Отрасль промышленности под названием «электроэнергетика» является составной частью более обширного понятия «топливно-энергетический комплекс», которая, согласно мнению некоторых ученых, может быть названа «верхним этажом» всей энергетики.

Роль электроэнергетики неоценима и она является одной из самых важных отраслей российской промышленности. Это обусловлено тем фактом, что снабжение электроэнергией требуется для нормального функционирования всего промышленного комплекса и всех видов деятельности человека. Развитие электроэнергетики по своим темпам должно опережать развитие прочих отраслей хозяйства для обеспечения должного количества энергии.

Деление электростанции России по типам

Ведущую роль в электроэнергетике России играют тепловые электростанции, доля которых в отрасли составляет 67%, что в числовом эквиваленте равно 358 электростанциям. При этом внутри теплоэнергетика делится на станции по виду потребляемого топлива. Первое место занимает природный газ, на долю которого приходится 71%, далее следует уголь с 27,5%, на третьем месте жидкое топливо (мазут) и альтернативные виды топлива, объем которых не превышает половины процента от общей массы.

Крупные тепловые электростанции России , как правило, размещаются в местах сосредоточения топлива, что позволяет снизить затраты на доставку. Также особенностью ТЭС является ориентированность на потребителя при одновременном применении топлива, обладающего высокой калорийностью. В качестве примера, можно привести станции, потребляющие в качестве топлива мазут. Как правило, они расположены в крупных нефтеперерабатывающих центрах.

Наряду с привычными ТЭЦ на территории России функционируют ГРЭС, что расшифровывается как государственная районная электрическая станция. Примечательно, что подобное название сохранилось со времен СССР. Слово «районная» в названии означает ориентированность станции на покрытие энергетических затрат определенной территории.

Крупнейшие тепловые электростанции России: список

Общая суммарная мощность вырабатываемой тепловыми электростанциями России энергии составляет более 140 млн. кВт*ч, при этом карта электростанции РФ четко дает возможность проследить наличие того или иного вида топлива.

Крупнейшие электростанции России по федеральным округам:

  1. Центральный:
    • Костромская ГРЭС, которая работает на мазуте;
    • Рязанская станция, основным топливом для которой является уголь;
    • Конаковская, которая может работать на газе и мазуте;
  2. Уральский:
    • Сургутская 1 и Сургутская 2. Станции, которые являются одними из самых крупных электростанций РФ. Обе они работаю на природном газе;
    • Рефтинская, функционирующая на угле и являющаяся одной из крупнейших электростанций на Урале ;
    • Троицкая, также работающая на угле;
    • Ириклинская, главным источником топлива для которой является мазут;
  3. Приволжский:
    • Заинская ГРЭС, работающая на мазуте;
  4. Сибирский ФО:
    • Назаровская ГРЭС, потребляющая в качестве топлива мазут;
  5. Южный:
    • Ставропольская, которая также может работать на совмещенном топливе в виде газа и мазута;
  6. Северо-Западный:
    • Киришская на мазуте.

Также в числе крупных электростанций Урала относится Березовская ГРЭС, которая использует в качестве главного топлива уголь, получаемый из Канско-Ачинского угольного бассейна.

Гидроэлектростанции


была бы не полной без упоминания гидроэлектростанций, которые занимают заслуженное второе место в электроэнергетики РФ. Главным преимуществом применения именно таких станций является использование ими в качестве источника энергии возобновляемые ресурсы, кроме того, подобные станции отличает простота эксплуатации. Самым богатым округом России по количеству ГЭС является Сибирь, благодаря наличию большого количества бурных рек. Использование воды в качестве источника для получения энергии позволяет при снижении уровня капиталовложений получить электроэнергию, которая в 5 раз дешевле, чем вырабатываемая электростанциями Европейской территории.

Которые вырабатывают энергию при помощи воды расположены на территории Ангаро-Енисейского каскада:

  1. Енисей: Саяно-Шушенская и Красноярская ГЭС;
  2. Ангара: Иркутская, Братская, Усть-Илимская.

При этом гидроэлектростанции нельзя назвать полностью экологичными, поскольку перегораживание рек приводит к значительному изменению рельефа местности, что сказывается на водных экосистемах.

Атомные электростанции

Третьими в списке электростанций России являются атомные станции, которые в качестве топлива используют силу атомной энергии, высвобождающуюся при соответствующей реакции. АЭС обладают большим количеством преимуществ, в числе которых:

  • большое содержание энергии в атомном топливе;
  • полное отсутствие выбросов в атмосферный воздух;
  • для выработки энергии не требуется участия кислорода.

При этом атомные станции относят к объектам повышенной опасности, поскольку при работе данного типа станции существует вероятность наступления техногенной катастрофы, которая может вызвать значительное загрязнение территории. Также к минусам использования АЭС относятся проблемы с захоронениями отходов функционирования станции. Наибольшая часть АЭС на территории России сконцентрирована в Центральном ФО (Курская, Смоленская, Калининская, Нововоронежская станции). Количество АЭС на Урале ограничивается одной Белоярской станцией. Также несколько атомных станций имеется в Северо-Западном и Приволжском федеральном округе.

Подведем итоги

Подводя итоги, можно отметить, что количество электростанций в России составляет 558 действующих объектов, что в достаточной степени покрывает потребность промышленности и населения в электроэнергии.


При этом наиболее дешевыми в эксплуатации являются ГЭС, а самую дешевую энергию вырабатывают АЭС, которые при этом остаются самыми опасными объектами. Факторами, оказывающими влияние на размещение станций, являются наличие сырья и нужды потребителей. Например, электростанции Урала занимают небольшую часть общего числа, поскольку плотность населения в данном регионе намного ниже, чем в центральных районах, которые считаются самыми «богатыми» по количеству ТЭЦ, АЭС и ГРЭС.

Электрической станцией называется энергетическая установка, служащая для преобразования природной энергии в электрическую. Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного).

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

Высокий технический уровень энергетики может быть обеспечен только при гармоничной структуре генерирующих мощностей: в энергосистеме должны быть и АЭС, вырабатывающие дешевую электроэнергию, но имеющие серьезные ограничения по диапазону и скорости изменения нагрузки, и ТЭЦ, отпускающие тепло и электроэнергию, количество которой зависит от потребностей в тепле, и мощные паротурбинные энергоблоки, работающие на тяжелых топливах, и мобильные автономные ГТУ, покрывающие кратковременные пики нагрузки.

1.1 Типы тэс и их особенности.

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис.1. Типы тепловых электростанций на органическом топливе.

Рис.2 Принципиальная тепловая схема ТЭС

1 – паровой котёл; 2 – турбина; 3 – электрогенератор; 4 – конденсатор; 5 – конденсатный насос; 6 – подогреватели низкого давления; 7 – деаэратор; 8 – питательный насос; 9 – подогреватели высокого давления; 10 – дренажный насос.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь – низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Традиционная современная газотурбинная установка (ГТУ) – это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В настоящее время в России работает четыре новых ПГУ-ТЭЦ (Северо-Западная ТЭЦ Санкт-Петербурга, Калининградская, ТЭЦ-27 ОАО «Мосэнерго» и Сочинская), построена также теплофикационная ПГУ на Тюменской ТЭЦ. В 2007 г. введена в эксплуатацию Ивановская ПГУ-КЭС.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок – энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление – это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД – 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам вполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов – очередями, параметры которых повышаются с вводом каждой новой очереди.

Расположение электростанций диктуется прежде всего потребностями экономики и населения страны, по возможности недалеко от основных потребителей энергии. Как следствие, строятся они в основном в традицион­ных промышленных районах и вблизи крупных городов. Исключением являются гидроэлектростанции, располо­жение которых диктуется в первую очередь природными условиями - наличием подходящих для строительства ГЭС участков на крупных реках. Самые мощные ГЭС расположены на сибирских реках, и в этом случае не элек­тростанции следовали за потребителями, а потребители (в основном характеризующиеся высокой энергоемко­стью предприятия по производству первичного алюминия) располагались рядом с электростанциями.

Электростанцией с наибольшей установленной мощностью - 6,4 ГВт - в России до аварии в 2009 году была Саяно-Шушенская ГЭС, расположенная на Енисее. По состоянию на июнь 2012 года введены в строй агрегаты суммарной установленной мощностью 3,2 ГВт. До восстановления Саяно-Шушенской ГЭС крупнейшей электро­станцией России является построенная на той же реке Красноярская ГЭС (6 ГВт).

Три крупные ГЭС расположена на реке Ангаре: Братская с установленной мощностью 4,5 ГВт, Усть-Илимская (3,4 ГВт) и Богучанская (3 ГВт - в процессе строительства).

В России находится крупнейшая в мире тепловая электростанция - Сургутская ГРЭС-2 с установленной мощностью 5,6 ГВт. Установленная мощность Сургутской ГРЭС-1 - 3,3 ГВт, обе электростанции работают на газовом топливе.

Крупнейшая угольная ТЭС - Рефтинская ГРЭС мощностью 3,8 ГВт.

Использующая мазут в качестве топлива Костромская ГРЭС обладает установленной мощностью 3,6 ГВт. Крупнейшие атомные станции мощностью 4,0 ГВт: Балаковская, Курская, Ленинградская АЭС.

Структура и объёмы потребления в России

В структуре потребления электрической энергии большая часть - 54,3% - приходилась в 2010 году на про­мышленность и коммунальное хозяйство, в том числе 11,3% пришлось на добывающие отрасли, 30,3% - на обра­батывающую промышленность. Потребление населения составило 12,5%, транспорта и связи - 8,7%, сельского хозяйства -1,7%, строительства -1 %. На потери пришлось 10,3% от общего объема потребления электрической энергии.

В географическом разрезе (по федеральным округам) максимальная доля от суммарного объема потре­бления в Российской Федерации пришлась на Сибирский федеральный округ - 21,4%. Доля Центрального фе­дерального округа составила 20,3%, Приволжского - 17,9%, Уральского - 17,7%, Северо-Западного - 10,4%, Южного - 6%, Дальневосточного - 4,2%, Северо-Кавказского - 2,2%.

Следует отметить, что структура потребления электрической энергии по регионам может существенно от­личаться в зависимости от местных условий. Так, если в Чеченской Республике и Республике Дагестан доля на­селения в суммарном потреблении электрической энергии составляла в 2010 году 36,5% и 33,1% соответствен­но, то в Республике Хакасия и Тюменской области - 4,3% и 5,3%. Доля потребления электрической энергии промышленностью колебалась от 86% в Республике Хакасия до 5,6% в Чеченской республике.

Динамика потребления электрической энергии и мощности в Российской Федерации демонстрирует паде­ние с 1990 по 1998 годы, и постепенный рост спроса с 1999 года, с падением в 2009 году.

В целом динамика электропотребления совпадает с динамикой промышленного производства. Наиболее быстрое падение потребления отмечалось в 1991-1994 годах, наиболее тяжелых для российской экономики. После кризиса 1998 года начинается десятилетний период экономического роста, сопровождающийся ростом спроса на электрическую энергию.

Динамика потребления электрической энергии и мощности в 1990-2010 гг представлена на рис.6

Гидроэнергетика России

По степени освоения экономически эффективных гидроэнергетических ресурсов Россия значительно уступает таким экономически развитым странам, как США и Канада.

В таблице1 приведены данные об экономическом потенциале гидроэнергетических ресурсов рек некоторых стран и степени его использования.

Табл. 1 Данные об экономическом потенциале гидроэнергоресурсов рек некоторых стран и степени его использования.

Водные ресурсы России составляют около 11% мировых ресурсов. Согласно исследованиям проведенным около 30 лет назад, экономический потенциал водных ресурсов нашей страны оценен в 852 млрд. кВтч. В России наибольший экономический потенциал сосредоточен в Восточно-Сибирском регионе – 350 млрд. кВтч, Дальневосточном – 294 млрд. кВтч и Западно-Сибирском – 77 млрд. кВтч. На начало 2000 г. этот потенциал использован на 23,4 %, в том числе в Европейской части на 46,6%, в Сибири на 19,7%, на Дальнем Востоке всего лишь на 3,3%.

Табл. 2 Региональное распределение гидроэнергетического потенциала России.

Таблица 3 Действующие ГЭС России мощностью свыше 1000 МВт

Название ГЭС Установленная мощность МВт Годовая выработка млн кВт·ч Год ввода последнего блока Место расположения
Саяно-Шушенская 4480 (6400) 18 800 1985 р. Енисей, г. Саяногорск
Красноярская 20 400 р. Енисей, г. Дивногорск
Братская 22 600 р. Ангара, г. Братск
Усть-Илимская 3600 21 700 р. Ангара, г. Усть-Илимск
Богучанская*** 1998 5 800 2013- }