В чем же преимущества АЭС перед другими видами выработки энергии


Главное преимущество - практическая независимость от источников топлива из-за небольшого объёма используемого топлива, например 54 тепловыделяющих сборки общей массой 41 тонна на один энергоблок с реактором ВВЭР-1000 в 1-1,5 года (для сравнения, одна только Троицкая ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля). Расходы на перевозку ядерного топлива, в отличие от традиционного, ничтожны. В России это особенно важно в европейской части, так как доставка угля из Сибири слишком дорога.
Огромным преимуществом АЭС является её относительная экологическая чистота. На ТЭС суммарные годовые выбросы вредных веществ, в которые входят сернистый газ, оксиды азота, оксиды углерода, углеводороды, альдегиды и золовая пыль, на 1000 МВт установленной мощности составляют от примерно 13 000 тонн в год на газовых до 165 000 на пылеугольных ТЭС. Подобные выбросы на АЭС полностью отсутствуют. ТЭС мощностью 1000 МВт потребляет 8 миллионов тонн кислорода в год для окисления топлива, АЭС же не потребляют кислорода вообще. Кроме того, больший удельный (на единицу произведенной электроэнергии) выброс радиоактивных веществ даёт угольная станция. В угле всегда содержатся природные радиоактивные вещества, при сжигании угля они практически полностью попадают во внешнюю среду. При этом удельная активность выбросов ТЭС в несколько раз выше, чем для АЭС. Также некоторые АЭС отводят часть тепла на нужды отопления и горячего водоснабжения городов, что снижает непродуктивные тепловые потери, существуют действующие и перспективные проекты по использованию «лишнего» тепла в энергобиологических комплексах (рыбоводство, выращивание устриц, обогрев теплиц и пр.). Кроме того, в перспективе возможно осуществление проектов комбинирования АЭС с ГТУ, в том числе в качестве «надстроек» на существующих АЭС, которые могут позволить добиться аналогичного с тепловыми станциями КПД.
Для большинства стран, в том числе и России, производство электроэнергии на АЭС не дороже, чем на пылеугольных и тем более газомазутных ТЭС. Особенно заметно преимущество АЭС в стоимости производимой электроэнергии во время так называемых энергетических кризисов, начавшихся с начала 70-х годов. Падение цен на нефть автоматически снижает конкурентоспособность АЭС.
Затраты на строительство АЭС находятся примерно на таком же уровне, как и строительство ТЭС, или несколько выше.



Недостатки АЭС- Единственный фактор, в котором АЭС уступают в экологическом плане традиционным КЭС - тепловое загрязнение , вызванное большими расходами технической воды для охлаждения конденсаторов турбин, которое у АЭС несколько выше из-за более низкого КПД (не более 35 %), этот фактор важен для водных экосистем, а современные АЭС в основном имеют собственные искусственно созданные водохранилища-охладители или вовсе охлаждаются градирнями.

Падение цен на нефть автоматически снижает конкурентоспособность АЭС.

Главный недостаток АЭС - тяжелые последствия аварий, для исключения которых АЭС оборудуются сложнейшими системами безопасности с многократными запасами и резервированием, обеспечивающими исключение расплавления активной зоны даже в случае максимальной проектной аварии (местный полный поперечный разрыв трубопровода циркуляционного контура реактора).
Серьёзной проблемой для АЭС является их ликвидация после выработки ресурса, по оценкам она может составить до 20 % от стоимости их строительства.
По ряду технических причин для АЭС крайне нежелательна работа в манёвренных режимах, то есть покрытие переменной части графика электрической нагрузки.

Плюсы атомной энергетики в сравнении с другими видами получения энергии очевидны. Высокая мощность и низкая итоговая себестоимость энергии открыли в свое время большие перспективы для развития атомной энергетики и строительства АЭС. В большинстве стран мира плюсы атомной энергетики учитываются и сегодня – строятся все новые и новые энергоблоки и заключаются контракты на строительство АЭС в будущем.

Одним из основных плюсов атомной энергетики является ее рентабельность. Она складывается из многих факторов, и важнейший из них – низкая зависимость от транспортировки топлива. Сравним ТЭЦ мощностью 1 млн. кВт и равнозначный по мощности блок АЭС. Для ТЭЦ в год требуется от 2 до 5 млн. тонн топлива, расходы на его перевозку могут составить до 50% себестоимости получаемой энергии, а на АЭС потребуется доставить примерно 30 т. урана, что практически не отразится на итоговой цене энергии.

Также в плюсы атомной энергетики можно смело записать и то, что использование ядерного топлива не сопровождается процессом горения и выбросом в атмосферу вредных веществ и парниковых газов, а значит, строительства дорогостоящих сооружений для очистки выбросов в атмосферу не потребуется. Четверть всех вредных выбросов в атмосферу приходится на долю ТЭЦ, что очень негативно сказывается на экологической обстановке городов, расположенных вблизи них, и в целом на состоянии атмосферы. Города же, расположенные недалеко от атомных станций, функционирующих в штатном режиме, в полной мере ощущают плюсы атомной энергетики и считаются одними из самых экологически чистых во всех странах мира. В них производится постоянный контроль радиоактивного состояния земли, воды и воздуха, а также анализ флоры и фауны – такой постоянный мониторинг позволяет реально оценить минусы и плюсы атомной энергетики и ее влияние на экологию региона. Стоит заметить, что за время наблюдений в районах расположения АЭС ни разу не регистрировались отклонения радиоактивного фона от нормального, если речь не шла о чрезвычайных ситуациях.

На этом плюсы атомной энергетики не заканчиваются. В условиях надвигающегося энергетического голода и истощения запасов углеродного топлива, естественным образом встает вопрос и о запасах топлива для АЭС. Ответ на названный вопрос весьма оптимистичен: разведенные запасы урана и других радиоактивных элементов в земной коре составляют несколько миллионов тонн, и при текущем уровне потребления их можно считать практически неисчерпаемыми

Но плюсы атомной энергетики распространяются не только на АЭС. Энергия атома используется на сегодняшний день и в иных целях, помимо снабжения населения и промышленности электрической энергией. Так, нельзя переоценить плюсы атомной энергетики для подводного флота и атомных ледоколов. Использование атомных двигателей позволяет им долгое время существовать автономно, перемещаться на любые расстояния, а подлодкам – месяцами находиться под водой. На сегодняшний день в мире ведутся разработки подземных и плавучих АЭС и ядерных двигателей для космических летальных аппаратов.

Учитывая плюсы атомной энергетики, можно смело утверждать, что в будущем человечество продолжит использовать возможности атомной энергии, которая при осторожном обращении меньше загрязняет окружающую среду и практически не нарушает экологическое равновесие на нашей планете. Но плюсы атомной энергетики существенно померкли в глазах мировой общественности после двух серьезнейших аварий: на Чернобыльской АЭС в 1986 году и на АЭС «Фукусима-1» в 2011 году. Масштабы этих происшествий таковы, что их последствия способны перекрыть практически все плюсы атомной энергетики, известные человечеству. Трагедия в Японии для ряда стран стала толчком к переработке энергетической стратегии и смещения акцентов в сторону использования альтернативных источников энергии.

«Атомная энергетика» - Экономический рост и энергетика ГОЭЛРО-2. Энергетика и экономический рост Роль атомной генерации. Экономический рост и энергетика Инновационный сценарий МЭРТ. Источник: Минэнерго. Источник: Исследование Томского политехнического университета. Повышение энергоэффективности – экономия 360 – 430 млн тут Энергоемкость ВВП в 20 – 59-60% от 07.

«Атомные электростанции в России» - Схема работы АЭС. Плавучая атомная электростанция (ПАТЭС). Принцип работы АЭС. Классификация АЭС по виду отпускаемой энергии. Классификация АЭС по типу реакторов. Получение электроэнергии на АЭС. Действующие АЭС России. Характеристики ВВЭР-1000. География планируемого размещения ПАТЭС в России. Проектируемые атомные станции.

«Атомная опасность» - Вероятностный анализ безопасности атомных. Недопустимая зона. Безопасность и риск. Вероятностный анализ. Анализ безопасности РУ. Анализ риска. Распространение в различных областях науки. Методология оценки риска. Величина риска. Социальные ценности. Зарубежные подходы к проблеме "риска". Упрощение вероятностного подхода.

«Атомная энергетика России» - Необходим переход на сухой способ хранения ОЯТ. Состояние и ближайшие перспективы развития атомной энергетики мира. Принцип внутренне присущей безопасности: Развитие радиохимического производства по переработке топлива. Комплекс по обеспечению ядерной и радиационной безопасности (ЯРБ). Создание альтернативных нынешним монополистам поставщиков основного оборудования.

«Проблемы атомной энергетики» - Особенно остро стоит проблема быстрого исчерпания запасов органических природных энергоресурсов. Классификация ядерных реакторов. 1 кг природного урана заменяет 20 т угля. Атомная энергетика не потребляет кислорода и имеет ничтожное количество выбросов при нормальной эксплуатации. Атомная энергетика.

«Атомная электростанция» - Презентация по физике по теме «Атомные технологии». Используемые источники информации. Тепловыделяющий элемент(ТВЭЛ). Самый известный реактор использующий управляемый ядерный синтез – солнце. На рисунке показана схема работы атомной электростанции. Термоядерные реакторы. АЭС различаются по типу реакторов и по виду отпускаемой энергии.

Всего в теме 12 презентаций

Ядерная энергетика – единственный способ удовлетворить растущую потребность человечества в электричестве.

Никакие другие источники энергии не в состоянии произвести достаточное количество электричества. Его мировое потребление с 1990 по 2008 год выросло на 39 % и ежегодно увеличивается. Солнечная энергия не может удовлетворить индустриальные потребности в электричестве. Запасы нефти и угля истощаются. На 2016 год в мире функционировал 451 ядерный энергоблок. Суммарно энергоблоки выработали 10,7 % мирового объема генерации электричества. 20 % всей электроэнергии, вырабатываемой в России, производят атомные станции.

Энергия, выделяемая во время ядерной реакции, значительно превышает количество тепла, которое освобождается при горении.

1 кг урана, обогащенный до 4 %, выделяет количество энергии, эквивалентное сжиганию 60 тонн нефти или 100 тонн угля.

Безопасная работа атомных станций в сравнении с тепловыми.

С момента строительства первых атомных объектов произошло около трех десятков аварий, в четырех случаях произошел выброс вредных веществ в атмосферу. Число происшествий, связанных со взрывом метана на угольных шахтах, исчисляется десятками. Из-за устаревшего оборудования число аварий на ТЭС увеличивается с каждым годом. Последняя крупная авария в России произошла в 2016 году на Сахалине. Тогда без света остались 20 тысяч россиян. Взрыв в 2013 году на Углегорской ТЭС (Донецкая область, Украина) спровоцировал пожар, который не могли потушить в течение 15 часов. В атмосферу было выброшено большое количество токсичных веществ.

Независимость от ископаемых источников энергии.

Запасы природного топлива истощаются. Остатки угля и нефти оцениваются в 0,4 ИДж (1 ИДж = 10 24 Дж). Запасы урана превышают 2,5 ИДж. К тому же, уран может использоваться повторно. Ядерное топливо легко перевозить, расходы на транспортировку минимальны.

Сравнительная экологичность атомных электростанций.

В 2013 году мировые выбросы от использования ископаемого топлива для получения электричества составили 32 гигатонны. Сюда входят углеводороды и альдегиды, сернистый газ, оксиды азота. АЭС не потребляет кислород, ТЭС же использует кислород для окисления топлива и производит сотни тысяч тонн золы в год. Выбросы на АЭС происходят в редких случаях. Побочным эффектом их деятельности является эмиссия радионуклидов, которые распадаются в течение нескольких часов.

"Парниковый эффект" стимулирует страны ограничивать объемы сжигания угля и нефти. Атомные электростанции Европы ежегодно снижают эмиссию СО2 на 700 миллионов тонн.

Положительное влияние на экономику.

Строительство АЭС создает рабочие места на станции и в сопутствующих отраслях. Ленинградская АЭС, к примеру, обеспечивает локальные промышленные предприятия отоплением и горячей технической водой. Станция является источником медицинского кислорода для медучреждений и жидкого азота для предприятий. Гидротехнический цех поставляет потребителям питьевую воду. Объем производства энергии АЭС напрямую связан с ростом благосостояния района.

Незначительное количество действительно опасных отходов.

Отработанное ядерное топливо - источник энергии. Радиоактивные отходы составляют 5 % отработанного топлива. Из 50 кг отходов всего 2 кг нуждаются в длительном хранении и требуют серьезной изоляции.

Радиоактивные вещества смешивают с жидким стеклом и заливают в контейнеры с толстыми стенами из легированной стали. Железные контейнеры готовы обеспечить надежное хранение опасных веществ на протяжении 200-300 лет.

Строительство плавучих атомных электростанций (ПАТЭС) позволит обеспечить дешевой электроэнергией труднодоступные территории, в том числе и в сеймоопасных районах.

АЭС жизненно необходимы в труднодоступных районах Дальнего Востока и Крайнего Севера, но строительство стационарных станций экономически не оправдано в малонаселенных территориях. Выходом станет использование малых плавучих атомных тепловых станций. Первую в мире ПАТЭС "Академик Ломоносов" запустят осенью 2019 года на побережье Чукотского полуострова в Певеке. Строительство плавучего энергоблока (ПЭБ) ведется на Балтийском заводе Санкт-Петербурга. Всего планируется к 2020 году запустить в эксплуатацию 7 ПАТЭС. В числе плюсов использования плавучих АЭС:

  • обеспечение дешевой электроэнергией и теплом;
  • получение 40-240 тысяч кубометров пресной воды в сутки;
  • отсутствие необходимости в срочной эвакуации населения при авариях на ПЭБ;
  • повышенная удароустойчивость энергоблоков;
  • потенциальный скачок в развитии экономики районов с ПАТЭС.

Предложить свой факт

Минусы ядерной энергии

Большие затраты на строительство АЭС.

Строительство современной атомной станции оценивается в 9 млрд долларов. По версии некоторых экспертов, расходы могут достигать 20-25 млрд евро. Стоимость одного реактора, в зависимости от его мощности и поставщика, колеблется в пределах 2-5 млрд долларов. Это в 4,4 раза выше стоимости ветряной энергетики и в 5 раз дороже солнечной. Срок окупаемости станции достаточно велик.

Запасы урана-235, который используют практически все АЭС, ограничены.

Запасов урана-235 хватит на 50 лет. Переход на использование комбинации из урана-238 и тория позволит вырабатывать энергию для человечества еще тысячу лет. Проблема в том, что для перехода на уран-238 и торий необходим уран-235. Использование всех запасов урана-235 сделает сделает переход невозможным.

Затраты на производство ядерной энергии превышают эксплуатационные расходы ветряных станций.

Исследователи компании «Energy Fair» представили отчет, который демонстрирует экономическую нецелесообразность использования ядерной энергии. 1 МВт/час, произведенный АЭС, обходится на 60 фунтов (96$) дороже аналогичного объема энергии, произведенного ветряными мельницами. Эксплуатация станций по расщеплению атома обходится в 202 фунта (323$) на 1 мвт/час, объекта ветроэнергетики - в 140 фунтов (224$).

Тяжелые последствия аварий на АЭС.

Риск аварий на объектах существует на протяжении всего срока эксплуатации атомных реакторов. Яркий пример - авария на ЧАЭС, на ликвидацию которой было направлено 600 тыс. человек. В течение 20 лет после аварии умерли 5 тысяч ликвидаторов. Реки, озера, лесные угодья, малые и крупные населенные пункты (5 млн га земель) стали непригодными для жизни. 200 тысяч км2 подверглись загрязнению. Авария стала причиной тысяч смертей, увеличения числа больных раком щитовидной железы. В Европе впоследствии зафиксировали 10 тысяч случаев рождения детей с уродствами.

Необходимость захоронения радиоактивных отходов.

Каждый этап расщепления атома связан с образованием опасных отходов. Сооружаются могильники для изоляции радиоактивных веществ до их полного распада, занимающие большие площади на поверхности Земли, расположенные в отдаленных местах мирового океана. 55 млн тонн радиоактивных отходов, захороненных на площади 180 гектаров в Таджикистане, рискуют проникнуть в окружающую среду. По данным на 2009 год, только 47 % радиоактивных отходов российских предприятий находятся в безопасном состоянии.

За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира с суммарной энергетической модностью около 300 млн. кВт. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, основными недостатками потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии и проблема переработки использованного ядерного топлива.

Остановимся сначала на преимуществах. Рентабельность атомной энергетики складывается из нескольких составляющих. Одна из них независимость от транспортировки топлива. Если для электростанции мощностью 1 млн. кВт требуется в год около 2 млн. т.у.т., то для блока ВВЭР-1000 понадобится доставить не более 30 т. обогащенного урана, что практически сводит к нулю расходы на перевозку топлива. Использование ядерного топлива для производства энергии не требует кислорода и не сопровождается постоянным выбросом продуктов сгорания, что, соответственно, не потребует строительства сооружений для очистки выбросов в атмосферу. Города, находящиеся вблизи атомных станций, являются в основном экологически чистыми зелеными городами во всех странах мира, а если это не так, то это происходит из-за влияния других производств и объектов, расположенных на этой же территории. В этом отношении ТЭС дают совсем иную картину. Анализ экологической ситуации в России показывает, что на долю ТЭС приходится более 25% всех вредных выбросов в атмосферу. Около 60% выбросов ТЭС приходится на европейскую часть и Урал, где экологическая нагрузка существенно превышает предельную. Наиболее тяжелая экологическая ситуация сложилась в Уральском, Центральном и Поволжском районах, где нагрузки, создаваемые выпадением серы и азота, в некоторых местах превышают критические в 2-2,5 раза.

К недостаткам ядерной энергетики следует отнести потенциальную опасность радиоактивного заражения окружающей среды при тяжелых авариях типа Чернобыльской. Сейчас на АЭС, использующих реакторы типа Чернобыльского, приняты меры дополнительной безопасности, которые, по заключению МАГАТЭ, полностью исключают аварию подобной тяжести: по мере выработки проектного ресурса такие реакторы должны быть заменены реакторами нового поколения повышенной безопасности. Тем не менее в общественном мнении перелом по отношению к безопасному использованию атомной энергии произойдет, по-видимому, не скоро. Проблема утилизации радиоактивных отходов стоит очень остро для всего мирового сообщества. Сейчас уже существуют методы остекловывания, битумирования и цементирования радиоактивных отходов АЭС, но требуются территории для сооружения могильников, куда будут помещаться эти отходы на вечное хранение. Страны с малой территорией и большой плотностью населения испытывают серьезные трудности при решении этой проблемы.