Изобретение относится к способам удаления шума в изображении и может быть использовано для улучшения качества изображения. Техническим результатом является упрощение удаления шума и повышение качества получаемого цифрового изображения, это достигается тем, что за счет преобразования яркости пикселей изображения с шумом путем решения уравнения диффузии недивергентной формы обеспечивается одновременное подавление шума и сохранение кромок изображения. 2 з.п. ф-лы, 1 ил.

Рисунки к патенту РФ 2316816

Область техники, к которой относится изобретение

Изобретение относится к способам удаления шума в изображении и может быть использовано для улучшения качества изображения.

Предшествующий уровень техники

К настоящему времени известны различные способы удаления шума в изображении.

Например, в патенте US 6463182, Canon Kabushiki Kaisha, 08.10.2002, G06K 9/40 описывается устройство и способ удаления шума в изображении, в которых данные изображения с искажениями разделяют на блоки и корректируют шум в зависимости от положения каждого пикселя изображения в блоке.

В патенте US 5933540, General Electric Company, 03.08.1999, G06K 9/00 приводится система и способ уменьшения шума и улучшения качества кромок цифрового изображения путем определения фонового значения шума на всем изображении и его удаления с помощью системы фильтров.

Известен способ удаления случайных шумов (патент US 5225915, Xerox Corporation, 06.07.1993, H04N 1/40) за счет применения к данным изображения в качестве фильтра модифицированной функции Лапласа, имеющей максимум на частоте, оптимальной для удаления шума.

Наиболее близким к заявленному изобретению является способ уменьшения шума на изображении, предполагающий использование дифференциальных вычислений (Later, Catte, Morel et al.). В данном способе изображение с шумом преобразовывают параболическим уравнением, в результате чего удаляют шум на изображении, получая изображение без шума. Данный способ выбран в качестве прототипа заявленного изобретения. Недостатком приведенных выше аналогов и прототипа является нестабильность решений математического выражения, описывающего шум, и размывание изображения в результате его применения. Отличие заключается в использовании другого (более простого) уравнения, которое не имеет указанных недостатков и проще в решении.

Сущность изобретения

Задачей заявленного изобретения является создание способа удаления шума на кромках многомерного изображения, позволяющего упростить способ удаления шума, повысить качество получаемого изображения на кромках, а именно сохранить форму кромок, не размывая их.

Поставленная задача решена путем создания способа удаления шума на изображении, включающего в себя этапы, на которых:

Получают от внешнего устройства многомерное изображение с кромками, состоящее из пикселей и имеющее шум;

Определяют в модуле координат яркость пикселей для координат всех пикселей многомерного изображения, где n - количество измерений;

Записывают массив данных яркости пикселей многомерного изображения в память;

Производят в фильтре для всех пикселей многомерного изображения следующие операции:

Задают зависимость яркости пикселей изображения двумерным уравнением диффузии недивергентной формы вида

, (1)

где - релаксационный параметр, - функция от координат пикселей многомерного пространства и релаксационного параметра, k - коэффициент диффузии, , где - параметр сглаживания итогового изображения около кромок, и чем больше значение этого параметра m , тем слабее сглаживание итогового изображения без шума около кромок, - параметр сглаживания итогового изображения без шума в областях, где нет кромок, чем больше значение этого параметра, тем слабее сглаживание итогового изображения без шума в областях, где нет кромок;

Численно решают n-мерное уравнение диффузии (1) с начальным условием , находя решение при значении релаксационного параметра , которое определяет общую степень сглаживания итогового изображения без шума, чем больше эта величина, тем сильнее сглаживается изображение, при этом получают совокупность координат пикселей итогового изображения без шума;

Записывают яркость пикселей итогового изображения без шума в память;

Выводят итоговое изображения без шума на устройство отображения.

Для функционирования способа существенно, чтобы внешнее устройство было выполнено в виде камеры стереозрения, сканера, цифрового фотоаппарата или других аналогичных устройств.

Для функционирования способа желательно, чтобы получали от внешнего устройства многомерное изображение с кромками, имеющее шум в виде нормального распределения.

Техническим результатом заявленного изобретения является упрощение способа удаления шума и повышение качества получаемого изображения за счет преобразования яркости пикселей изображения с шумом путем решения указанного уравнения диффузии, что обеспечивает одновременное подавление шума и сохранение кромок.

Для лучшего понимания настоящего изобретения далее приводится его подробное описание с соответствующими чертежами.

Блок-схема системы для осуществления заявленного способа согласно изобретению изображена на чертеже.

Система для осуществления заявленного способа включает в себя внешнее устройство 1, вычислительное устройство 2 и устройство отображения 3, причем вычислительное устройство 2 содержит память 4, модуль 5 определения яркости и фильтр 6.

Рассмотрим более подробно функционирование согласно заявленному способу.

Сначала получают от внешнего устройства 1 многомерное изображение с кромками, имеющее шум. Определяют в модуле 5 яркость пикселей многомерного изображения, где и n - количество измерений. Записывают массив данных яркости пикселей многомерного изображения в память 4.

Производят в фильтре 6 для всех пикселей многомерного изображения следующие операции:

задают зависимость яркости пикселей многомерного изображения уравнением диффузии вида

,

где - неизвестная функция, t - релаксационный параметр (его значение будет описано ниже), x - координаты пикселя изображения в n -мерном пространстве. Для двумерных изображений размерность пространства (в этом случае можно считать ), для специальных видов изображений размерность может быть больше. В уравнение также входят , В рассматриваемом решении предлагается использовать коэффициент диффузии в виде где . Значение параметра (как и значение m ) влияет на степень сглаживания изображения.

Основной способ использования уравнения диффузии заключается в том, что исходное изображение рассматривается как начальные данные для указанного уравнения при ,

Рассматривая эволюцию решения при увеличении значения параметра t , получают различные сглаженные версии исходного изображения. Таким образом, еще одним неявным параметром фильтра 6 является конечное значение релаксационного параметра, T . Результат работы фильтра 6 есть

Заметим, что поскольку коэффициент диффузии есть нелинейная функция, результат работы фильтра 6 есть нелинейное преобразование исходного изображения. Это делает процесс фильтрации зависимым от изображения. Различные изображения сглаживаются по-разному. Это несколько затрудняет универсальную оценку качества сглаживания.

Для решения указанного выше диффузионного уравнения используют коэффициент диффузии вида Параметр связан с масштабом представления яркости изображения и влияет на характер сглаживания изображения в областях, где нет кромок. При малых значениях параметра сглаживание будет более сильным, чем при больших. В качестве значения этого параметра обычно берут . Параметр m влияет на сглаживание изображения в окрестностях кромок, чем больше значение этого параметра, тем слабее будет сглаживание около кромок. Обычно достаточно использовать значение или . Параметр влияет на общее сглаживание изображения. При увеличении этого параметра увеличивается общее сглаживание исходного изображения. В качестве граничных условий на краях изображения наиболее удобно брать условие .

Исходное изображение дискретизуют на многомерной сетке, получая матрицу яркости изображения .

Численно решают n-мерное уравнение диффузии. Для решения данного уравнения применяют неявную разностную схему с расщеплением с использованием метода дробных шагов. Решение уравнения при получают при помощи решения описываемого ниже разностного уравнения. Один полный цикл решения многомерного разностного уравнения соответствует вычислению решения для значения исходя из значений решения для значения релаксационного параметра . Численная схема допускает грубую оценку решения при любом значении за один шаг, для более точных расчетов рекомендуется делать несколько шагов с меньшими значениями .

Входными данными для одного шага расчета является матрица яркости изображения при значении параметра . На выходе получим значения яркости при

В качестве предварительного шага вычислим матрицу коэффициентов диффузии Как альтернативный вариант возможно прямое вычисление коэффициента по данной формуле в месте непосредственного использования.

Для сведения решения многомерного разностного уравнения к последовательности одномерных уравнений предлагается использовать расщепление по методу дробных шагов. Здесь n - размерность изображения (пространства).

Один шаг по параметру t для исходного многомерного уравнения предлагается заменить на n последовательных элементарных шагов по отдельным измерениям, где на каждом элементарном шаге решают одномерное уравнение вида

В качестве начальных значений для самого первого подшага берут исходное значение яркости при : Результат вычисления после n подшагов есть искомое значение яркости при

Элементарные шаги по параметру t выбирают равными, например, где - пространственная частота дискретизации для сетки (можно также ввести этот параметр и для вычисления коэффициента диффузии). Значение можно задать выражением

Покажем, как решаются полученные одномерные задачи. Получаемые элементарные задачи являются одномерными, т.к. все индексы переменных, кроме являются фиксированными. Поэтому при рассмотрении одной такой задачи отбрасываем постоянные индексы.

Каждая элементарная задача распадается на независимых трехдиагональных систем линейных уравнений относительно имеющая вид где для рассматриваемого случая а граничные условия имеют вид где r - количество узлов сетки (размер изображения в пикселях по данному измерению). Для решения указанной системы линейных уравнений применяют метод прогонки: сначала выполняют прямой ход подстановки: указанные уравнения преобразуют к виду (вычисляются коэффициенты шаге, используют правое граничное условие и вычисляют

В итоге выводят итоговое изображение без шума на устройство отображения 3.

Хотя указанный выше вариант выполнения изобретения был изложен с целью иллюстрации настоящего изобретения, специалистам ясно, что возможны разные модификации, добавления и замены, не выходящие из объема и смысла настоящего изобретения, раскрытого в прилагаемой формуле изобретения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ удаления шума в изображении включает в себя этапы, на которых получают от внешнего устройства многомерное изображение с кромками, состоящее из пикселей и имеющее шум; определяют в модуле координат яркость пикселей u 0 (x) для координат х=(х 1 , ..., х n) всех пикселей многомерного изображения, где n - количество измерений; записывают массив данных яркости пикселей многомерного изображения в память; производят в фильтре для всех пикселей многомерного изображения следующие операции: задают зависимость яркости пикселей изображения двумерным уравнением диффузии недивергентной формы вида

где t - релаксационный параметр;

u=u(x,t) - функция от координат пикселей многомерного пространства и релаксационного параметра;

k - коэффициент диффузии,

,

где m>2 - параметр сглаживания итогового изображения около кромок, и чем больше значение этого параметра m, тем слабее сглаживание итогового изображения без шума около кромок;

М - параметр сглаживания итогового изображения без шума в областях, где нет кромок, чем больше значение этого параметра, тем слабее сглаживание итогового изображения без шума в областях, где нет кромок;

численно решают n-мерное уравнение диффузии (1) с начальным условием u(х,0)=u 0 (x), находя решение при значении релаксационного параметра t=T, которое определяет общую степень сглаживания итогового изображения без шума, чем больше эта величина, тем сильнее сглаживается изображение, при этом получают совокупность координат пикселей итогового изображения без шума; записывают яркость пикселей итогового изображения без шума в память; выводят итоговое изображения без шума на устройство отображения.

2. Способ по п.1, отличающийся тем, что внешнее устройство выполнено в виде камеры стереозрения, сканера, цифрового фотоаппарата или других аналогичных устройств.

3. Способ по п.1, отличающийся тем, что получают от внешнего устройства многомерное изображение с кромками, имеющее шум в виде нормального распределения.

20 августа 2009 в 22:21

Очистка изображения от шума, некоторые методы

  • Блог компании Gil Algorithms

Если Вы видели картинку, которая получается в современных цифровых фотоаппаратах без обработки, то Вы знаете, что выглядит она просто ужасно. Она заполнена шумом. Даже когда Вы скачиваете картинку на компьютер и она уже прошла внутреннюю обработку в фотоаппарате, если ее увеличить и посмотреть на отдельные пиксели, можно увидеть, как мужественно цифровые алгоритмы борются с шумом и проигрывают в этой неравной войне.
Некоторые алгоритмы стирают мелкие детали напрочь, этим знамениты сотовые телефоны Nokia. В некоторых случаях детали остались, но они окружены цветными островками сложной формы, это можно увидеть в фотоаппаратах Sony. Ну и так далее - у каждого метода свои проблемы.

Какие же есть средства, чтобы убрать этот шум, и которые не нарушают чужих патентов? Надеюсь, этот небольшой обзор будет полезным.

1. Переход в координаты яркость-цвет.
Это преобразование можно осуществлять многими способами: HSV, L*a*b и т.п. По некоторым причинам, в которые мы не будем углубляться:
- человеческий глаз намного менее чувствителен к деталям цветовой информации, чем яркостной
- шум в цветовой компоненте, напротив, гораздо выше, чем в яркостной
Поэтому простая фильтрация цветовой компоненты + обратное восстановление, обычно, делают картинку сильно лучше.

2. Медианный фильтр.
Хорошим простым способом очистить картинку от шума является медианный фильтр Im_new(x,y)=median{dx=-1..1,dy=-1..1}Im(x+dx,y+dy).
У этого метода есть множество вариаций, приведу лишь некоторые:
2.1 Шаг 1: вычислить M1=median(C, Cnorth, Csouth); M2=median(C, Ceast, Cwest); M3=median(C, Cne, Csw); M4=median(C, Cnw, Csw); здесь Cnort, Cne,...Cnw - восемь соседних пикселей из окрестности 3x3, C - центральный пиксель
Шаг 2 - вычислить Ma=median(C, M1, M2); Mb=median(C, M3, M4);
Шаг 3 - вычислить Csmooth=median(C, Ma, Mb);
Шаг 4 - заменить C на Csmooth.
2.2 Шаг 1: отсортировать пиксели из окрестности 3x3 по возрастанию, P...P.
Шаг 2: Если центральный пиксель равен P - заменить его на P, если центральный пиксель равен P - заменить его на P, в других случаях оставить без изменения.
Это направление использует компания Kodak, а также большинство сканеров и факс-аппаратов.

3. Фильтры, управляющие величиной коррекции
Этот метод сначала предлагает сгладить картинку как-нибудь грубо, например с помощью low-pass filter, bilateral filter или еще как-нибудь. А потом делается такая процедура
Im_new(x,y)=Im(x,y)+S(Im(x,y)-Im_smooth(x,y),threshold).
Функция-передатчик S может быть устроена по разному, например так:
S(x,threshold) = x, если -thresholdthreshold; S(x,threshold)=-threshold если x<-threshold. Если выбрать threshold примерно равным величине шума, то весь шум пропадет, а детали и мелкие объекты останутся четкими.

4. Bilateral filter
Очень интересный фильтр, изобретенный в 2003 году. За описаниями отсылаю к Интернету.
Вот здесь достаточно хорошая статья: scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html
Интересной разновидностью bilateral filter является, также T-filter:
Шаг 1: Найти все пиксели в окрестности, значения которого отличаются от исходного пикселя не более, чем на заданный threshold.
Шаг 2: Усреднить эти найденные пиксели и сохранить значение.

5. Фильтры, использующие спектральное представление сигнала
Так работает, к примеру, Photoshop. Суть идеи в том, чтобы сделать в окрестности каждого пикселя преобразование Фурье, затем стереть высокие частоты и сделать обратное преобразование.
Вместо преобразования Фурье используются также и другие ортогональные базисы, иногда довольно замысловатые. По-сути, это целое семейство методов.

6. Фильтры, выделяющие доминантное направление
Эти фильтры в каждой точке сначала находят доминантное направление (направление градиента яркости), а затем усредняют сигнал только в перпендикулярном направлении. Таким образом, линии и мелкие детали остаются четкими. Хорошие разновидности этого алгоритма учитывают также значения матрицы вторых производных.
Это целое семейство алгоритмов, описания которых можно также найти в Интернете.

7. Локальная классификация фрагментов
Эти фильтры особенно хорошо работают со специальными изображениями, такими как текст, звездное небо и т.п.
Сначала составляется база данных типичных элементов такого изображения, к примеру, несколько сотен фрагментов NxN пикселей, которые уже очищены от шума.
Алгоритм работает так: окрестность каждого пикселя сравнивается с этими фрагментами и выбирается один, который наиболее похож. Затем значение исходного пикселя на грязной картинке заменяется на значение аналогичного пикселя, расположенного в этом же месте на чистом фрагменте.

8. Приведу в конце «простецкий» способ, который также можно использовать в ряде случаев.
Шаг 1: Уменьшить картинку (применяя какой-нибудь умный алгоритм Downscaling)
Шаг 2: Увеличить ее обратно (применяя какой-нибудь умный алгоритм Upscaling)
Дело в том, что алгоритмы Upscaling/ Downscaling бывают очень мощными (Lanczos filter, фрактальные методы и т.п.), так что результат получается вполне удовлетворительным. Этот же метод можно использовать в качестве простой, но довольно эффективной компрессии.

Может ухудшить степень детальности ваших цифровых или плёночных фотографий, поэтому подавление этого шума может значительно улучшить итоговое изображение или отпечаток. Проблема в том, что большинство методов шумоподавления всегда заодно размывает изображение. Некоторое сглаживание может быть приемлемо для изображений, на которых господствует вода или небо, но листва в пейзажах может пострадать даже от наиболее осторожных попыток подавления шума.

Данная статья сравнивает несколько распространённых методов шумоподавления, а также предлагает альтернативный подход: усреднение нескольких экспозиций с целью подавления шума. Усреднение изображений часто используется в высококлассной астрофотографии, но, вероятно, недоиспользуется в других типах съёмки при малом свете или ночью. Усреднение способно подавить шумы, не разрушив детальность, поскольку оно по сути увеличивает соотношение сигнал-шум (SNR) вашего изображения. Дополнительным выигрышем является то, что усреднение может заодно повысить глубину цветности вашего изображения - за грань возможностей одиночного снимка. Усреднение может также быть особенно полезно для тех, кто хочет сымитировать гладкость ISO 100, если камера позволяет минимум ISO 200 (как, например, большинство цифровых зеркальных камер Nikon).

Концепция

Усреднение изображений работает на основе предположения об абсолютно случайной природе шума в изображении. Соответственно, случайные отклонения от истинных данных в изображении будут последовательно снижаться по мере усреднения возрастающего числа изображений. Если вы сделаете два снимка нейтрально-серого образца, используя одинаковые параметры настройки камеры и при идентичных условиях (температура, освещённость и т.д.), вы сможете получить изображения, похожие на показанные слева.


Вышеприведенный график отражает флюктуации яркости в верхнем и нижнем изображениях синей и красной линиями, соответственно. Горизонтальная черта отражает среднее значение, которое соответствует идеальному виду изображения с нулевым уровнем шума. Заметьте, что колебания красной и синей линий уникальны и независимы. Если мы усредним значения пикселей в каждой из точек графика, мы получим снижение вариативности яркости, как показано ниже:


Несмотря на то, что результат усреднения двух графиков продолжает колебаться относительно идеального среднего, его максимальное отклонение значительно уменьшилось. Визуально это приводит к тому, что образец выглядит более гладко. Усреднение двух изображений обычно даёт уровень шума, соответствующий половинной чувствительности ISO, так что два изображения, снятые при ISO 400, будут сравнимы с одним, снятым при ISO 200, и так далее. В общем, уровень шума падает на квадратный корень от числа усреднённых изображений, то есть для снижения уровня шума вдвое требуется усреднить 4 изображения.

Сравнение шума и детальности

Следующий пример иллюстрирует эффективность усреднения реальных изображений. Следующий снимок был сделан при ISO 1600 на камеру Canon EOS 300D Digital Rebel и демонстрирует сильную зашумленность.

Истинный размер образцов
Оригинал 2 снимка 4 снимка

Заметьте, как усреднение и уменьшает шум, и проявляет детальность для каждого образца. Для сравнения используем лучшие из доступных программ шумоподавления, например, Neat Image :

Оригинал 2 снимка 4 снимка Neat Image Медианный фильтр

Neat Image лучше всех справилась с подавлением шума на гладком небе, но принесла в жертву детали на ветвях и кирпичной стенке. Для выделения оставшихся деталей и улучшения общего ощущения резкости можно использовать повышение резкости, но оно неспособно восстановить утраченную информацию. Медианный фильтр является примитивным методом, который присутствует в большинстве версий Фотошопа. Он подсчитывает значение в каждом пикселе как медиану от всех смежных пикселей. Он эффективен в подавлении очень малого шума, но оставляет нетронутыми более заметные отклонения и при этом исключает попиксельную детальность. В целом, Neat Image является лучшим выбором для ситуаций, когда усреднение снимков невозможно (используется съёмка с рук). В идеале разумно использовать оба подхода: сперва усреднить изображения для максимально возможного повышения SNR, а затем использовать Neat Image, чтобы подавить оставшийся шум:

Оригинал Усреднение: 4 снимка Neat Image Neat Image + усреднение

В программе Neat Image Pro Plus 4.5 использовались
стандартные параметры шумоподавления и «автоподстройка»

Обратите внимание, как комбинация шумоподавления и усреднения способна как сохранить детальность кирпичей, так и сохранить гладкий, малошумный вид. Недостатком метода усреднения является увеличение места, необходимого для хранения (несколько файлов вместо одного) и, вероятно, увеличение времени экспозиции. Усреднение не работает для изображений, которые подвержены линейчатому или структурному шуму. Заметьте, как ярко-белый пиксель в левом нижнем углу снимков не исчез в результате усреднения. Усреднение, в отличие от других снимков, требует отсутствия смещения камеры между экспозициями, а не только во время экспозиции. Таким образом, нужна повышенная осторожность и очень прочный штатив.

Усреднение изображений с использованием слоёв

Adobe Photoshop позволяет относительно быстро усреднить изображения, используя слои. Идея в том, чтобы положить каждое из изображений в отдельный слой и наложить их так, чтобы каждое изображение вносило равный вклад. Если по какой-то причине один из слоёв получает больший вес, чем прочие, эффективность усреднения понизится.

Следует сперва загрузить все усредняемые изображения в Photoshop и затем расположить их в слоях одно над другим в одном проекте. GIMP позволяет открывать изображения непосредственно как слои. После того как все усредняемые изображения оказались в слоях одного проекта, можно приступать собственно к усреднению.

При усреднении следует помнить, что плотность каждого слоя определяет, насколько будет виден слой, лежащий под ним, и то же самое справедливо для всех последующих слоёв. Это означает, что для корректного усреднения четырёх изображений недостаточно будет поставить плотность каждого слоя равной 25%. Вместо этого для нижнего (фонового) слоя нужно задать плотность 100%, для следующего над ним слоя 50%, для слоя над ним 33% и, наконец, для самого верхнего слоя 25%. Это проиллюстрировано ниже:

Когда нужно применять усреднение изображения вместо того, чтобы просто сделать более длинную выдержку при меньшей чувствительности ISO? В следующем наборе ситуаций это может оказаться полезным:

  • Чтобы исключить избыточный структурный шум на длинных выдержках
  • Для камер, у которых нет режима «bulb», предельная длина выдержки обычно составляет 15-30 секунд. В таких случаях два снимка при ISO 800 и 30 секундах дадут грубый эквивалент (как по яркости, так и по уровню шума) одной выдержки 60 секунд при ISO 400. Возможны многие другие комбинации...
  • Для ситуаций, в которых невозможно гарантировать непрерывные выдержки требуемой длины. Например, снимок делается в публичном месте, и требуется малый шум, однако длинная выдержка невозможна, поскольку кадр часто пересекают пешеходы. Можно сделать несколько коротких снимков между их появлением.
  • Чтобы избирательно заморозить движение в малодетальных, быстродвижущихся частях, сохранив при этом малое количество шума в высокодетальных, неподвижных областях. Например, в звёздную ночь с листвой на переднем плане.
  • Чтобы уменьшить шум в тенях (даже на снимках с низким ISO), из которых вы собираетесь впоследствии извлечь детали посредством пост-обработки.

Изображение может повреждаться шумами и помехами различного происхождения, например шумом видеодатчика, шумом зернистости фото материалов и ошибками в канале передатчика. Их влияние можно минимизировать пользуясь классическими методами статистической фильтрации. Другой возможный подход основан на использовании других эвристических методов пространственной обработки.

Шумы видеодатчиков или ошибки в канале передачи обычно проявляются на изображении как разрозненные изменения изолированных элементов, не обладающие пространственной корреляцией. Искаженные элементы часто весьма заметно отличаются от соседних элементов. Это наблюдение послужило основой для многих алгоритмов, обеспечивающих подавление шума.

Применение цифровой фильтрации изображений позволяет существенно улучшить качество изображения, получаемого в процессе СШП зондирования. Далее будет рассмотрено применение линейной фильтрации для сглаживания шумов на изображении (низкочастотная фильтрация), подчеркивание границ объектов с использованием высокочастотной фильтрации, а также метод медианной фильтрации устранения помех импульсного типа.

Рис. 7 поясняет простой пороговый метод подавления шума, при использовании которого последовательно измеряют яркость всех элементов изображения.

Рис. 3.7. Пороговый метод подавления шума.

Если яркость данного элемента превышает среднюю яркость группы ближайших элементов на некоторую пороговую величину, яркость элемента заменяется на среднюю яркость:

Если
]

Поскольку шум пространственно декоррелирован, в его спектре, как правило, содержатся более высокие пространственные частоты, чем в спектре обычного изображения. Следовательно, простая низкочастотная пространственная фильтрация может служить эффективным средством сглаживания шумов. Массив Q размера MM выходного изображения формируется путем дискретной свертки массива F размера NN исходного изображения со сглаживающим массивом H размера LL согласно формуле

Сглаживание шума обеспечивается низкочастотной фильтрацией с помощью массива H с положительными элементами. Ниже приведены сглаживающие массивы трех разновидностей, часто называемые шумоподавляющими масками:

Эти массивы нормированы для получения единичного коэффициента передачи, чтобы процедура подавления шума не вызывала смещение средней яркости обработанного изображения. Если требуемое подавление шума сопряжено с использованием массивов большого размера целесообразно выполнять свертку косвенным образом, применяя преобразование Фурье, так как обычно это дает выигрыш в объеме вычислений.

Подчеркивание границ .

В системах электронного сканирования изображений получаемый видео сигнал можно пропустить через электрический фильтр верхних частот. Другой способ обработки сканированных изображений заключается в использовании нерезкого маскирования. При этом изображение как бы сканируется двумя перекрывающимися апертурами, одна из которых соответствует нормальному разрешению, а другая - пониженному. В результате получают соответственно массив нормального изображения F (j, k) массив нечеткого изображения F L (j, k). Затем формируется массив маскированного изображения

F M (j, k) = c F (j, k) - (1-c) F L (j, k),

где C - коэффициент пропорциональности. Обычно значение C находится в пределах от 3/5 до 5/6, т.е. отношение составляющих нормальны и понижены четкости изменяется от 1.5 до 5.

Подчеркивание границ можно также осуществить, выполняя дискретную фильтрацию согласно соотношению (1) с использованием высокочастотного импульсного отклика H. Ниже представлены три типичные маски для выполнения высокочастотной фильтрации:




Эти маски отличаются тем, что сумма их элементов равна единице.

Еще одним способом подчеркивания границ является так называемая статистическое дифференцирование. Значение яркости каждого элемента делится на статистическую оценку среднеквадратического отклонения (j,k)

G (j,k) = F (j,k) /  (j,k).

Среднеквадратическое отклонение

вычисляется в некоторой окрестности N(j,k) элемента с координатами (j,k). Функция
- среднее значение яркости исходного изображения в точке с координатами (j,k), приближенно определяемая путем сглаживания изображения с помощью оператора низко частотной фильтрации согласно формуле (3.1). Улучшенное изображение, представленное массивом G (j,k), отличается от исходного изображения тем, что его яркость выше на границах, элементы которых непохожи на соседние элементы, и ниже на всех остальных участках. Следует отметить, что подчеркивание полезных границ сопровождается возрастанием шумовых составляющих.

Медианный фильтр.

Медианная фильтрация - метод нелинейной обработки сигналов, разработанный Тьюки . Этот метод оказывается полезным при подавлении шума на изображении. Одномерный медианный фильтр представляет собой скользящее окно, охватывающее нечетное число элементов изображения. Центральный элемент заменяется медианой всех элементов изображения в окне. Медианой дискретной последовательности

a 1 , a 2 , ..., a N для нечетного N является тот элемент, для которого существуют (N-1)/2 элементов, меньших или равных ему по величине, (N- 1)/2 больших или равных ему по величине. Пусть в окно попали элементы изображения с уровнями 80, 90, 200, 110, 120; в этом случае центральный элемент следует заменить значением 110, которое является медианой упорядоченной последовательности 80, 90, 110, 120, 200. Если в этом примере значение 200 является шумовым выбросом в монотонно возрастающей последовательности, то медианная фильтрация обеспечит существенное улучшение. Напротив, если значение 200 соответствует полезному импульсу сигнала (при использовании широкополосных датчиков), то обработка приведет к потере четкости воспроизводимого изображения. Таким образом, медианный фильтр в одних случаях обеспечивает подавление шума, в других - вызывает нежелательное подавление сигнала.

Медианный фильтр не влияет на ступенчатые или пилообразные функции, что обычно является желательным свойством. Однако этот фильтр подавляет импульсные сигналы, длительность которых составляет менее половины ширины окна. Фильтр так же вызывает уплощение вершины треугольной функции.

Возможности анализа действия медианного фильтра ограничены. Можно показать, что медиана произведения постоянной K и последовательности f (j) равна

med{ K f(j) }=K med{f (j)}.

Кроме того,

med{ K+ f(j) }=K + med{f (j)}.

Однако медиана суммы двух произвольных последовательностей f (j) и g(j) не равна сумме их медиан:

med{ g(j)+ f(j) }=med{g(j)}+ med{f (j)}.

Возможны различные стратегии применения медианного фильтра для подавления шумов. Одна из них рекомендует начинать с медианного фильтра, окно которого охватывает три элемента изображения. Если ослабление сигнала незначительно, окно фильтра расширяют до пяти элементов. Так поступают до тех пор пока медианная фильтрация начинает приносить больше вреда, чем пользы. Другая возможность состоит в осуществлении каскадной медианной фильтрации сигнала с использованием фиксированной или изменяемой ширины окна. В общем случае те области, которые остаются без изменения после однократной обработки фильтром, не меняются и после повторной обработки. Области, в которых длительность импульсных сигналов составляет менее половины ширины окна, будут подвергаться изменениям после каждого цикла обработки.

Концепцию медианного фильтра легко обобщить на два измерения, применяя двумерное окно желаемой формы, например прямоугольное или близкое к круговому. Очевидно, что двумерный медианный фильтр с окном размера LL обеспечивает более эффективное подавление шума, чем последовательно примененные горизонтальный и вертикальный одномерные медианные фильтры с окном размера L1; двумерная обработка, однако, приводит к более существенному ослаблению сигналов.

Медианный фильтр более эффективно подавляет разрозненные импульсные помехи, чем гладкие шумы. Медианную фильтрацию изображений в целях подавления шумов следует считать эвристическим методом. Ее нельзя применять в слепую. Напротив, следует проверять получаемые результаты, чтобы убедиться в целесообразности медианной фильтрации.

23.03.15 3.1K

Шум изображения может ухудшить уровень детализации в цифровых или аналоговых фотографиях, и, соответственно, уменьшение шума может значительно улучшить ваше изображение при выводе на экран или печать. Проблема состоит в том, что большинство методов уменьшения или устранения шума всегда в конечном итоге приводят к смягчению изображения.

Некоторое смягчение может быть приемлемо для снимков, на которых по большей части изображена гладкая поверхность воды или небо, но, к примеру, листва деревьев на пейзажах может существенно пострадать даже от минимальных попыток понизить уровень шума.

В этой статье мы сравним несколько общих методов снижения уровня шума, а также опишем альтернативную технику: усреднение нескольких снимков с разной выдержкой, чтобы снизить уровень шума. Усреднение изображения часто применяется для снимков звездного неба, но, возможно, не так хорошо подходит для других типов съемки при малой освещенности и ночью.

При усреднении мы можем уменьшить уровень шума без ущерба для детализации, потому что при этом фактически увеличивается соотношение сигнал-шум (SNR ) вашего изображения. Дополнительным бонусом является то, что усреднение может также увеличить битовую глубину.

Усреднение может также быть полезно для тех, кто хочет имитировать гладкость ISO 100 , но чья камера поддерживает только ISO 200 (как большинство моделей цифровых зеркальных камер Nikon ).

Общая концепция

Усреднение изображений работает, отталкиваясь от того предположения, что шум в вашем изображении является на самом деле случайным. Таким образом, случайные флуктуации выше и ниже фактических данных изображения постепенно убираются, создавая одно среднее изображение из нескольких.

Если бы вы сделали два снимка гладкого серого пятна, используя те же настройки камеры и при одинаковых условиях (температура, освещение и т.д .), то вы бы получили изображения, аналогичные тем, что показаны на графике ниже:


Приведенный выше участок графика представляет в виде синих и красных полос колебания яркости пикселей верхнего и нижнего изображений соответственно. Пунктирная горизонтальная линия представляет собой среднее значение, или то, как бы выглядел этот участок, если бы уровень шума был равен нулю.

Обратите внимание, что и красная, и синяя линии пересекают нулевую отметку вверх и вниз. Если мы возьмем значение пикселя в каждой точке вдоль этой линии, и выведем среднее значение для верхнего и нижнего изображения в этой точке, то изменение яркости будет выглядеть следующим образом:


Даже с учетом того, что график усредненных значений все равно пересекает нулевую отметку, амплитуда максимального отклонения от нее значительно уменьшилась. Визуально, это проявляется в виде сглаживания изображения. Два усредненных изображения, как правило, имеют шум сопоставимый с половиной чувствительности для установок ISO . Поэтому два усредненных изображения, снятых в ISO 400 сопоставимы с одним изображением, снятым с ISO 200 , и так далее.

В общем, величина шума флуктуации уменьшается на величину, равную корню квадратному из количества усредненных изображений. Таким образом, чтобы получить снижение шума в два раза, вам нужно иметь 4 усредненных изображения.

Шум и детализация: сравнение

Следующая ситуация на реальном примере иллюстрирует эффективность усреднения изображений. Данная фотография была сделана при ISO 1600 с помощью Canon EOS 300D Digital Rebel , и на ней наблюдается слишком высокий уровень шума:


Обратите внимание, как усреднение снижает уровень шума и в то же время повышает детализацию для каждой области. Лучше всего использовать для таких задач программы для снижения уровня шума, такие как Neat Image . В следующем сравнении мы привели также результаты, полученные с ее помощью:

Neat Image лучше других приложений подходит для снижения шума на фото неба, но в то же время приводит к потере некоторых мелких деталей в ветвях деревьев или на снимках открытой кирпичной кладки. Для восстановления детализации можно использовать увеличение резкости.

Это улучшит вид изображения, однако увеличение резкости не может восстановить потерянную информацию. Фильтр Медиана — это очень простой метод, доступный в большинстве версий Photoshop . Он рассчитывает значение каждого пикселя, принимая среднее значение всех соседних пикселей.

Этот метод эффективен при удалении незначительного шума, однако он не справляется с большим шумом и устраняет детализацию на уровне пикселей. В целом, Neat Image — это лучший вариант для тех случаев, когда вы не можете использовать усреднение изображения (при ручной съемке ).

В идеале можно использовать комбинацию двух методов: усреднить изображения, чтобы увеличить отношение сигнал-шум, насколько это возможно, а затем применить Neat Image для удаления оставшегося шума:

Снижение шума с помощью Neat Image Pro Plus 4.5 при настройках по умолчанию и «автоматической тонкой настройкой»

Обратите внимание, как после применения обоих методов, нам удалось сохранить четкость вертикальных швов между кирпичами и в то же время добиться низкого уровня шума. К недостаткам метода усреднения относят требования к объему хранимой информации (несколько файлов изображений для одной фотографии ) и, возможно, более длительное время обработки.

Усреднение не срабатывает для изображений, которые имеют шумовую полосатость или шум с фиксированным узором. Обратите внимание, что на приведенном изображении ярко-белые «горячие пиксели » в левом нижнем и верхнем углах так и не исчезли после применения усреднения.

Для усреднения, в отличие от других методов, требуется нулевое смещение. Поэтому следует быть особенно осторожным при применении этой техники, и использовать ее только для снимков, сделанных с жестко закрепленного штатива.

Усреднение изображений в Photoshop с помощью слоев

Выполнение усреднения изображений с помощью слоев выполняется в Adobe Photoshop относительно быстро. Идея состоит в том, чтобы поместить каждое изображение на отдельном слое и смешать их так, чтобы каждый слой включался в финальное изображение равномерно. Если в силу определенных причин один из слоев влияет на финальное изображение больше, чем другие, смешивание изображений не будет столь эффективным.

Для выполнения этой техники сначала нужно загрузить все изображения, которые должны быть усреднены, в Photoshop , а затем скопировать и вставить каждое поверх друг друга так, чтобы они находились в том же самом окне проекта. После того, как это будет сделано, можно начинать усреднение.

Ключевой момент здесь — помнить, что в Photoshop непрозрачность каждого слоя определяет, насколько он «пропускает » нижележащий слой, и то же самое относится к каждому следующему изображению внизу. Это означает, что, например, для правильного усреднения четырех изображений не следует устанавливать непрозрачность каждого слоя на 25%.

Вместо этого непрозрачность нижнего (фонового ) слоя нужно установить на 100%, для слоя поверх него — 50%, следующего — 33%, и, наконец, верхнего слоя — 25%.

Для усреднения любого количества изображений, процент непрозрачности каждого слоя рассчитывается следующим образом:

Когда нужно выполнять усреднение изображений, а не просто установить большую выдержку при низкой скорости ISO ? Ниже приведен перечень случаев, когда более эффективной может оказаться описанная выше процедура:

  • Чтобы убрать слишком сильный шум с фиксированным узором из-за длинной выдержки;
  • Для камер, которые не имеют режима лампы, вы можете ограничить выдержку до 15-30 секунд. Для таких случаев необходимо учитывать следующее: нужно делать два снимка при ISO 800 и выдержке 30 секунд, чтобы они были приблизительно эквивалентны (как по яркости, так и по уровню шума ), и еще один при выдержке 60 секунд и ISO 400 . Возможны и другие комбинации;
  • В ситуациях, когда вы не можете гарантировать прерывание за определенный момент времени без воздействия на аппаратуру захвата или сцену. В качестве примера, можно привести фото, снимаемые в общественном месте, когда вам нужно обеспечить низкий уровень шума, но вы не можете установить достаточно длительную выдержку, потому что напротив объекта съемки постоянно проходят пешеходы. В таком случае вы можете сделать несколько коротких снимков в интервалах между проходами пешеходов;
  • Хорошо Плохо