Гунча Эрешова
Опыты и эксперименты с воздухом для детей младшего дошкольного возраста

Дети дошкольного возраста по природе своей пытливые исследователи окружающего мира. Экспериментируя , ребёнок различными способами самостоятельно воздействует на окружающие его предметы и явления с целью более полного их познания и освоения.

Процесс познания творческий, и наша задача - поддержать и развивать в ребёнке интерес к исследованиям, открытиям, создать необходимые для этого условия. Детское экспериментирование претендует на роль ведущей деятельности в период дошкольного развития ребёнка . Занимательные опыты , эксперименты обсуждают детей к поиску причин , способов действий, проявлению творчества.

Мы с вами остановимся подробнее на таком объекте неживой природы, который особенно интересен детям - это воздух . В младшем дошкольном возрасте главная цель при опытах с воздухом - это обнаружение воздуха в окружающем пространстве.

Есть очень простые опыты , которые дети запоминают на всю жизнь. Ребята могут не понять до конца, почему это все происходит, но, когда пройдет время и они окажутся на уроке по физике или химии, в памяти обязательно всплывет вполне наглядный пример.

Опыт 1 . Что в пакете

Цель : обнаружить воздух .

Оборудование : полиэтиленовый пакет

Рассмотреть пустой пакет.

Вопрос : Что находится в пакете?

Проблемная ситуация.

Набрать в пакет воздух и закрутить его , чтобы он стал упругим.

Результат. Дети наполняют пакеты воздухом , и зажимают их руками

Вопрос : А сейчас что в пакете?

Открывают пакет и показывают, что в нём ничего нет. Обращают внимание на то, что когда открыли пакет, тот перестал быть упругим.

Почему казалось, что пакет пустой?

Вывод. Воздух прозрачный , невидимый, легкий.

Опыт 2 . Игры с соломинкой

Цель : формировать представление о том, что внутри человека есть воздух , и его можно обнаружить.

Оборудование : соломинки, емкость с водой,

Предложить детям подуть в трубочку, подставив ладонь под струю воздуха .

Вопрос : Что почувствовали? Откуда появился ветерок?

Затем попросить опустить трубочку в воду, подуть в нее.

Проблемная ситуация

Откуда появились пузыри, куда исчезли?

Результат. Дети обнаруживают воздух внутри себя .

Вывод. Человек дышит воздухом . Он попадает внутрь человека при вдохе. Его можно не только почувствовать, но и увидеть. Для этого нужно опустить трубочку в воду и подуть. Из трубочки выходит воздух , он легкий, поднимается через воду вверх пузырьками и лопается.

Опыт 3 . Лодочка

Цель : показать, что воздух обладает силой .

Оборудование : таз с водой, лодочка,

Предложить детям подуть на лодочку и ответить на вопросы :

«Почему она плывет?» , «Что ее толкает?» , «Откуда появляется ветерок?» .

Проблемная ситуация

почему плывёт лодочка, что её толкает (ветерок) ; откуда берётся ветер-воздух (мы его выдыхаем) .

Результат. Лодка плывет, если на нее дуешь.

Вывод. Человек выдувает воздух , он толкает лодочку.

Чем сильнее дует, тем быстрее плывет лодочка.

Опыт 4 . Что в пакете

Цель : сравнить свойства воздуха и воды .

Оборудование : 2 пакета (один с водой, другой с воздухом ,

Обследовать 2 пакета, узнать, что в них.

Дети взвешивают их, ощупывают, открывают, нюхают.

Обсуждают, чем похожи вода и воздух , а чем различаются.

Результат. Сходства : прозрачны, не имеют вкуса и запаха, принимают форму сосуда.

Различия : вода - жидкость, она тяжелее, льется, в ней растворяются некоторые вещества. Воздух газ , он невидим, невесом.

Вывод. У воды и воздуха есть сходства и различия.

Опыт 5 . Загадочные пузыри

Цель : показать, что воздух есть в некоторых предметах.

Оборудование : емкость с водой, кусочек поролона, деревянный брусок, комочки земли, глины.

Дети рассматривают предметы и погружают их в воду.

Наблюдают за выделением воздушных пузырьков .

Проблемная ситуация

Вопрос : Откуда появляются пузырьки?

Результат. Из поролона, глины, земли при погружении в воду выделяются пузырьки воздуха .

Вывод. Воздух проникает в некоторые предметы.

Опыт 6 . Надувание мыльных пузырей

Цель : ознакомить с тем, что при попадании воздуха в каплю мыльной воды, образуется пузырь.

Оборудование : соломинки длиной 10 см разного диаметра, крестообразно расщепленные на конце; мыльный раствор,

Дети по очереди опускают соломинки в мыльный раствор и надувают

разные по размеру пузыри. Определяют, почему надувается и лопается мыльный пузырь.

Результат. Дети надувают разные по размеру пузыри.

Вывод. В каплю мыльные воды попадает воздух , чем его больше, тем больше пузырь. Лопается пузырь, когда воздуха становится очень много и он не помещается в капле, или, когда задеваешь и рвешь его оболочку.

Опыт 7 . Пузырьки-спасатели

Цель : выявить, что воздух легче воды и имеет силу.

Оборудование : стакан с минеральной водой, пластилин.

Взрослый наливает в стакан минеральную воду и сразу бросает в нее несколько маленьких кусочков пластилина.

Дети наблюдают.

Возникает проблемная ситуация

Обсуждают : почему пластилин опускается на дно (он тяжелее воды, поэтому тонет, что происходит на дне, почему пластилин всплывает и снова опускается.

Результат. Пластилин опускается на дно, всплывает и снова опускается на дно.

Вывод. Пузырьки воздуха поднимаются наверх воздуха выходят из воды , а пластилин снова опускается на дно.

Опыт 8 . Упрямый воздух

Цель : показать, что воздух при сжатии занимает меньше места, а сжатый воздух обладает силой .

Оборудование : шприцы, емкость с водой.

Дети рассматривают шприц, выясняют его устройство (цилиндр, поршень) . Взрослый демонстрирует действия с ним : перемещает поршень вверх и вниз без воды. Пробует отжать поршень, когда отверстие закрыто пальцем, набирает воду в поршень, когда он вверху и внизу. Дети повторяют действия.

Результат : отжать поршень очень трудно, когда отверстие закрыто. Если поршень поднят, воду набрать невозможно.

Вывод : воздух воздух обладает силой

Вывод :

Восторг и море положительных эмоций – вот что даёт экспериментирование .

Проведенные опыты вместе с любопытными детьми , дали много интересного, обогатили знания детей для дальнейших проведений опытов и экспериментов .

В нашей экспериментальной работе мы сделали вывод, что, воздух прозрачный , невидимый, легкий. Человек дышит воздухом . Он попадает внутрь человека при вдохе. Его можно не только почувствовать, но и увидеть, для этого нужно опустить трубочку в воду и подуть, из трубочки выйдет воздух , он легкий, поднимется через воду вверх пузырьками и лопнет.

У воды и воздуха есть сходства и различия, воздух проникает в некоторые предметы, в каплю мыльной воды попадает воздух , чем его больше, тем больше пузырь, лопается пузырь, когда воздуха становится очень много и он не помещается в капле, или когда задеваешь и рвешь его оболочку.

Пузырьки воздуха поднимаются наверх , выталкивают кусочки пластилина, потом пузырьки воздуха выходят из воды , а пластилин снова опускается на дно, воздух при сжатии занимает меньше места, сжатый воздух обладает силой , которая может двигать предметы.

Таинственный невидимка

Что находится внутри воздушного шарика? Почему не тонет мячик? Отчего получаются мыльные пузыри?.. Ну какого ребенка не волновали эти животрепещущие вопросы. Поймать «таинственного невидимку» помогут веселые и несложные опыты. Вам потребуются: емкости с водой, прозрачные стаканчики, резиновый напальчник, воронка, трубочки для коктейля, пластиковые бутылки, мыльный раствор (или готовый состав для мыльных пузырей), воздушные шарики, палочка длиной около 60 см., веревочка, миска с водой, мяч, резиновые перчатки.

Ищем невидимку

Расскажите малышу, что нас окружает воздух. Он есть повсюду, но мы его не видим. Как же убедиться. что он действительно есть? Повесим посреди комнаты (например, на люстре) полоски бумаги или ленточки. От сквозняка они начнут шевелиться. Вот мы и увидели тебя, невидимка!

Ловушка для невидимки

А можно ли поймать этого неуловимого хитреца? Оказывается – да! Сделаем ловушку из обычного полиэтиленового пакета или резиновой перчатки (так будет смешнее). Сначала широко раскроем пакет (или перчатку). Воздух, ничего не подозревая, заберется внутрь… Тут-то мы быстро закрутим края пакета и крепко-крепко перевяжем резинкой. Вон как раздулся пакет! Сразу ясно, что там что-то есть. Попался, невидимка! Ну что, отпустим его? Тогда развязываем пакет. Он сразу сдулся. Но мы-то теперь знаем, что наш невидимка все равно здесь.

Дуем, дуем, надуваем…

Попробуем задержать дыхание. Сколько мы вытерпели? Не больше нескольких минут: сразу стало как-то неприятно. Оказывается, воздух – наш большой друг, ведь мы им дышим. Чтобы убедиться, что внутри нас есть воздух, возьмем соломинку для коктейля и подуем через нее себе на ладошку. Что мы почувствовали? Как будто дует ветерок. А теперь один конец трубочки опустим стакан с водой. Когда мы дуем, в воде сразу появляются пузырьки воздуха. Но воздух нужен не только людям, но и животным и даже растениям. Осторожно срежем во время прогулки веточку и поставим в стакан с водой. На стенках стакана сразу же появились пузырьки: растение дышит…

Кто сидит в стакане?

Опыт 1

Дайте малышу пустой стакан и спросите, есть ли в нем что-нибудь. Кроха, естественно, скажет, что нет. Тогда предложите медленно опустить стакан в миску с водой, держа его вверх дном. Почему же вода не попадает в стакан? Наверное там уже что-то есть? Что же? Правильно, воздух!

Опыт 2

Чтобы убедиться в этом еще раз, снова опустим стакан в воду, только на этот раз будем держать его не строго вертикально, а под углом, Теперь вода легко сможет проникнуть в стакан, а пузырьки воздуха выплывут на поверхность.

Опыт 3

Закрепим при помощи пластилина на дне стакана кусочек бумаги. Дайте малышу убедиться, что бумажка сухая. Повторите опыт 1 и спросите малыша, промокла ли, по его мнению, бумажка. Попросите объяснить, почему. А теперь пощупаем бумажку снова и проверим, правы ли мы были.

Опыт 4

А вот еще один, более интересный вариант того же опыта.

Возьмите деревянный брусок, кусочек пенопласта или пробку, воткните в него маленький флажок, сделанный из спички и бумажки. Пустите «кораблик» в воду. Накройте его широкогорлой банкой, осторожно опустите банку на дно, а затем поднимите банку на поверхность. Наш флажок остался сухим потому что в банке был воздух!

Как пощупать воздух?

Для этого возьмем резиновый напальчник и воронку с носиком подходящего диаметра (ее можно заменить пластиковой бутылкой с обрезанным дном. На узкий конец воронки или на горлышко бутылки наденем напальчник. Предложим малышу пощупать его, чтобы убедиться, что он пустой. Теперь свободный конец воронки или бутылки и, не наклоняя медленно погружаем в воду. Что же произошло с нашим «шариком»? Правильно он надулся! А почему? Да потому, что туда попал весь воздух из бутылки, который вытеснила вода!

Сколько весит воздух?

Нисколько! – ответит любой ребенок. Попробуем проверить. Возьмем палочку длиной около 60 см. Посередине привяжем веревочку. Надуем два шарика и привяжем их на концы палочки и подвесим палку за веревочку. Палочка висит в горизонтальном положении, значит, оба шарика весят одинаково. А теперь проткнем один из шариков иголкой. Из шарика выйдет воздух и конец палки, к которому он привязан, поднимется вверх. Интересно, почему? Да потому, что без воздуха шарик стал легче. а что будет, если мы проколем и второй шарик? Правильно, палочка снова уравновесится!

Загадочные пузырьки

Интересно, есть ли воздух в камне? А в дереве, глине, земле…? Возьмите несколько прозрачных стаканчиков с водой в один положите камень, в другой комочек глины, в третий – деревянный брусок и т.д. Понаблюдайте, что будет. на поверхность начнут подниматься пузырьки. Значит, Воздух есть. А где его больше всего? конечно там, где больше пузырьков. предложите малышу подумать, от чего это зависит (чем плотнее материал. тем меньше в нем воздуха, чем он рыхлее, мягче – тем воздуха меньше).

Пузырьки- спасатели

Налейте в один стакан простую воду, а в другой – минеральную с газом. Попросите малыша бросить и туда, и туда бросьте кусочки пластилина величиной с рисовые зернышки. Понаблюдайте, что произойдет: в простой воде пластилин пойдет ко дну, а в минеральной сначала утонет, а потом всплывет на поверхность. Почему так произошло? Потому что пузырьки воздуха поднимают пластилин на поверхность. Когда газ выдохнется, пластилин утонет.

Подводная лодка

Для этого опыта вам потребуется трубочка для коктейля, которую можно согнуть под углом.

Дайте малышу стакан и емкость с водой. Спросите его, сможет ли стакан сам подняться со дна. Ну конечно же, нет! А если ему поможет воздух? Предложите юному исследователю опустить стакан в воду, так. чтобы он заполнился до краев, а затем перевернуть его в воде вверх дном. Теперь нужно подвести под стакан изогнутую трубочку и начать вдувать воздух. О, чудо! Воздух постепенно вытеснил воду из-под стакана, и он всплыл на поверхность. А почему? Правильно, потому что воздух легче воды!

Что быстрее упадет?

Дайте малышу два листа бумаги и предложите бросить один вниз ребром, а второй – горизонтально. Понаблюдайте, какой упадет быстрее. Спросите, почему лист, который бросили горизонтально, падал медленнее. Может, его кто-то поддерживал? Ну конечно же, это был наш невидимка. Под вторым листом воздуха было меньше, и он упал быстрее. Значит, воздух имеет еще и плотность и может удерживать предметы!

Реактивный шарик

А где еще может помочь наш невидимка. Дайте малышу несколько воздушных шариков разного размера. Предложите надувать их по очереди и отпускать. Какой шарик улетел дальше всех? Тот в котором было больше воздуха! Воздух, вырываясь из горлышка, заставляет шарик двигаться вперед. Попробуйте объяснить малышу, что такой же принцип используется и в двигателях реактивных самолетов и ракет.

Соломенный буравчик

Вот он какой, наш воздух: и сильный. и плотный, а к тому же еще и упругий. Убедиться в этом нам поможет вот такой опыт. Вам потребуются две сырые картофелины и две соломинки для коктейля. Предложить малышу взять соломинку пальцами за верхнюю часть и с размаху (примерно с десяти сантиметров) воткнуть ее в картофелину. Соломинка согнется, а воткнуться не сможет. Вторую соломинку заткнем сверху пальчиком. Размахиваемся… воткнулась!!! Почему же? Да все очень просто: ведь в соломинке остался воздух, и она стала крепкой и упругой, теперь ее просто так не согнешь!

Волшебная бутылка

Но и на этом волшебные свойства воздуха не заканчиваются! Возьмите пластиковую бутылку без пробки и положите ее в морозилку. Когда бутылка как следует остынет, попросите малыша вынуть ее из морозильника, хорошенько закрыв отверстие ладошкой. Быстро закройте отверстие монетой. А теперь наблюдайте внимательно-внимательно: монета начинает… подпрыгивать! интересно, как это получилось? Пока непонятно?

Может, нам поможет ответить на этот вопрос другой опыт

На горлышко охлажденной в морозилке бутылки быстро надеваем воздушный шарик. Опускаем бутылку в горячую воду. то же случилось с шариком? Он начал надуваться. Значит?… Ну конечно же, теплый воздух занимает больше места, чем холодный. Он нагрелся, перестал помещаться в бутылочке и начал вылезать наружу. Поэтому и монетка подпрыгивала, и шарик надувался!

Сухим из воды

В тарелку положите монетку и налейте немного воды. так чтобы монетка была полностью закрыта. Предложите малышу вынуть ее, не замочив пальцев. только как это сделать? Возьмем стакан и зажжем внутри него бумажку. Когда воздух в стакане нагреется, быстро опрокинем стакан на тарелку рядом с монеткой. Через некоторое время бумажка погаснет, воздух начнет остывать, и вода втянется под стакан, а тарелка окажется сухой. Тогда монетку можно будет взять, не намочив пальцы. почему же так получилось? Оказывается. воздух сначала нагрелся и расширился, а когда остыл, то стал сужаться. воздух снаружи стал давить на воду сильнее, чем изнутри стакана, и вода втянулась под стакан на освободившееся место.

Мыльные пузыри

Кому не нравится надувать мыльные пузыри? Нам, лично, такие чудаки не встречались. А вот кто знает, что у мыльных пузырей внутри? Нальем в тарелку мыльный раствор и подуем в него через трубочку. На наших глазах в тарелке начнет расти замок из мыльных пузырей. Легонько подуем на него: пузыри полетят. Они такие легкие, потому что внутри воздух. А из мыла получается тонкая и прочная оболочка пузыря. А теперь постараемся надуть огромный-преогромный пузырь. Дуем! Еще дуем! Вот уже какой огромный получился! Давай еще!!! Ой! Лопнул… Почему так получилось? Воздуха внутри оказалось слишком много и мыльная оболочка не выдержала.

Несколько капель глицерина, добавленные в мыльный раствор, сделают ваши пузыри незабываемыми. Hаслаждение цветом, размером и, может быть, даже вкусом.

Сделаем раствор для пузырей сами.

Для этого подходит советское хозяйственное мыло. Hастpугайте в воду, можно даже вскипятить пpи помешивании, чтобы быстpее стpужки pаствоpились. Выдувают пузырь так: окунув трубочку в раствор и держа ее отвесно, так чтобы на конце образовалась пленка жидкости, осторожно дуют в нее. Так как пузырь наполняется при этом теплым воздухом наших легких, который легче окружающего комнатного воздуха, то выдутый пузырь тотчас же поднимается вверх.

Если удастся сразу выдуть пузырь в 10 см диаметром, то раствор годен; в противном случае прибавляют в жидкость еще мыло, до тех пор, пока можно будет выдувать пузыри указанного размера. Но этого испытания мало. Выдув пузырь, обмакивают палец в мыльный раствор и стараются пузырь проткнуть; если он не лопнет, можно приступить к опытам; если же пузырь не выдержит, надо прибавить еще немного мыла.

Производить опыты нужно медленно, осторожно, спокойно. Освещение должно быть, по возможности, яркое: иначе пузыри не покажут своих радужных переливов.

Вот несколько занимательных опытов с пузырями.

Мыльный пузырь вокруг цветка

В тарелку или на поднос наливают мыльного раствора настолько, чтобы дно тарелки было покрыто слоем в 2-3 мм вышины; в середину кладут цветок или вазочку и накрывают стеклянной воронкой. Затем, медленно поднимая воронку, дуют в ее узкую трубочку - образуется мыльный пузырь; когда же этот пузырь достигнет достаточных размеров, наклоняютворонку, как показано на рис., высвобождая из-под нее пузырь. Тогда цветок окажется лежащим под прозрачным полукруглым колпаком из мыльной пленки, переливающейся всеми цветами радуги.Вместо цветка можно взять статуэтку, увенчав ее голову мыльным пузырьком. Для этого необходимо предварительно капнуть на голову статуэтки немного раствора, а затем, когда большой пузырь уже выдут, проткнуть его и выдуть внутри его маленький.

Несколько пузырей друг в друге

Из воронки, употребленной для описанного выше опыта, выдувают большой мыльный пузырь. Затем совершенно погружают соломинку в мыльный раствор так, чтобы только кончик ее, который придется взять в рот, остался сухим, и просовывают ее осторожно через стену первого пузыря до центра; медленно вытягивая затем соломинку обратно, не доводя ее, однако, до края, выдувают второй пузырь, заключенный в певом, в нем - третий, четвертый и т.д.Цилиндр из мыльной пленки получается между двумя проволочными кольцами. Для этого на нижнее кольцо спускают обыкновенный шарообразный пузырь, затем сверху к пузырю прикладывают смоченное второе кольцо и, поднимая его вверх, растягивают пузырь, пока он не сделается цилиндрическим. Любопытно, что если вы поднимете верхнее кольцо на высоту большую, чем длина окружности кольца, то цилиндр в одной половине сузится, в другой расширится и затем распадется на два пузыря.

Мыльные пузыри на морозе

Для опытов достаточно иметь разведенный в снеговой воде шампунь или мыло, в который добавлено небольшое количество чистого глицерина, и пластмассовую трубку от шариковой ручки. Пузыри легче выдувать в закрытом холодном помещении, так как на улице почти всегда дуют ветры. Большие пузыри легко выдуваются с помощью пластмассовой воронки для переливания жидкостей.Пузырь при медленном охлаждении переохлаждается и замерзает примерно при –7°C. Коэффициент поверхностного натяжения мыльного раствора незначительно увеличивается при охлаждении до 0°C, а при дальнейшем охлаждении ниже 0°C уменьшается и становится равным нулю в момент замерзания. Сферическая пленка не будет сокращаться, несмотря на то, что воздух внутри пузыря сжимается. Теоретически диаметр пузыря должен уменьшаться в процессе охлаждения до 0°C, но на такую малую величину, что практически это изменение определить очень трудно.Пленка оказывается не хрупкой, какой, казалось бы, должна быть тонкая корочка льда. Если дать возможность мыльному закристаллизовавшемуся пузырю упасть на пол, он не разобьется, не превратится в звенящие осколки, как стеклянный шарик, каким украшают елку. На нем появятся вмятины, отдельные обломки закрутятся в трубочки. Пленка оказывается не хрупкой, она обнаруживает пластичность. Пластичность пленки оказывается следствием малости ее толщины.

Первые три опыта следует проводить на морозе –15...–25°C, а последний – при –3...–7°C.

Опыт 1

Вынесите баночку с мыльным раствором на сильный мороз и выдуйте пузырь. Сразу же в разных точках поверхности возникают мелкие кристаллики, которые быстро разрастаются и наконец сливаются. Как только пузырь полностью замерзнет, в его верхней части, вблизи конца трубки, образуется вмятина. Воздух в пузыре и оболочка пузыря оказываются более охлажденными в нижней части, так как в вершине пузыря находится менее охлажденная трубка. Кристаллизация распространяется снизу вверх. Менее охлажденная и более тонкая (из-за отекания раствора) верхняя часть оболочки пузыря под действием атмосферного давления прогибается. Чем сильнее охлаждается воздух внутри пузыря, тем больше становится вмятина.

Опыт 2

Опустите конец трубки в мыльный раствор, а затем выньте. На нижнем конце трубки останется столбик раствора высотой около 4 мм. Приложите конец трубки к поверхности ладони. Столбик сильно уменьшится. Теперь выдувайте пузырь до появления радужной окраски. Пузырь получился с очень тонкими стенками. Такой пузырь ведет себя на морозе своеобразно: как только он замерзает, так сразу лопается. Так что получить замерзший пузырь с очень тонкими стенками никогда не удается.Толщину стенки пузыря можно считать равной толщине мономолекулярного слоя. Кристаллизация начинается в отдельных точках поверхности пленки. Молекулы воды в этих точках должны сблизиться друг с другом и расположиться в определенном порядке. Перестройка в расположении молекул воды и сравнительно толстых пленках не приводит к нарушению связей между молекулами поды и мыла, тончайшие же пленки разрушаются.

Опыт 3

В две баночки налейте поровну мыльный раствор. В одну добавьте несколько капель чистого глицерина. Теперь из этих растворов один за другим выдуйте два приблизительно равных пузыря и положите их на стеклянную пластинку. Замерзание пузыря с глицерином протекает немного иначе, чем пузыря из раствора шампуня: задерживается начало, и само замерзание идет медленнее. Обратите внимание: замерзший пузырь из раствора шампуня сохраняется на морозе дольше, чем замерзший пузырь с глицерином.Стенки замерзшего пузыря из раствора шампуня – монолитная кристаллическая структура. Межмолекулярные связи в любом месте совершенно одинаковы и прочны, в то время как в замерзшем пузыре из того же раствора с глицерином прочные связи между молекулами воды ослаблены. Кроме того, эти связи нарушаются тепловым движением молекул глицерина, поэтому кристаллическая решетка быстро сублимируется, а значит, быстрее разрушается.

Опыт 4

На слабом морозе выдуйте пузырь. Дождитесь, пока он лопнет. Повторите опыт с тем, чтобы убедиться, что пузыри не замерзают, сколько бы их ни выдерживали на морозе. Теперь приготовьте снежинку. Выдуйте пузырь и тут же сбросьте на него сверху снежинку. Она мгновенно соскользнет вниз на дно пузыря. На том месте, где остановилась снежинка, начнется кристаллизация пленки. Наконец, весь пузырь замерзнет. Если положить пузырь на снег – он также через некоторое время замерзнет.Пузыри на слабом морозе охлаждаются медленно и при этом переохлаждаются. Снежинка является центром кристаллизации. На снегу происходит то же самое явление.


Мы решили рассказать, какие эксперименты можно провести с воздухом и в помещении.

Нетекучая вода

Возьмите две бутылки и вставьте в каждую из них по воронке. На одной из бутылок замажьте горлышко вокруг воронки пластилином так, чтобы не было ни щели, ни дырочки. Сначала налейте немного в бутылку без пластилина — беспрепятственно попадает внутрь.

А теперь попробуйте наполнить бутылку с пластилином — кроме нескольких капель воды больше в бутылку не попадет ничего! А все потому, что воздух, находящийся в этой емкости не имеет возможности выйти оттуда
через щели между горлышком и воронкой. И сила давление воздуха в бутылке больше силы тяжести, тянущей из воронки вниз, поэтому вода остается в воронке — пока не проделать хотя бы малюсенькую дырочку между горлышком и воронкой.

Запуск ракеты

Эта забава будет интересна малышу довольно долго. Натяните между двумя, расположенными в противоположных концах комнаты, стульями нить, предварительно продев ее сквозь трубочку от сока. Надуйте воздушный шарик и зажмите конец прищепкой, чтобы не выходил воздух. Нарисуйте фломастером на шарике иллюминаторы и напишите, например, «Союз». При помощи скотча приклейте шарик к трубочке и подтяните его к одному из концов натянутой нити. Разожмите прищепку и наслаждайтесь скоростным запуском ракеты.

Наглядно вы можете увидеть весь процесс в этом видео, сделанном зарубежными энтузиастами. В принципе, все понятно и без перевода./p>

Танцующая монетка

Удивите своего малыша таким фокусом — на бутылку с длинным горлышком положите сверху большую монету, предварительно смочив ободок горлышка. Поставьте бутылку с монетой в таз. Начните наливать в таз теплую воду. Вы увидите, как монетка начнет двигаться и даже подпрыгивать — это связано с тем, что воздух расширяется от тепла и пытается вырваться из бутылки, толкая при этом монету.

Воздушные гонки

При помощи движения воздуха можно двигать предметы. Чтобы это проверить, устройте бумажные гонки. С одной стороны листа бумаги отогните около 2-3 см вверх, положите плоской стороной на чистый стол. У каждого игрока должна быть такой «гоночный» лист. Прочертите финишную линию или натяните нитку в качестве финишной ленты. По команде начните махать картонками позади листов бумаги, двигая их потоками воздуха вперед.

В качестве вариации игры можно использовать силу своего дыхания, заодно и носогубные мышцы потренируете, что очень полезно для развития речи ребенка.

Поющий воздух

Покажите ребенку, как можно музицировать при помощи бутылок. Если подуть над горлышком пустой бутылки, то воздух внутри нее завибрирует и произведет звук. Расставьте в ряд несколько бутылок с различным количеством воды в них. Чем больше воды, тем соответственно меньше воздуха останется в бутылке, а чем меньше воздуха, тем быстрее он вибрирует и тем выше получается звук. Руководствуясь этим принципом можно попробовать воспроизвести какую-нибудь несложную мелодию.

Вес воздуха

Ваш юный исследователь сомневается в существовании такой невидимой субстанции, как воздух? Тогда проведите небольшой опыт. Возьмите палку и два одинаковых воздушных шарика. Палку подвесьте ровно посередине, а по краям повесьте одинаково надутые шарики. Палка висит ровно, что значит, что шарики весят одинаково. Теперь проткните один из шариков иголкой, он лопнет и выпустит воздух. Что происходит с палкой? Она сразу же накренится в сторону надутого шарика, потому что он тяжелее пустого, а значит воздух существует и даже имеет вес!

Спасательный жилет

Отгадайте, какой из апельсинов утонет быстрее — в кожуре или без нее? Вопрос поставлен неверно — утонет вообще только один. Без кожуры. И даже несмотря на то, что тот, что в кожуре, тяжелее, он все рано будет продолжать держаться на воде, ведь на нем «спасательный жилет»: в кожуре есть много пузырьков воздуха, которые и работают спасателями, выталкивая тонущий апельсин на поверхность воды.

Этот же принцип можно увидеть, используя газированную воду и кусочек пластилина величиной с рисинку. Если бросить пластилин в стакан с газированной водой, он сначала утонет, а потом всплывет на поверхность, облепленный пузырьками воздуха. Эффект закончится, когда газ выдохнется, — пластилин утонет.

Воздух в нас и вокруг нас, он - непременное условие жизни на Земле. Знание свойств воздуха помогает человеку успешно применять их в быту, хозяйстве, строительстве и многом другом. На этом уроке мы продолжим изучать свойства воздуха, проведем много увлекательных опытов, узнаем об удивительных изобретениях человечества.

Тема: Неживая природа

Урок: Свойства воздуха

Повторим те свойства воздуха, о которых мы узнали на предыдущих уроках: воздух прозрачен, бесцветен, не имеет запаха, плохо проводит тепло.

В жаркий день оконное стекло прохладное наощупь, а подоконник и предметы стоящие на нем - теплые. Так происходит потому, что стекло - прозрачное тело, которое пропускает тепло, но само не нагревается. Воздух тоже прозрачен, поэтому хорошо пропускает солнечные лучи.

Рис. 1. Оконное стекло проводит солнечные лучи ()

Проведем несложный опыт: перевернутый вверх дном стакан опустим в широкий сосуд, наполненный водой. Мы почувствуем легкое сопротивление и увидим, что вода не может заполнить стакан, потому что воздух, находящийся в стакане, не “уступает” своего места воде. Если слегка наклонить стакан, не вынимая его из воды, из стакана выйдет воздушный пузырь, и часть воды войдет в стакан, но даже в таком положении стакана вода не сможет заполнить его полностью.

Рис. 2. Пузырьки воздуха выходят из наклоненного стакана, уступая место воде ()

Так происходит потому, что воздух, как и любое другое тело, занимает пространство в окружающем мире.

Используя это свойство воздуха, человек научился работать под водой без специального костюма. Для этого был создан водолазный колокол: под колокол-колпак, изготовленный из прозрачного материала, становятся люди и необходимое оборудование и колокол опускается при помощи подъемного крана под воду.

Воздух, находящийся под куполом, позволяет людям дышать некоторое время, достаточное для того, чтобы осмотреть повреждения корабля, опоры моста или дно водохранилища.

Для доказательства следующего свойства воздуха, необходимо плотно прикрыть пальцем левой руки отверстие велосипедного насоса, а правой рукой нажать на поршень.

Потом, не убирая пальца от отверстия, отпустить поршень. Палец, которым закрыто отверстие, чувствует, что воздух на него очень сильно давит. Но поршень с трудом, но сдвинется. Это означает, что воздух можно сжать. Воздух обладает упругостью, потому что когда мы отпускаем поршень, он сам возвращается в первоначальное положение.

Упругими называют тела, которые после прекращения сжатия принимают первоначальную форму. Например, если сжать пружину, а потом отпустить, она примет свою первоначальную форму.

Сжатый воздух тоже упруг, он стремится расшириться и занять прежнее место.

Для того, чтобы доказать, что воздух имеет массу, нужно сделать самодельные весы. Прикрепим сдутые воздушные шарики к концам палочки с помощью скотча. Положим длинную палочку на середину короткой, так чтобы концы уравновешивали друг друга. Соединим их ниткой. Прикрепим скотчем короткую палочку к двум банкам. Надуем один шарик и снова прикрепим его к палочке тем же кусочком скотча. Установим на прежнее место.

Мы увидим, как палочка наклоняется в сторону надутого шарика, потому что воздух, наполнивший шарик, делает его тяжелее. Из этого опыта можно сделать вывод, что воздух имеет массу и его можно взвесить.

Если воздух имеет массу, значит, он должен оказывать давление на Землю и все, что на ней находится. Так и есть, ученые подсчитали, что воздух атмосферы Земли оказывает на человека давление в 15 тонн (как три грузовика), но человек не чувствует этого, потому что в человеческом организме содержится достаточное количество воздуха, который оказывает давление такой же силы. Давление внутри и снаружи уравновешивается, поэтому человек ничего не ощущает.

Выясним, что происходит с воздухом при нагревании и охлаждении. Для этого проведем опыт: нагреем колбу со вставленной в нее стеклянной трубкой теплом своих рук и увидим, что из трубки в воду выходят пузырьки воздуха. Это происходит потому, что воздух в колбе при нагревании расширяется. Если накрыть колбу смоченной в холодной воде салфеткой, мы увидим, что вода из стакана по трубке поднимается вверх, потому что при охлаждении воздух сжимается.

Рис. 7. Свойства воздуха при нагревании и охлаждении ()

Чтобы узнать больше о свойствах воздуха, проведем еще один опыт: две колбы закрепим на трубке штатива. Они уравновешены.

Рис. 8. Опыт по определению движения воздуха

Но, если одну колбу нагреть, она поднимется выше другой, потому что горячий воздух легче холодного и поднимается вверх. Если над колбой с горячим воздухом закрепить полоски тонкой легкой бумаги, будет видно, как они трепещут и поднимаются вверх, показывая движение нагретого воздуха.

Рис. 9. Теплый воздух поднимается вверх

Знания этого свойства воздуха человек использовал при создании летательного аппарата - воздушного шара. Большая сфера, наполненная подогретым воздухом, поднимается высоко в небо и способна выдерживать вес нескольких человек.

Мы редко над этим задумываемся, но используем свойства воздуха каждый день: пальто, шапка или варежки не греют сами по себе - воздух в волокнах ткани плохо проводит тепло, поэтому, чем пушистее волокна, тем больше в них воздуха, а значит и теплее вещь, изготовленная из такой ткани.

Сжимаемость и упругость воздуха используют в надувных изделиях (надувные матрацы, мячи) и шинах различных механизмов (автомобили, велосипеды).

Рис. 14. Велосипедное колесо ()

Сжатый воздух может остановить на полном ходу даже железнодорожный состав. Воздушные тормоза установлены в автобусах, троллейбусах, составах метро. Воздух обеспечивает звучание духовых, ударных, клавишно-духовых инструментов. Когда барабанщик ударяет палочками по туго натянутой коже барабана, она колеблется, а воздух внутри барабана производит звук. В больницах установлены аппараты вентиляции легких: если человек не может самостоятельно дышать, его подключают к такому аппарату, который через специальную трубку подает в легкие обогащенный кислородом сжатый воздух. Сжатый воздух используют везде: в книгопечатании, строительстве, ремонте и др.