон. Аберрационный кружок рассеяния рабочего излучения ожидается диаметром поменьше 10 мкм. Для уточнения можно просчитать больше лучей, или по другой программе -

Нам бы нужны ещё конструктивные параметры - стрелки прогиба, толщины линз по краю, F" S S", номер по ЕСКД.
Идём на линзы, жмём F5, печатаем 10 (пусть диаметр линзы будет 10 мм) жмём Enter, и получаем все эти данные (даже примерная масса линзы "m" указана).

Надо бы ещё и характеристики объектива получить.
Жмём "Esc", потом "3" - переходим к расчёту матрицы объектива. L в последней строке устанавливаем в ноль. На первой строке задаём единичную матрицу - 1 0 0 1 и отправляемся на счёт.
В последней строке нажимаем "F" и видим классические параметры - F" S S"
Жмём F4, выводим полученное в файл накопления результатов.
Теперь о нашей системе мы всё знаем.

РАСЧЁТ РАСПРОСТРАНЕНИЯ ЛАЗЕРНОГО ПУЧКА

Нигде не видел я внятного объяснения того, как рассчитывать распространение лазерного пучка многомодового излучения, если для него известны диаметр и расходимость. А особенно, если расходимость известна приблизительно - не менее стольких-то мрад, вроде того.
Возьмём практический пример - СО2 лазер с плоским выходным зеркалом. Важно, оказывается знать не только диаметр пучка (диаметр узнать весьма просто - сделаем ожог на картоне и измерим его), но и такую существенную деталь как радиус кривизны выходного зеркала.
Но пусть зеркало плоское. Это значит, что перетяжка выходящего лазерного пучка лежит как раз на зеркале. Если пучок не фокусировать, то это будет самая узкая его часть. Но какова расходимость?
Приглядимся к ожогу - сплошное это пятно или концентрические круги на ожоге наблюдаются? Возьмём опять же практический случай, диаметр пятна равен 10 мм вблизи плоского зеркала (а точнее, на расстоянии 20 см от него, поскольку нехорошо жечь бумагу прямо у выходного зеркала - можно закоптить).
На пятне наблюдается слабый керн, а вокруг него - такой же интенсивности два концентричных круга. Что это даёт?
Мы знаем, что длина излучения углекислотного лазера л=10,6 мкм и знаем формулу, определяющую такую сохраняющуюся при преобразованиях пучка величину, как K - произведение диаметра пучка в перетяжке Dо, на расходимость многомодового излучения 2Ф с поперечным индексом моды P -

К = 2Ф*Do = 4*л / Пи (2*Р + 1) - см. статью Когельник и Ли

Р=2 в нашем случае, проводя вычисления получим К=0.0675
Войдём в программу в режиме "2" - лазерный пучок, и указав 1/R=0 (R - радиус кривизны волнового фронта) и К=0.0675, подберём в первой строке DM так, чтобы на расстоянии 200 мм диаметр оказался равным измеренному. Разница невелика, всего на 0.1 мм меньше.
Ещё дальше на расстоянии 1000 мм от лазера поставим фокусирующий элемент с фокусным расстоянием 500 мм. Поинтересуемся (нажав латинское "o", а не ноль) положением и размером перетяжки после фокусирующего элемента, а также размером пятна на двойном фокусном расстоянии. Получим:

1 СРЕДА_N1(1)_______N2(1)
L=0 DM,1/R,K: 9.91 0 .0675 0 0 0
2
L=200 DM,1/R,K: 10.0031 9.27E-5 .0675 0 0 0
3
L=800 DM,1/R,K: 12.025 3.2E-4 .0675 0 0 0
4 ФОКУСИРУЮЩИЙ ЭЛЕМЕНТ_F1(+500)______F2(0)
L=0 <0DM,Z,K>:3.22076 552.813 .0675 0 0 0
5
L=1000 DM,1/R,K: 9.91 .002 .0675 0 0 0

Как и должно быть по правилам геометрической оптики, на двойном фокусном расстоянии получаем изображение выхода лазера в натуральную величину.
А вот перетяжка пучка (с диаметром 3.22 мм) оказывается не в фокусе, а на 52.8 мм дальше. И это следствие волновой природы излучения лазера.

Если в качестве фокусирующего элемента предположить что-либо реальное, например линзу из германия, то вот её характеристики, полученные уже известным вам способом, через нажатие F5. Для линзы из разрешённого ряда подбирался подходящий радиус кривизны первой поверхности, а вторая поверхность линзы была взята плоской (что указывается заданием R=0), показатель преломления германия для излучения 10.6 мкм брался равным 4:

6
D=20 L1=.033 L2=0 t=2.966 f"=499.9 Sf=-499 S"f"=499.1 m=2.53 N 756137

Если модовая структура излучения не очевидна, то для определения расходимости можно сделать замеры диаметра пучка в фокальной плоскости линзы. Каким угодно способом - по ожогам, или перекрывая пучок диафрагмами. Во всех случаях параллельный просчёт по программе позволит надёжно определить характеристики пучка.
Программа также хороша и в расчёте мод внутри резонатора, особенно когда резонатор заполнен (активный элемент с наведённой в нём тепловой линзой - считается как элемент "градан", электрооптический модулятор и проч.), то есть в тех случаях, когда расчёт по аналитическим формулам затруднён.

===============
Скачать программу Opt_Alt можно отсюда - https://yadi.sk/d/26OWC1b2gvpor
В системах Виндос 7 и 8 программа работает в ДОС ящике, скачать можно здесь - http://www.dosbox.com/

Рецензии

Сейчас на многих сайтах реализована возможность он-лайн вычислений, например для инфракрасных спектров - hitran.iao.ru, это удобнее, чем скачивать какие-то ДОС ящики и программы под них. А программа по идее полезная, недавно столкнулся с проблемой коллимации излучения лазерного диода - требуются и асферические линзы, и учет аберраций, была бы он-лайн версия - я бы попробовал...

Он-лайн расчёта оптики я не встречал, да и в английском я не очень. А этой программе уже 40 лет, не было тогда ещё персональных ЭВМ в теперешнем их виде, а был "Диалоговый вычислительный комплекс" - такой шкаф с полочкой и клавиатурой на этой полочке, и дисплей чёрно белый. Но бейсик уже был. Программа в память не помещалась, пришлось делать оверлеи. Несмотря на такую древность программа вполне конкурентноспособна и сейчас. Рядом с нами работали оптики-профессионалы, так что мне есть с чем сравнивать.
А с лазерными диодами я тоже работал - вводил излучение в волокно. Расчёт вёл и по этой программе, и по следующей - , тоже самодельной, и вполне успешно. Обе программы работают в Виндосе ХР и без ящика, но и сейчас я проблем не испытываю. Старый Бейсик продолжает исправно служить.

Если есть что обсудить по части оптики, то я - с удовольствием. Вначале я совершенно не представлял себе, что такое лазерный диод, какая у него излучающая площадка, какая расходимость, какие предосторожности нужны при работе с ним. Делал не только оптику, но и электрические схемы.
Именно под лазерные диоды вторая программа, на которую я ссылаюсь, была заточена. А точнее - под схемы накачки, и под те лазеры, что в зелёных лазерных указках применяются.

Ежедневная аудитория портала Проза.ру - порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

Построение идеальной оптики в Zemax

Введение
Всё больше современные системы автоматизации оснащаются оптическими устройствами для решения задач позиционирования, распознавания, наблюдения и др. Построение идеальных оптических систем при помощи программы расчета Zemax может оказаться полезным и непрофессионалам, например, для лучшего понимания теории, особенностей оптических устройств и выполнения прикидочных расчетов оптических систем. В этой работе рассмотрены приёмы построения идеальной оптики в среде Zemax, даны примеры расчета диапазона автофокусирования фотокамеры, построения эквивалентной схемы монокуляра МГТ 2.5x17.5, объектива фотокамеры SUNNY P13N05B смартфона Huawei P7 и замены идеальных оптических элементов реальными.


Идеальная оптика
Изображение в идеальной оптике, в которой отсутствуют искажения, строится по законам параксиальной оптики. Термин параксиальный означает «вблизи оси». Параксиальная оптика хорошо описываются линейными выражениями, которые при малых углах заменяются линейными уравнениями. В параксиальной области любая реальная система ведет себя как идеальная.
Расчеты идеальных линз в среде Zemax выполняются с допущением, что линзы имеют параксиальные свойства не только вблизи оси, но и на всей рабочей поверхности, которая действует как идеальная тонкая линза c единичным показателем преломления воздуха.
Параксиальную оптику целесообразно использовать в качестве эталона, с которым сравниваются аберрации (искажения) реальной оптики.
Переносить результаты расчетов параксиальной оптики на реальные системы следует с осторожностью, особенно при построении систем у которых свойства вблизи оптической оси и на удалении значительно отличаются.
Разработан целый ряд приёмов уменьшения аберраций и габаритных размеров линз: применение несферических поверхностей, составных линз, неоднородных оптических материалов, и др. Но как не была бы устроена реальная линза (Петцваля, Гаусса, Барлоу, ...) ее характеристики могут только приближаться к характеристикам идеальной линзы.

Построение изображения собирающей линзой
Рассмотрим случай, когда от каждой точки плоскости предмета расходятся лучи во все стороны как от точечных источников. Из крайней точки объекта А, как показано на Рис. 1. в соответствующую точку В на плоскости изображения попадут только те лучи, которые сфокусированы линзой. Количество лучей предмета попадающих в плоскость изображения пропорционально диаметру линзы. Чем больше лучей от предмета попадает в плоскость изображения, тем выше яркость изображения.

Рис. 1. Сопряженные точки. Ход лучей от точки предмета к соответствующей точке
изображения на плоскости фотоприемника.

Для минимизации вычислений нахождения изображения рассматривают ход только нескольких лучей, например, как на Рис. 2: луч, идущий от объекта вдоль оптической оси; луч, проходящий через центр линзы и луч, параллельный оптической оси, преломляемый линзой и проходящий через главный фокус линзы (точка F на оптической оси).


Рис. 2. Минимальные построения для нахождения расстояния до плоскости изображения, величины изображения и увеличения линзы. Для параксиальной оптики продольное увеличение (связано с расстояниями) равно квадрату линейного увеличения (перпендикулярно оси), а угловое увеличение обратно пропорционально линейному.

Связь расстояний до предмета и изображения. Глубина резкости
Построение зависимости между зоной фокусировки объектива и глубиной резкости в пространстве предметов показано на Рис. 3. Когда расстояние до предмета равно бесконечности, плоскость сфокусированного изображения проходит через главный фокус (смещение плоскости изображения относительно фокуса равно нулю). Минимальная глубина резкости в пространстве предметов достигается при максимальном удалении плоскости изображения (в зоне фокусировки) относительно главного фокуса.

Рис. 3. Зависимость между зоной фокусировки объектива и глубиной резкости в пространстве предметов.

Функции среды проектирования Zemax
Функции среды Zemax, наиболее часто используемые при проектировании оптических систем, присвоены отдельным кнопкам основного меню. Назначение этих кнопок показано на Рис. 4.


Рис. 4. Интерфейс программы Zemax.

Типы поверхностей элементов оптических систем, радиусы поверхностей, расстояния между элементами и другие параметры заносятся в таблицу редактора, в которой каждая строка содержит параметры одного элемента. Связь параметров таблицы и элементов оптической схемы показана на примере Рис. 5.


Рис. 5. Связь оптической схемы с параметрами таблицы.

Идеальная линза в Zemax
Для моделирования линзы с параксиальной поверхностью в Zemax необходимо задать фокусное расстояние и, при необходимости, включить расчет разницы оптических траекторий проходящих через линзу (установить статус OPD режима в 1 в соответствующей строке таблицы редактора). По умолчанию, OPD расчет не выполняется (статус OPD равен нулю ).
Построим в Zemax идеальную линзу, например, с диаметром входного зрачка 10 мм и фокусным расстоянием 15 мм, собирающую параллельные лучи удаленного предмета в одной точке.
1. Откроем новую таблицу: меню > кнопка

Рис. 6. Начальное состояние таблицы оптической схемы редактора Zemax. В строках таблицы (NN 0; 1 и 2) содержатся параметры предмета OBJ, апертурной диафрагмы STO и изображения IMA.

2. Добавим поверхность между диафрагмой и изображением: выделим последнюю строку строку IMA > меню Lens Data Editor > Edit > Insert Surface

Рис. 7. Добавлена стандартная поверхность N2.

3. Выберем «Параксиальный» тип поверхности: строка N2 > колонка Surf:Type > окно свойства - Properties > Surface Type > Paraxial


Рис. 8. Поверхность N2 изменена на идеальную (Paraxial) линзу с фокусным расстоянием 100 мм. Расстояние между линзой и изображением равно нулю. Расстояние между линзой и диафрагмой STO также равно нулю.

4. Изменим фокусное расстояние со 100 (по умолчанию) на 15 мм в колонке таблицы Focal Length
5. Зададим расстояние 15 мм от линзы до изображения в колонке Thickness

Рис. 9. Фокусное расстояние линзы изменено на 15 мм. Расстояние между линзой и изображением увеличено до 15 мм.

6. Зададим диаметр входного зрачка 10 мм: Основное меню > кнопка > закладка Aperture > Aperture Value > 10


Рис. 10. Задан диаметр входной апертуры оптической схемы: 10 мм.

7. Построим оптическую схему: Основное меню > кнопка


Рис. 11. Оптическая схема в окне Layout. Координаты диафрагмы и линзы совпадают (расстояние между ними равно нулю) Координаты “мышки” на схеме (в масштабе оптической схемы) отображаются в заголовке рисунка.

8. На схеме Layout не показаны лучи слева от идеальной линзы (выделена красным), идущие от предмета расположенного на бесконечном расстоянии, которое обозначено как Infinity в колонке Thickness нулевой строки OBJ таблицы. Чтобы показать часть этих лучей на входе линзы введем поверхность на расстоянии, например, 7 мм перед апертурной диафрагмой STO.

Рис. 12. Добавлена поверхность перед апертурной диафрагмой STO.

9. Добавим поверхность 1 к отображаемой части оптической схемы и увеличим количество лучей до 7 для наглядности: меню рисунка Layout > Setting > First Surface = 1 > Number of Rays = 7.


Рис. 13. Показаны лучи на отрезке 7мм до диафрагмы. Увеличено количество лучей с 3-х до 7.

10. Сделаем невидимой первую поверхность: строка N1 таблицы > колонка Surf:Type > окно свойства - Properties > закладка Draw >
11. Обновим окно Layout оптической схемы через кнопку основного меню или дважды «кликнув» в зоне окна схемы.


Рис. 14. Первая поверхность оптической схемы сделана невидимой.

В окне Layout можно отслеживать изменения табличных параметров оптической системы и параметров основного меню, показанных на Рис. 4 и Рис. 5.

Модель составной линзы фотокамеры смартфона
Для построения идеальной модели возьмем составную линзу фотокамеры SUNNY P13N05B смартфона Huawei P7 (Рис. 15). Линза смартфона состоит из пяти пластиковых элементов. Пример составной линзы показан на Рис. 16.


Рис. 15. Размеры и фотографии фотокамеры SUNNY P13N05B с фотодиодной матрицей SONY IMX214 13 МП. 1. – модуль фотокамеры с фотодиодной матрицей; 2- линза камеры; 3 – катушка привода автофокусировки - перемещения объектива относительно матрицы датчика.

Камера P13N05B имеет следующие характеристики.
Размер линзы: 1/3”
Размер фотодиодной матрицы: 6,1 мм (H) × 4,5 мм (V)
Диагональ активной зоны матрицы: 5,9 мм
Состав линзы: 5 пластиковых элементов (см. Рис. 16)
Фокусное расстояние: 3,79 мм
Апертурное число (f/#): 2
Угол поля зрения: 75°±3°
Глубина резкости: от 7 см до ∞
Диапазон привода автофокусировки: ≥ 0,24mm

Рис. 16. Пример составной линзы. Линза смартфона iPhone 6.

Параметры оптической схемы идеального объектива фотокамеры (см. Рис. 17) заданы в таблице Lens Data Editor и в окнах клавиш основного меню Zemax:. Функция выбираемая из списка функций выделенной ячейки колонки Thickness таблицы автоматически устанавливает наилучшее расстояние между линзой и изображением. Для построения наилучшего изображения удаленного на бесконечное расстояние предмета плоскость фотоприёмника должна проходить через точку главного фокуса отстоящей от линзы на 3,79 мм.


Рис. 17. Оптическая схема параксиальной линзы фотообъектива. Предмет удален на бесконечное расстояние.

Приближение объекта к линзе на 10 мм с сохранением угла обзора 76о/2 в окне Field Data (Рис. 18) увеличило расстояние между линзой и изображением до 6,10 мм. Следовательно изменение автофокуса при приближении объекта с бесконечности до 10 мм равно 2,31 мм (как 6,10 мм – 3,79 мм).


Рис. 18. Построение лучей от объекта находящегося в 10 мм от параксиальной линзы фотокамеры и нахождение положения автофокуса.

В спецификации фотокамеры P13N05B указано, что глубина резкости в пространстве предметов лежит в пределах от 7 см до ∞ (бесконечности). Установим предмет на минимальной дистанции в 70 мм от апертурой линзы. Zemax устанавливает расстояние между линзой и плоскостью изображения 4 мм (см. выделенную ячейку таблицы на Рис. 19). Таким образом, для построения качественного изображения предмета находящегося в зоне от 7 см до ∞ требуется изменять расстояние между линзой и фотодатчиком от 4 до 3,79 мм. Требуемое изменение 0,21мм перекрывается диапазоном привода автофокусировки фотокамеры 0,24 мм.

Рис. 19. Расстояние до изображения равно 4 мм при расстоянии до объекта 70 мм. Фокусное расстояние линзы равно 3,79 мм.

Зависимость диапазона фокусировки от фокусного расстояния объектива
Зона фокусировки зависит не только от дистанции до предмета, но и от главного фокуса линзы (объектива). На Рис. 20 показана геометрия нахождения зон фокусировки для линз с главным фокусом F1=7,5 мм и F2=19 мм и положений предмета в диапазоне AB = 35… 52 мм. Для настройки резкости с линзой F1 требуется изменять расстояние меду главным фокусом линзы и плоскостью изображения в диапазоне 0,8 мм, тогда как для линзы с F2 этот диапазон вырос до 12 мм.

Рис. 20. Пример построения зон фокусировки для линз с разными фокусными расстояниями F1 и F2.

Идеальные телескопы
Сравнительные размеры телескопов Кеплера и Галилея для одинакового увеличения F1/F2 показаны на Рис. 21. Телескоп Кеплера с собирающими линзами даёт перевернутое изображение. Более компактный телескоп Галилея включает рассеивающую линзу и даёт прямое изображение.

Рис. 21. Схема телескопов Кеплера (а) и Галилея (б) при одинаковом увеличении F2/F1.

Миниатюрный монокуляр МГТ 2,5x17,5 СССР, ЛЗОС (Лыткаринский завод оптического стекла) собран по схеме Галилея (Рис. 22). Он имеет следующие характеристики.
Увеличение: 2,5 крат(раз)
Диаметр объектива: 17,5 мм
Угол поля зрения: 13,5 град
Разрешающая способность: 15 угл. сек
Предел фокусировки окуляра: -5...+5 диоптр
Габаритные размеры: 22 x 38 мм


Рис. 22. Вид и примерные размеры миниатюрного монокуляра МГТ 2,5x17,5. Предмет находится справа.

Эквивалентная идеальная оптическая схема монокуляра МГТ 2,5x17,5 в ZEMAX показана на Рис. 23. Схема состоит из собирающей и рассеивающей линз с главными фокусами 37,5 мм и -15 мм соответственно, имеющими отношение 2,5 раз. Диаметр собирающей линзы 2х8,75 мм.


Рис. 23. Табличные данные и идеальная оптическая схема монокуляра МГТ 2,5x17,5. Параллельные лучи идут от предмета удаленного на бесконечное расстояние.

Вариант замены параксиальной линзы реальной
Заменим первую параксиальную линзу (диаметр: 17,5 мм; фокусное расстояние: 37,5 мм) монокуляра ахроматической линзой из каталога Edmund Optics . Чтобы минимизировать выборку линз установим следующие условия: категория - Achromatic Lenses; диаметр – 18 мм; эффективная фокальная длина EFL 30-39.99 мм; диапазон длин волн - 425 - 675 нм.
Ближайшая к требуемым параметрам линза: 18mm Dia. x 35mm FL, VIS 0° Coated, Achromatic Lens, Stock No. #47-706 (номер по каталогу).
Для построения ахроматической линзы в Zemax из ее спецификации возьмем параметры перечисленные в Таблица 1. Параметры можно найти и на чертеже линзы PDF drawing сайта Edmund Optics или на Рис. 24.
Таблица 1. Параметры составной ахроматической линзы Edmund #47-706



Рис. 24. Чертеж ахроматической линзы Edmund #47-706.

Замена параметров первой линзы идеального телескопа (строка N2 таблицы Рис. 23) линзой Edmund #47-706 даёт вариант, представленный на Рис. 25.


Рис. 25. Вариант оптики телескопа с реальной ахроматической линзой. Выделенное в таблице красным расстояние между линзами найдено ручным смещением движка Slider.

Расстояние между линзами (выделенное красным в таблице Рис. 25) изменялось ползунком Slider в ручную до момента когда лучи на выходе второй (идеальной линзы) установились параллельными главной оси (в этом положении фокусные расстояния линз телескопа находятся в одной точке). Действие ползунка в реальном времени отображается смещением элементов оптической схемы и изменением траекторий лучей на оптической диаграмме окна Layout. Ползунок можно открыть через основное меню Zemax > Tools > Miscellaneous > Slider.
Если на выходе телескопа поставить дополнительную параксиальную собирающую линзу (элемент N6 в таблице и красная плоскость на оптической схеме Рис. 26), то можно увидеть вносимые реальной линзой искажения (см. часть диаграмм Zemax на Рис. 26).


Рис. 26. Оптическая схема и диаграммы искажений, вносимые реальной линзой.

Литература
1. Сайт Optics Realm. Видеоуроки по проектированию в среде Zemax и теории оптики.

Построение идеальной оптики в Zemax

Введение
Всё больше современные системы автоматизации оснащаются оптическими устройствами для решения задач позиционирования, распознавания, наблюдения и др. Построение идеальных оптических систем при помощи программы расчета Zemax может оказаться полезным и непрофессионалам, например, для лучшего понимания теории, особенностей оптических устройств и выполнения прикидочных расчетов оптических систем. В этой работе рассмотрены приёмы построения идеальной оптики в среде Zemax, даны примеры расчета диапазона автофокусирования фотокамеры, построения эквивалентной схемы монокуляра МГТ 2.5x17.5, объектива фотокамеры SUNNY P13N05B смартфона Huawei P7 и замены идеальных оптических элементов реальными.


Идеальная оптика
Изображение в идеальной оптике, в которой отсутствуют искажения, строится по законам параксиальной оптики. Термин параксиальный означает «вблизи оси». Параксиальная оптика хорошо описываются линейными выражениями, которые при малых углах заменяются линейными уравнениями. В параксиальной области любая реальная система ведет себя как идеальная.
Расчеты идеальных линз в среде Zemax выполняются с допущением, что линзы имеют параксиальные свойства не только вблизи оси, но и на всей рабочей поверхности, которая действует как идеальная тонкая линза c единичным показателем преломления воздуха.
Параксиальную оптику целесообразно использовать в качестве эталона, с которым сравниваются аберрации (искажения) реальной оптики.
Переносить результаты расчетов параксиальной оптики на реальные системы следует с осторожностью, особенно при построении систем у которых свойства вблизи оптической оси и на удалении значительно отличаются.
Разработан целый ряд приёмов уменьшения аберраций и габаритных размеров линз: применение несферических поверхностей, составных линз, неоднородных оптических материалов, и др. Но как не была бы устроена реальная линза (Петцваля, Гаусса, Барлоу, ...) ее характеристики могут только приближаться к характеристикам идеальной линзы.

Построение изображения собирающей линзой
Рассмотрим случай, когда от каждой точки плоскости предмета расходятся лучи во все стороны как от точечных источников. Из крайней точки объекта А, как показано на Рис. 1. в соответствующую точку В на плоскости изображения попадут только те лучи, которые сфокусированы линзой. Количество лучей предмета попадающих в плоскость изображения пропорционально диаметру линзы. Чем больше лучей от предмета попадает в плоскость изображения, тем выше яркость изображения.

Рис. 1. Сопряженные точки. Ход лучей от точки предмета к соответствующей точке
изображения на плоскости фотоприемника.

Для минимизации вычислений нахождения изображения рассматривают ход только нескольких лучей, например, как на Рис. 2: луч, идущий от объекта вдоль оптической оси; луч, проходящий через центр линзы и луч, параллельный оптической оси, преломляемый линзой и проходящий через главный фокус линзы (точка F на оптической оси).


Рис. 2. Минимальные построения для нахождения расстояния до плоскости изображения, величины изображения и увеличения линзы. Для параксиальной оптики продольное увеличение (связано с расстояниями) равно квадрату линейного увеличения (перпендикулярно оси), а угловое увеличение обратно пропорционально линейному.

Связь расстояний до предмета и изображения. Глубина резкости
Построение зависимости между зоной фокусировки объектива и глубиной резкости в пространстве предметов показано на Рис. 3. Когда расстояние до предмета равно бесконечности, плоскость сфокусированного изображения проходит через главный фокус (смещение плоскости изображения относительно фокуса равно нулю). Минимальная глубина резкости в пространстве предметов достигается при максимальном удалении плоскости изображения (в зоне фокусировки) относительно главного фокуса.

Рис. 3. Зависимость между зоной фокусировки объектива и глубиной резкости в пространстве предметов.

Функции среды проектирования Zemax
Функции среды Zemax, наиболее часто используемые при проектировании оптических систем, присвоены отдельным кнопкам основного меню. Назначение этих кнопок показано на Рис. 4.


Рис. 4. Интерфейс программы Zemax.

Типы поверхностей элементов оптических систем, радиусы поверхностей, расстояния между элементами и другие параметры заносятся в таблицу редактора, в которой каждая строка содержит параметры одного элемента. Связь параметров таблицы и элементов оптической схемы показана на примере Рис. 5.


Рис. 5. Связь оптической схемы с параметрами таблицы.

Идеальная линза в Zemax
Для моделирования линзы с параксиальной поверхностью в Zemax необходимо задать фокусное расстояние и, при необходимости, включить расчет разницы оптических траекторий проходящих через линзу (установить статус OPD режима в 1 в соответствующей строке таблицы редактора). По умолчанию, OPD расчет не выполняется (статус OPD равен нулю ).
Построим в Zemax идеальную линзу, например, с диаметром входного зрачка 10 мм и фокусным расстоянием 15 мм, собирающую параллельные лучи удаленного предмета в одной точке.
1. Откроем новую таблицу: меню > кнопка

Рис. 6. Начальное состояние таблицы оптической схемы редактора Zemax. В строках таблицы (NN 0; 1 и 2) содержатся параметры предмета OBJ, апертурной диафрагмы STO и изображения IMA.

2. Добавим поверхность между диафрагмой и изображением: выделим последнюю строку строку IMA > меню Lens Data Editor > Edit > Insert Surface

Рис. 7. Добавлена стандартная поверхность N2.

3. Выберем «Параксиальный» тип поверхности: строка N2 > колонка Surf:Type > окно свойства - Properties > Surface Type > Paraxial


Рис. 8. Поверхность N2 изменена на идеальную (Paraxial) линзу с фокусным расстоянием 100 мм. Расстояние между линзой и изображением равно нулю. Расстояние между линзой и диафрагмой STO также равно нулю.

4. Изменим фокусное расстояние со 100 (по умолчанию) на 15 мм в колонке таблицы Focal Length
5. Зададим расстояние 15 мм от линзы до изображения в колонке Thickness

Рис. 9. Фокусное расстояние линзы изменено на 15 мм. Расстояние между линзой и изображением увеличено до 15 мм.

6. Зададим диаметр входного зрачка 10 мм: Основное меню > кнопка > закладка Aperture > Aperture Value > 10


Рис. 10. Задан диаметр входной апертуры оптической схемы: 10 мм.

7. Построим оптическую схему: Основное меню > кнопка


Рис. 11. Оптическая схема в окне Layout. Координаты диафрагмы и линзы совпадают (расстояние между ними равно нулю) Координаты “мышки” на схеме (в масштабе оптической схемы) отображаются в заголовке рисунка.

8. На схеме Layout не показаны лучи слева от идеальной линзы (выделена красным), идущие от предмета расположенного на бесконечном расстоянии, которое обозначено как Infinity в колонке Thickness нулевой строки OBJ таблицы. Чтобы показать часть этих лучей на входе линзы введем поверхность на расстоянии, например, 7 мм перед апертурной диафрагмой STO.

Рис. 12. Добавлена поверхность перед апертурной диафрагмой STO.

9. Добавим поверхность 1 к отображаемой части оптической схемы и увеличим количество лучей до 7 для наглядности: меню рисунка Layout > Setting > First Surface = 1 > Number of Rays = 7.


Рис. 13. Показаны лучи на отрезке 7мм до диафрагмы. Увеличено количество лучей с 3-х до 7.

10. Сделаем невидимой первую поверхность: строка N1 таблицы > колонка Surf:Type > окно свойства - Properties > закладка Draw >
11. Обновим окно Layout оптической схемы через кнопку основного меню или дважды «кликнув» в зоне окна схемы.


Рис. 14. Первая поверхность оптической схемы сделана невидимой.

В окне Layout можно отслеживать изменения табличных параметров оптической системы и параметров основного меню, показанных на Рис. 4 и Рис. 5.

Модель составной линзы фотокамеры смартфона
Для построения идеальной модели возьмем составную линзу фотокамеры SUNNY P13N05B смартфона Huawei P7 (Рис. 15). Линза смартфона состоит из пяти пластиковых элементов. Пример составной линзы показан на Рис. 16.


Рис. 15. Размеры и фотографии фотокамеры SUNNY P13N05B с фотодиодной матрицей SONY IMX214 13 МП. 1. – модуль фотокамеры с фотодиодной матрицей; 2- линза камеры; 3 – катушка привода автофокусировки - перемещения объектива относительно матрицы датчика.

Камера P13N05B имеет следующие характеристики.
Размер линзы: 1/3”
Размер фотодиодной матрицы: 6,1 мм (H) × 4,5 мм (V)
Диагональ активной зоны матрицы: 5,9 мм
Состав линзы: 5 пластиковых элементов (см. Рис. 16)
Фокусное расстояние: 3,79 мм
Апертурное число (f/#): 2
Угол поля зрения: 75°±3°
Глубина резкости: от 7 см до ∞
Диапазон привода автофокусировки: ≥ 0,24mm

Рис. 16. Пример составной линзы. Линза смартфона iPhone 6.

Параметры оптической схемы идеального объектива фотокамеры (см. Рис. 17) заданы в таблице Lens Data Editor и в окнах клавиш основного меню Zemax:. Функция выбираемая из списка функций выделенной ячейки колонки Thickness таблицы автоматически устанавливает наилучшее расстояние между линзой и изображением. Для построения наилучшего изображения удаленного на бесконечное расстояние предмета плоскость фотоприёмника должна проходить через точку главного фокуса отстоящей от линзы на 3,79 мм.


Рис. 17. Оптическая схема параксиальной линзы фотообъектива. Предмет удален на бесконечное расстояние.

Приближение объекта к линзе на 10 мм с сохранением угла обзора 76о/2 в окне Field Data (Рис. 18) увеличило расстояние между линзой и изображением до 6,10 мм. Следовательно изменение автофокуса при приближении объекта с бесконечности до 10 мм равно 2,31 мм (как 6,10 мм – 3,79 мм).


Рис. 18. Построение лучей от объекта находящегося в 10 мм от параксиальной линзы фотокамеры и нахождение положения автофокуса.

В спецификации фотокамеры P13N05B указано, что глубина резкости в пространстве предметов лежит в пределах от 7 см до ∞ (бесконечности). Установим предмет на минимальной дистанции в 70 мм от апертурой линзы. Zemax устанавливает расстояние между линзой и плоскостью изображения 4 мм (см. выделенную ячейку таблицы на Рис. 19). Таким образом, для построения качественного изображения предмета находящегося в зоне от 7 см до ∞ требуется изменять расстояние между линзой и фотодатчиком от 4 до 3,79 мм. Требуемое изменение 0,21мм перекрывается диапазоном привода автофокусировки фотокамеры 0,24 мм.

Рис. 19. Расстояние до изображения равно 4 мм при расстоянии до объекта 70 мм. Фокусное расстояние линзы равно 3,79 мм.

Зависимость диапазона фокусировки от фокусного расстояния объектива
Зона фокусировки зависит не только от дистанции до предмета, но и от главного фокуса линзы (объектива). На Рис. 20 показана геометрия нахождения зон фокусировки для линз с главным фокусом F1=7,5 мм и F2=19 мм и положений предмета в диапазоне AB = 35… 52 мм. Для настройки резкости с линзой F1 требуется изменять расстояние меду главным фокусом линзы и плоскостью изображения в диапазоне 0,8 мм, тогда как для линзы с F2 этот диапазон вырос до 12 мм.

Рис. 20. Пример построения зон фокусировки для линз с разными фокусными расстояниями F1 и F2.

Идеальные телескопы
Сравнительные размеры телескопов Кеплера и Галилея для одинакового увеличения F1/F2 показаны на Рис. 21. Телескоп Кеплера с собирающими линзами даёт перевернутое изображение. Более компактный телескоп Галилея включает рассеивающую линзу и даёт прямое изображение.

Рис. 21. Схема телескопов Кеплера (а) и Галилея (б) при одинаковом увеличении F2/F1.

Миниатюрный монокуляр МГТ 2,5x17,5 СССР, ЛЗОС (Лыткаринский завод оптического стекла) собран по схеме Галилея (Рис. 22). Он имеет следующие характеристики.
Увеличение: 2,5 крат(раз)
Диаметр объектива: 17,5 мм
Угол поля зрения: 13,5 град
Разрешающая способность: 15 угл. сек
Предел фокусировки окуляра: -5...+5 диоптр
Габаритные размеры: 22 x 38 мм


Рис. 22. Вид и примерные размеры миниатюрного монокуляра МГТ 2,5x17,5. Предмет находится справа.

Эквивалентная идеальная оптическая схема монокуляра МГТ 2,5x17,5 в ZEMAX показана на Рис. 23. Схема состоит из собирающей и рассеивающей линз с главными фокусами 37,5 мм и -15 мм соответственно, имеющими отношение 2,5 раз. Диаметр собирающей линзы 2х8,75 мм.


Рис. 23. Табличные данные и идеальная оптическая схема монокуляра МГТ 2,5x17,5. Параллельные лучи идут от предмета удаленного на бесконечное расстояние.

Вариант замены параксиальной линзы реальной
Заменим первую параксиальную линзу (диаметр: 17,5 мм; фокусное расстояние: 37,5 мм) монокуляра ахроматической линзой из каталога Edmund Optics . Чтобы минимизировать выборку линз установим следующие условия: категория - Achromatic Lenses; диаметр – 18 мм; эффективная фокальная длина EFL 30-39.99 мм; диапазон длин волн - 425 - 675 нм.
Ближайшая к требуемым параметрам линза: 18mm Dia. x 35mm FL, VIS 0° Coated, Achromatic Lens, Stock No. #47-706 (номер по каталогу).
Для построения ахроматической линзы в Zemax из ее спецификации возьмем параметры перечисленные в Таблица 1. Параметры можно найти и на чертеже линзы PDF drawing сайта Edmund Optics или на Рис. 24.
Таблица 1. Параметры составной ахроматической линзы Edmund #47-706



Рис. 24. Чертеж ахроматической линзы Edmund #47-706.

Замена параметров первой линзы идеального телескопа (строка N2 таблицы Рис. 23) линзой Edmund #47-706 даёт вариант, представленный на Рис. 25.


Рис. 25. Вариант оптики телескопа с реальной ахроматической линзой. Выделенное в таблице красным расстояние между линзами найдено ручным смещением движка Slider.

Расстояние между линзами (выделенное красным в таблице Рис. 25) изменялось ползунком Slider в ручную до момента когда лучи на выходе второй (идеальной линзы) установились параллельными главной оси (в этом положении фокусные расстояния линз телескопа находятся в одной точке). Действие ползунка в реальном времени отображается смещением элементов оптической схемы и изменением траекторий лучей на оптической диаграмме окна Layout. Ползунок можно открыть через основное меню Zemax > Tools > Miscellaneous > Slider.
Если на выходе телескопа поставить дополнительную параксиальную собирающую линзу (элемент N6 в таблице и красная плоскость на оптической схеме Рис. 26), то можно увидеть вносимые реальной линзой искажения (см. часть диаграмм Zemax на Рис. 26).


Рис. 26. Оптическая схема и диаграммы искажений, вносимые реальной линзой.

Литература
1. Сайт Optics Realm. Видеоуроки по проектированию в среде Zemax и теории оптики.

Оптическая система прибора может иметь один, два или более компонентов.

Оптическая система с одним компонентом является наиболее простой по своей реализации.

На рисунке 3.5.1 изображена оптическая схема с одним оптическим элементом, где введены следующие обозначения: а,b - линейные размеры излучающей поверхности; e, h - линейные размеры приемника; l - расстояние между объективом и источником излучения; l" - расстояние между объективом и приемником.

Размеры изображения излучающей поверхности обозначим а " и b" . Уместим изображение излучателя в пределах поверхности приемника, т.е. положим, что а" < e , а b"< h.

Рисунок 3.5.1 - Оптическая схема с одним компонентом

Линейное увеличение (3.5.1)

Подставляя а" < e , получим расстояние до приемника

Расстояние может быть задано исходя из назначения и применения прибора. Тогда положение приемника определяется из (6.2).

Фокусное расстояние объектива

При очень большом расстоянии l до излучателя, приемник располагается в фокальной плоскости объектива, как следует из (3.5.3).

Диаметр входного отверстия D вх находится из формулы

где Ф min - минимальное значение потока на поверхности фотоприемника, лм;

Коэффициент пропускания оптической системы;

L е - энергетическая яркость, Вт·ср -1 м -2 ();

S изл - площадь излучающей поверхности, м 2 .

Или по формуле

(3.5.5)

Размеры и D вх определяют продольные и поперечные размеры оптической системы.

При отдаленном источнике светочувствительная поверхность приемника располагается в фокальной плоскости объектива. Если наибольший угловой размер источника излучения равен 2 , то линейный размер изображения источника излучения

. (3.5.6)

Чтобы изображение уместилось на светочувствительной поверхности фотоприемника, необходимо иметь а"< е.

Откуда фокусное расстояние

. (3.5.7)

Оптическая система с двумя компонентами.

В зависимости от назначения система имеет несколько вариантов. Оптическая схема с двумя компонентами при удаленном источнике приведена на рисунке 3.5.2.



Габариты такой системы определяются из следующих условий.

Диаметр объектива находится по одной из формул (3.4.4) или (3.5.5). Фокусное расстояние объектива f 1 " устанавливается конструктивно по известным в оптике значениям допустимого относительного отверстия D вх /f 1 " . Будем считать, что f 1 "(2 ÷ 5) D вх.

Для того, чтобы поток, попавший в оптическую систему, не проходил мимо светочувствительной поверхности приемника, диаметр выходного зрачка D вых < е , при этом е - наименьший линейный размер чувствительной поверхности фотоприемника.

Расстояние между конденсором и фотоприемником

(3.5.8)

Рисунок 3.5.2 - Оптическая система с двумя компонентами при отдаленном излучателе

Расстояние b между фокальной плоскостью объектива и конденсором должно быть больше фокусного расстояния конденсора

(3.5.9)

Расстояние b также устанавливается конструктором.

Фокусное расстояние конденсора

Диаметр полевой диафрагмы

(6.5.11)

где - угол поля зрения.

Общая длина системы

(6.5.12)

На рисунке 3.5.3 представлена схема с двумя компонентами, предназначенная для просвечивания объекта измерения параллельным пучком.

Для получения параллельного пучка источник располагается в передней фокальной плоскости объектива. Расстояние между объективом и коллективом d является заданным. Фокусное расстояние объектива f 1 выбирается так, чтобы передний фокальный угол был достаточно велик и использование потока излучателя не оказалось слишком малым.

Рисунок 3.5.3 - Оптическая система с двумя компонентами,
предназначенная для просвечивания объектов измерения

Обычно передний апертурный угол не превышает 30 0 , если не использовать сложные осветительные системы. Диаметр объектива определяется по формулам (3.5.4) или (3.5.5). Диаметр выходного зрачка D вых е ,. где е - наименьший линейный размер поверхности фотоприемника.

Расстояние между коллективом и фотоприемником

(3.5.13)

Фокусное расстояние коллектива

Наиболее удаленная от оптической оси точка поверхности излучателя создает параллельный пучок, направление оси которого составляет наибольший угол с оптической осью. Ось пучка пересекает ось у поверхности приемника, и, как отмечено при рассмотрении предыдущей системы, сечения всех пучков на поверхности фотоприемника сольются в одно светлое пятно.

Угол определяется соотношением

(3.5.15)

Диаметр коллектива

. (3.5.16)

(3.5.17)

Оптическая схема с четырьмя компонентами представлена на
рисунке 3.5.4. Такая схема может быть использована в приборах, имеющих оптический модулятор.

Расчет такой оптической схемы довольно прост, так как все элементы схемы находятся в фокальных плоскостях оптических компонентов. Зная геометрические размеры источника излучения D ис, диафрагмы (отверстий модулятора) D д и размеры светочувствительной поверхности фотоприемника D фп из формулы подобия рассчитываются фокусные расстояния линз

Размер d выбирается конструктивно, исходя из условий закрепления линз.

Общая длина оптической системы

l общ . (3.5.19)

Рисунок 3.5.4 - Оптическая схема с четырьмя компонентами, используемая для оптических модуляторов

Энергетический расчет. Цель энергетического расчета: определение величины потока достигающего фотопреобразователя, исходя из мощности источника излучения, потерь в оптической системе и влияния функции преобразования.

В общем случае величина потока, достигшего светочувствительной поверхности фотоприемника определяется следующим соотношением

где - коэффициент полезного действия конденсора, определяется диаграммой направленности источника излучения и геометрическими параметрами конденсора.

Для лампы накаливания

(3.5.21)

Для светодиодов расчет ведется исходя из заданной диаграммы направленности излучения (диаграмма направленности светодиода берется из справочника).

На миллиметровке строится диаграмма направленности излучения светодиода, которая берется из справочников по источникам излучения. На расчетном расстоянии, в масштабе, располагается первая линза оптической системы Dл. Высчитывается единичная площадь S 1 диаграммы направленности светодиода. Далее высчитывается площадь S 2 ограниченная углом 2 на диаграмме направленности. Коэффициент вычисляется как отношение площадей S 2 и S 1

3. ГАБАРИТНЫЙ РАСЧЕТ ОПТИЧЕСКОЙ СИСТЕМЫ

Расчет оптической системы начинается с габаритного расчета. При габаритном расчете устанавливают число составляющих систему компонентов, решающих ту или иную задачу, их взаимное расположение, примерные размеры, фокусные расстояния отдельных компонентов.

Габаритный расчет ведется исходя из технических требований; определяются элементы, которые составляют систему, и их основные параметры.

Расчет осуществляется исходя из предположения, что оптическая система состоит из бесконечно тонких компонентов, для которых справедливы формулы идеальной оптической системы, и они же и применяются.

Габаритный расчет ведем по следующим исходным данным:

увеличение микроскопа Гм = -5 х

увеличение объектива Воб. = -1.25 х

расстояние от предмета до объектива S = -100 мм

    Определим увеличение окуляра:

    Найдем фокусное расстояние окуляра:

Гок = ; f`ок = = 62,5 (мм)

    По заданной числовой апертуре определим диаметр выходного зрачка микроскопа D`:

tg ` = == 0.16 ;` 10 0 , 2= 20 0

    Линейное поле микроскопа:

    Положение изображения, создаваемое объективом, определяется отрезком S`об

    Определим фокусное расстояние объектива

f`об = ==(мм)

    Положение входного зрачка:

    Положение выходного зрачка:

    Фокусное расстояние всего микроскопа:

    Положение выходного зрачка микроскопа:

Z`p` = (мм)

    Положение входного зрачка микроскопа:

    Световой диаметр окуляра:

В результате выполнения габаритного расчета выбираются основные оптические компоненты системы. Из каталога стандартных систем выбираем окуляр с близким значением фокусного расстояния элемента к расчетному.

Так как f́ ок = 62,5 мм,

максимально приближенное к нему значение из каталога

f́ кат = 60 мм r 1 = 36.31 мм d 1 = 4 мм n 1 = 1

r 2 = - 24.16 мм d 2 = 1.5 мм n 2 = 1.5183

r 3 = - 80.54 мм n 3 = 1.6522

Рассчитаем коэффициент подобия:

K = f́́ расч / f́ кат.

где К - коэффициент подобия, f́ расч - требуемое фокусное расстояние, f́ кат – фокусное расстояние из каталога.

К = 62,5 / 60 = 1,04

Получился уменьшающий коэффициент подобия.

Произведем расчет с учётом коэффициента подобия, для этого все радиусы и толщины линз окуляра, взятого из каталога, умножаем на К. Значение показателей преломления на коэффициент подобия не умножаем.

r 1 = r 1 кат · K = 36,31 · 1.04 = 37.7624 ͌ 37,76

r 2 = r 2кат · К = -24,16 · 1,04 = - 25,1264 ͌ - 25,13

r 3 = r 3кат · К = - 80,54 · 1,04 = - 83,7616 ͌ -83,76

r 3 = 83.75 n 3 = 1.6522

d 1 = d 1кат · К = 4 · 1,04 = 4,16

d 2 = d 2кат · К =1,5 · 1,04 = 1,56

Для построения схемы окуляра используем значения из ГОСТа 1807 – 75 «Радиусы сферических поверхностей оптических деталей. Ряды числовых значений» максимально приближенные к значениям, полученным расчетным путем:

r 1 = 37.76 d 1 = 4.16 n 1 = 1

r 2 = -25.12 d 2 = 1.56 n 2 = 1.5183