Приветствую!

В своей дипломной работе я проводил обзор и сравнительный анализ алгоритмов кластеризации данных. Подумал, что уже собранный и проработанный материал может оказаться кому-то интересен и полезен.
О том, что такое кластеризация, рассказал sashaeve в статье «Кластеризация: алгоритмы k-means и c-means» . Я частично повторю слова Александра, частично дополню. Также в конце этой статьи интересующиеся могут почитать материалы по ссылкам в списке литературы.

Так же я постарался привести сухой «дипломный» стиль изложения к более публицистическому.

Понятие кластеризации

Кластеризация (или кластерный анализ) - это задача разбиения множества объектов на группы, называемые кластерами. Внутри каждой группы должны оказаться «похожие» объекты, а объекты разных группы должны быть как можно более отличны. Главное отличие кластеризации от классификации состоит в том, что перечень групп четко не задан и определяется в процессе работы алгоритма.

Применение кластерного анализа в общем виде сводится к следующим этапам:

  1. Отбор выборки объектов для кластеризации.
  2. Определение множества переменных, по которым будут оцениваться объекты в выборке. При необходимости – нормализация значений переменных.
  3. Вычисление значений меры сходства между объектами.
  4. Применение метода кластерного анализа для создания групп сходных объектов (кластеров).
  5. Представление результатов анализа.
После получения и анализа результатов возможна корректировка выбранной метрики и метода кластеризации до получения оптимального результата.

Меры расстояний

Итак, как же определять «похожесть» объектов? Для начала нужно составить вектор характеристик для каждого объекта - как правило, это набор числовых значений, например, рост-вес человека. Однако существуют также алгоритмы, работающие с качественными (т.н. категорийными) характеристиками.

После того, как мы определили вектор характеристик, можно провести нормализацию, чтобы все компоненты давали одинаковый вклад при расчете «расстояния». В процессе нормализации все значения приводятся к некоторому диапазону, например, [-1, -1] или .

Наконец, для каждой пары объектов измеряется «расстояние» между ними - степень похожести. Существует множество метрик, вот лишь основные из них:

Выбор метрики полностью лежит на исследователе, поскольку результаты кластеризации могут существенно отличаться при использовании разных мер.

Классификация алгоритмов

Для себя я выделил две основные классификации алгоритмов кластеризации.
  1. Иерархические и плоские.
    Иерархические алгоритмы (также называемые алгоритмами таксономии) строят не одно разбиение выборки на непересекающиеся кластеры, а систему вложенных разбиений. Т.о. на выходе мы получаем дерево кластеров, корнем которого является вся выборка, а листьями - наиболее мелкие кластера.
    Плоские алгоритмы строят одно разбиение объектов на кластеры.
  2. Четкие и нечеткие.
    Четкие (или непересекающиеся) алгоритмы каждому объекту выборки ставят в соответствие номер кластера, т.е. каждый объект принадлежит только одному кластеру. Нечеткие (или пересекающиеся) алгоритмы каждому объекту ставят в соответствие набор вещественных значений, показывающих степень отношения объекта к кластерам. Т.е. каждый объект относится к каждому кластеру с некоторой вероятностью.

Объединение кластеров

В случае использования иерархических алгоритмов встает вопрос, как объединять между собой кластера, как вычислять «расстояния» между ними. Существует несколько метрик:
  1. Одиночная связь (расстояния ближайшего соседа)
    В этом методе расстояние между двумя кластерами определяется расстоянием между двумя наиболее близкими объектами (ближайшими соседями) в различных кластерах. Результирующие кластеры имеют тенденцию объединяться в цепочки.
  2. Полная связь (расстояние наиболее удаленных соседей)
    В этом методе расстояния между кластерами определяются наибольшим расстоянием между любыми двумя объектами в различных кластерах (т.е. наиболее удаленными соседями). Этот метод обычно работает очень хорошо, когда объекты происходят из отдельных групп. Если же кластеры имеют удлиненную форму или их естественный тип является «цепочечным», то этот метод непригоден.
  3. Невзвешенное попарное среднее
    В этом методе расстояние между двумя различными кластерами вычисляется как среднее расстояние между всеми парами объектов в них. Метод эффективен, когда объекты формируют различные группы, однако он работает одинаково хорошо и в случаях протяженных («цепочечного» типа) кластеров.
  4. Взвешенное попарное среднее
    Метод идентичен методу невзвешенного попарного среднего, за исключением того, что при вычислениях размер соответствующих кластеров (т.е. число объектов, содержащихся в них) используется в качестве весового коэффициента. Поэтому данный метод должен быть использован, когда предполагаются неравные размеры кластеров.
  5. Невзвешенный центроидный метод
    В этом методе расстояние между двумя кластерами определяется как расстояние между их центрами тяжести.
  6. Взвешенный центроидный метод (медиана)
    Этот метод идентичен предыдущему, за исключением того, что при вычислениях используются веса для учета разницы между размерами кластеров. Поэтому, если имеются или подозреваются значительные отличия в размерах кластеров, этот метод оказывается предпочтительнее предыдущего.

Обзор алгоритмов

Алгоритмы иерархической кластеризации
Среди алгоритмов иерархической кластеризации выделяются два основных типа: восходящие и нисходящие алгоритмы. Нисходящие алгоритмы работают по принципу «сверху-вниз»: в начале все объекты помещаются в один кластер, который затем разбивается на все более мелкие кластеры. Более распространены восходящие алгоритмы, которые в начале работы помещают каждый объект в отдельный кластер, а затем объединяют кластеры во все более крупные, пока все объекты выборки не будут содержаться в одном кластере. Таким образом строится система вложенных разбиений. Результаты таких алгоритмов обычно представляют в виде дерева – дендрограммы. Классический пример такого дерева – классификация животных и растений.

Для вычисления расстояний между кластерами чаще все пользуются двумя расстояниями: одиночной связью или полной связью (см. обзор мер расстояний между кластерами).

К недостатку иерархических алгоритмов можно отнести систему полных разбиений, которая может являться излишней в контексте решаемой задачи.

Алгоритмы квадратичной ошибки
Задачу кластеризации можно рассматривать как построение оптимального разбиения объектов на группы. При этом оптимальность может быть определена как требование минимизации среднеквадратической ошибки разбиения:

Где c j - «центр масс» кластера j (точка со средними значениями характеристик для данного кластера).

Алгоритмы квадратичной ошибки относятся к типу плоских алгоритмов. Самым распространенным алгоритмом этой категории является метод k-средних. Этот алгоритм строит заданное число кластеров, расположенных как можно дальше друг от друга. Работа алгоритма делится на несколько этапов:

  1. Случайно выбрать k точек, являющихся начальными «центрами масс» кластеров.
  2. Отнести каждый объект к кластеру с ближайшим «центром масс».
  3. Пересчитать «центры масс» кластеров согласно их текущему составу.
  4. Если критерий остановки алгоритма не удовлетворен, вернуться к п. 2.
В качестве критерия остановки работы алгоритма обычно выбирают минимальное изменение среднеквадратической ошибки. Так же возможно останавливать работу алгоритма, если на шаге 2 не было объектов, переместившихся из кластера в кластер.

К недостаткам данного алгоритма можно отнести необходимость задавать количество кластеров для разбиения.

Нечеткие алгоритмы
Наиболее популярным алгоритмом нечеткой кластеризации является алгоритм c-средних (c-means). Он представляет собой модификацию метода k-средних. Шаги работы алгоритма:

Этот алгоритм может не подойти, если заранее неизвестно число кластеров, либо необходимо однозначно отнести каждый объект к одному кластеру.
Алгоритмы, основанные на теории графов
Суть таких алгоритмов заключается в том, что выборка объектов представляется в виде графа G=(V, E) , вершинам которого соответствуют объекты, а ребра имеют вес, равный «расстоянию» между объектами. Достоинством графовых алгоритмов кластеризации являются наглядность, относительная простота реализации и возможность вносения различных усовершенствований, основанные на геометрических соображениях. Основными алгоритмам являются алгоритм выделения связных компонент, алгоритм построения минимального покрывающего (остовного) дерева и алгоритм послойной кластеризации.
Алгоритм выделения связных компонент
В алгоритме выделения связных компонент задается входной параметр R и в графе удаляются все ребра, для которых «расстояния» больше R . Соединенными остаются только наиболее близкие пары объектов. Смысл алгоритма заключается в том, чтобы подобрать такое значение R , лежащее в диапазон всех «расстояний», при котором граф «развалится» на несколько связных компонент. Полученные компоненты и есть кластеры.

Для подбора параметра R обычно строится гистограмма распределений попарных расстояний. В задачах с хорошо выраженной кластерной структурой данных на гистограмме будет два пика – один соответствует внутрикластерным расстояниям, второй – межкластерным расстояния. Параметр R подбирается из зоны минимума между этими пиками. При этом управлять количеством кластеров при помощи порога расстояния довольно затруднительно.

Алгоритм минимального покрывающего дерева
Алгоритм минимального покрывающего дерева сначала строит на графе минимальное покрывающее дерево, а затем последовательно удаляет ребра с наибольшим весом. На рисунке изображено минимальное покрывающее дерево, полученное для девяти объектов.

Путём удаления связи, помеченной CD, с длиной равной 6 единицам (ребро с максимальным расстоянием), получаем два кластера: {A, B, C} и {D, E, F, G, H, I}. Второй кластер в дальнейшем может быть разделён ещё на два кластера путём удаления ребра EF, которое имеет длину, равную 4,5 единицам.

Послойная кластеризация
Алгоритм послойной кластеризации основан на выделении связных компонент графа на некотором уровне расстояний между объектами (вершинами). Уровень расстояния задается порогом расстояния c . Например, если расстояние между объектами , то .

Алгоритм послойной кластеризации формирует последовательность подграфов графа G , которые отражают иерархические связи между кластерами:

,

Где G t = (V, E t) - граф на уровне с t ,
,
с t – t-ый порог расстояния,
m – количество уровней иерархии,
G 0 = (V, o) , o – пустое множество ребер графа, получаемое при t 0 = 1,
G m = G , то есть граф объектов без ограничений на расстояние (длину ребер графа), поскольку t m = 1.

Посредством изменения порогов расстояния {с 0 , …, с m }, где 0 = с 0 < с 1 < …< с m = 1, возможно контролировать глубину иерархии получаемых кластеров. Таким образом, алгоритм послойной кластеризации способен создавать как плоское разбиение данных, так и иерархическое.

Сравнение алгоритмов

Вычислительная сложность алгоритмов

Сравнительная таблица алгоритмов
Алгоритм кластеризации Форма кластеров Входные данные Результаты
Иерархический Произвольная Число кластеров или порог расстояния для усечения иерархии Бинарное дерево кластеров
k-средних Гиперсфера Число кластеров Центры кластеров
c-средних Гиперсфера Число кластеров, степень нечеткости Центры кластеров, матрица принадлежности
Выделение связных компонент Произвольная Порог расстояния R
Минимальное покрывающее дерево Произвольная Число кластеров или порог расстояния для удаления ребер Древовидная структура кластеров
Послойная кластеризация Произвольная Последовательность порогов расстояния Древовидная структура кластеров с разными уровнями иерархии

Немного о применении

В своей работе мне нужно было из иерархических структур (деревьев) выделять отдельные области. Т.е. по сути необходимо было разрезать исходное дерево на несколько более мелких деревьев. Поскольку ориентированное дерево – это частный случай графа, то естественным образом подходят алгоритмы, основанными на теории графов.

В отличие от полносвязного графа, в ориентированном дереве не все вершины соединены ребрами, при этом общее количество ребер равно n–1, где n – число вершин. Т.е. применительно к узлам дерева, работа алгоритма выделения связных компонент упростится, поскольку удаление любого количества ребер «развалит» дерево на связные компоненты (отдельные деревья). Алгоритм минимального покрывающего дерева в данном случае будет совпадать с алгоритмом выделения связных компонент – путем удаления самых длинных ребер исходное дерево разбивается на несколько деревьев. При этом очевидно, что фаза построения самого минимального покрывающего дерева пропускается.

В случае использования других алгоритмов в них пришлось бы отдельно учитывать наличие связей между объектами, что усложняет алгоритм.

Отдельно хочу сказать, что для достижения наилучшего результата необходимо экспериментировать с выбором мер расстояний, а иногда даже менять алгоритм. Никакого единого решения не существует.

Кластерный анализ (КлА)– это совокупность методов многомерной классификации, целью которой является образование групп (кластеров) схожих между собой объектов. В отличие от традиционных группировок, рассматриваемых в общей теории статистики, КлА приводит к разбиению на группы с учетом всех группировочных признаков одновременно.

Методы КлА позволяют решать следующие задачи:

Проведение классификации объектов с учетом множества признаков;

Проверка выдвигаемых предположений о наличии некоторой структуры в изучаемой совокупности объектов, т.е. поиск существующей структуры;

Построение новых классификаций для слабо изученных явлений, когда необходимо установить наличие связей внутри совокупности и попытаться привнести в нее структуру.

Для записи формализованных алгоритмов КлА используются следующие условные обозначения:

– совокупность объектов наблюдения;

– i-е наблюдение в m-мерном пространстве признаков ();

– расстояние между -м и -м объектами;

– нормированные значения исходных переменных;

– матрица расстояний между объектами.

Для реализации любого метода КлА необходимо ввести понятие «сходство объектов». Причем в процессе классификации в каждый кластер должны попадать объекты, имеющие наибольшее сходство друг с другом с точки зрения наблюдаемых переменных.

Для количественной оценки сходства вводится понятие метрики. Каждый объект описывается -признаками и представлен как точка в -мерном пространстве. Сходство или различие между классифицируемыми объектами устанавливается в зависимости от метрического расстояния между ними. Как правило, используются следующие меры расстояния между объектами:

Евклидово расстояние ;

Взвешенное евклидово расстояние ;

Расстояние city-block ;

Расстояние Махаланобиса ,

где – расстояние между -ым и -ым объектами;

, – значения -переменной и соответственно у -го и -го объектов;

, – векторы значений переменных у -го и -го объектов;

– общая ковариационная матрица;

– вес, приписываемый -й переменной.

Все методы КлА можно разделить на две группы: иерархические (агломеративные и дивизимные) и итеративные (метод -cpeдних, метод поиска сгущений).

Иерархический кластерный анализ. Из всех методов кластерного анализа наиболее распространенными является агломеративный алгоритм классификации. Сущность аглогритма заключается в том, что на первом шаге каждый объект выборки рассматривается как отдельный кластер. Процесс объединения кластеров происходит последовательно: на основании матрицы расстояний или матрицы сходства объединяются наиболее близкие объекты. Если матрица расстояний первоначально имеет размерность (), то полностью процесс объединения завершается за () шагов. В итоге все объекты будут объединены в один кластер.

Последовательность объединения может быть представлена в виде дендрограммы, представленной на рисунке 3.1. Дендрограмма показывает, что на первом шаге объединены в один кластер второй и третий объекты при расстоянии между ними 0,15. На втором шаге к ним присоединился первый объект. Расстояние от первого объекта до кластера, содержащего второй и третий объекты, 0,3 и т.д.

Множество методов иерархического кластерного анализа отличаются алгоритмами объединения (сходства), из которых наиболее распространенными являются: метод одиночной связи, метод полных связей, метод средней связи, метод Уорда.

Метод полных связей – включение нового объекта в кластер происходит только в том случае, если сходство между всеми объектами не меньше некоторого заданного уровня сходства (рисунок 1.3).


б)


Метод средней связи – при включении нового объекта в уже существующий кластер вычисляется среднее значение меры сходства, которое затем сравнивается с заданным пороговым уровнем. Если речь идет об объединении двух кластеров, то вычисляют меру сходства между их центрами и сравнивают ее с заданным пороговым значением. Рассмотрим геометрический пример с двумя кластерами (рисунок 1.4).

Рисунок 1.4. Объединение двух кластеров по методу средней связи:

Если мера сходства между центрами кластеров () будет не меньше заданного уровня, то кластеры и будут объединены в один.

Метод Уорда – на первом шаге каждый кластер состоит из одного объекта. Первоначально объединяются два ближайших кластера. Для них определяются средние значения каждого признака и рассчитывается сумма квадратов отклонений

, (1.1)

где – номер кластера, – номер объекта, – номер признака; – количество признаков, характеризующих каждый объект; количество объектов в - мкластере.

В дальнейшем на каждом шаге работы алгоритма объединяются те объекты или кластеры, которые дают наименьшее приращение величины .

Метод Уорда приводит к образованию кластеров приблизительно равных размеров с минимальной внутрикластерной вариацией.

Алгоритм иерархического кластерного анализа можно представить в виде последовательности процедур:

Нормирование исходных значений переменных;

Расчет матрицы расстояний или матрицы мер сходства;

Определение пары самых близких объектов (кластеров) и их объединение по выбранному алгоритму;

Повторение первых трех процедур до тех пор, пока все объекты не будут объединены в один кластер.

Мера сходства для объединения двух кластеров определяется следующими методами:

Метод «ближайшего соседа» – степень сходства между кластерами оценивается по степени сходства между наиболее схожими (ближайшими) объектами этих кластеров;

Метод «дальнего соседа» – степень сходства оценивается по степени сходства между наиболее отдаленными (несхожими) объектами кластеров;

Метод средней связи – степень сходства оценивается как средняя величина степеней сходства между объектами кластеров;

Метод медианной связи – расстояние между любым кластером S и новым кластером, который получился в результате объединения кластеров р и q, определяется как расстояние от центра кластера S до середины отрезка, соединяющего центры кластеров р и q.

Метод поиска сгущений . Одним из итеративных методов классификации является алгоритм поиска сгущений. Суть итеративного алгоритма данного метода заключается в применении гиперсферы заданного радиуса, которая перемещается в пространстве классификационных признаков с целью поиска локальных сгущений объектов.



Метод поиска сгущений требует, прежде всего, вычисления матрицы расстояний (или матрицы мер сходства) между объектами и выбора первоначального центра сферы. Обычно на первом шаге центром сферы служит объект (точка), в ближайшей окрестности которого расположено наибольшее число соседей. На основе заданного радиуса сферы (R) определяется совокупность точек, попавших внутрь этой сферы, и для них вычисляются координаты центра (вектор средних значений признаков).

Когда очередной пересчет координат центра сферы приводит к такому же результату, как и на предыдущем шаге, перемещение сферы прекращается, а точки, попавшие в нее, образуют кластер, и из дальнейшего процесса кластеризации исключаются. Перечисленные процедуры повторяются для всех оставшихся точек. Работа алгоритма завершается за конечное число шагов, и все точки оказываются распределенными по кластерам. Число образовавшихся кластеров заранее неизвестно и сильно зависит от радиуса сферы.

Для оценки устойчивости полученного разбиения целесообразно повторить процесс кластеризации несколько раз для различных значений радиуса сферы, изменяя каждый раз радиус на небольшую величину.

Существуют несколько способов выбора радиуса сферы. Если – расстояние между -м и -м объектами, то в качестве нижней границы радиуса ()выбирают , а верхняя граница радиуса может быть определена как .

Если начинать работу алгоритма с величины и при каждом его повторении изменять на небольшую величину, то можно выявить значения радиусов, которые приводят к образованию одного и того же числа кластеров, т.е. к устойчивому разбиению.

Пример 1. На основании приведенных данных таблицы 1.1 необходимо провести классификацию пяти предприятий при помощи иерархического агломеративного кластерного анализа.

Таблица 1.1

Здесь: – среднегодовая стоимость основных производственных фондов, млрд. р.; – материальные затраты на один рубль произведенной продукции, коп.; – объем произведенной продукции, млрд. р.

Решение. Перед тем как вычислять матрицу расстояний, нормируем исходные данные по формуле

Матрица значений нормированных переменных будет иметь вид

.

Классификацию проведем при помощи иерархического агломеративного метода. Для построения матрицы расстояний воспользуемся евклидовым расстоянием. Тогда, например, расстояние между первым и вторым объектами будет

Матрица расстояний характеризует расстояния между объектами, каждый из которых, на первом шаге представляет собой отдельный кластер

.

Как видно из матрицы , наиболее близкими являются объекты и . Объединим их в один кластер и присвоим ему номер . Пересчитаем расстояния всех оставшихся объектов (кластеров) до кластера получим новую матрицу расстояний

.

В матрице расстояния между кластерами определены по алгоритму «дальнего соседа». Тогда расстояние между объектом и кластером равно

В матрице опять находим самые близкие кластеры. Это будут и , . Следовательно, на этом шаге объединяем и кластеры; получим новый кластер, содержащий объекты , . Присвоим ему номер . Теперь имеем три кластера {1,3}, {2,5}, {4}.

.

Судя по матрице ,на следующем шаге объединяем кластеры и , в один кластер и присвоим ему номер . Теперь имеем только два кластера:

.

И, наконец, на последнем шаге объединим кластеры и на расстоянии 3,861.


Представим результаты классификации в виде дендрограммы (рисунок 1.5). Дендрограмма свидетельствует о том, что кластер более однороден по составу входящих объектов, так как в нем объединение происходило при меньших расстояниях, чем в кластере .

Рисунок 3.5.Дендрограмма кластеризации пяти объектов

Пример 2 . На основании данных, приведенных ниже, проведите классификацию магазинов по трем признакам: – площадь торгового зала, м 2 , – товарооборот на одного продавца, ден. ед., – уровень рентабельности, %.

Номер магазина Номер магазина

Для классификации магазинов используйте метод поиска сгущений (необходимо выделить первый кластер).

Решение. 1. Рассчитаем расстояния между объектами по евклидовой метрике

,

где , – стандартизированные значения исходных переменных соответственно у -го и -го объектов; т – число признаков.

.

2. На основе матрицы Z рассчитаем квадратную симметричную матрицу расстояний между объектами ().

Анализ матрицы расстояний помогает определить положение первоначального центра сферы и выбрать радиус сферы.

В данном примере большинство «маленьких» расстояний находятся в первой строке, т.е. у первого объекта достаточно много «близких» соседей. Следовательно, первый объект можно взять в качестве центра сферы.

3. Зададим радиус сферы . В этом случае в сферу попадают объекты, расстояние которых до первого объекта меньше 2.

Для шести точек (объекты 1, 2, 3, 6, 7, 8) определяем координаты центра тяжести: .

4. На следующем шаге алгоритма помещаем центр сферы в точку и определяем расстояние каждого объекта до нового центра.

КЛАСТЕРНЫЙ АНАЛИЗ В ЗАДАЧАХ СОЦИАЛЬНО-ЭКОНОМИЧЕСКОГО ПРОГНОЗИРОВАНИЯ

Введение в кластерный анализ.

При анализе и прогнозировании социально-экономических явлений исследователь довольно часто сталкивается с многомерностью их описания. Это происходит при решении задачи сегментирования рынка, построении типологии стран по достаточно большому числу показателей, прогнозирования конъюнктуры рынка отдельных товаров, изучении и прогнозировании экономической депрессии и многих других проблем.

Методы многомерного анализа - наиболее действенный количественный инструмент исследования социально-экономических процессов, описываемых большим числом характеристик. К ним относятся кластерный анализ, таксономия, распознавание образов, факторный анализ.

Кластерный анализ наиболее ярко отражает черты многомерного анализа в классификации, факторный анализ – в исследовании связи.

Иногда подход кластерного анализа называют в литературе численной таксономией, численной классификацией, распознаванием с самообучением и т.д.

Первое применение кластерный анализ нашел в социологии. Название кластерный анализ происходит от английского слова cluster – гроздь, скопление. Впервые в 1939 был определен предмет кластерного анализа и сделано его описание исследователем Трионом. Главное назначение кластерного анализа – разбиение множества исследуемых объектов и признаков на однородные в соответствующем понимании группы или кластеры. Это означает, что решается задача классификации данных и выявления соответствующей структуры в ней. Методы кластерного анализа можно применять в самых различных случаях, даже в тех случаях, когда речь идет о простой группировке, в которой все сводится к образованию групп по количественному сходству.

Большое достоинство кластерного анализа в том, что он позволяет производить разбиение объектов не по одному параметру, а по целому набору признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов, и позволяет рассматривать множество исходных данных практически произвольной природы. Это имеет большое значение, например, для прогнозирования конъюнктуры, когда показатели имеют разнообразный вид, затрудняющий применение традиционных эконометрических подходов.

Кластерный анализ позволяет рассматривать достаточно большой объем информации и резко сокращать, сжимать большие массивы социально-экономической информации, делать их компактными и наглядными.

Важное значение кластерный анализ имеет применительно к совокупностям временных рядов, характеризующих экономическое развитие (например, общехозяйственной и товарной конъюнктуры). Здесь можно выделять периоды, когда значения соответствующих показателей были достаточно близкими, а также определять группы временных рядов, динамика которых наиболее схожа.

Кластерный анализ можно использовать циклически. В этом случае исследование производится до тех пор, пока не будут достигнуты необходимые результаты. При этом каждый цикл здесь может давать информацию, которая способна сильно изменить направленность и подходы дальнейшего применения кластерного анализа. Этот процесс можно представить системой с обратной связью.

В задачах социально-экономического прогнозирования весьма перспективно сочетание кластерного анализа с другими количественными методами (например, с регрессионным анализом).

Как и любой другой метод, кластерный анализ имеет определенные недостатки и ограничения: В частности, состав и количество кластеров зависит от выбираемых критериев разбиения. При сведении исходного массива данных к более компактному виду могут возникать определенные искажения, а также могут теряться индивидуальные черты отдельных объектов за счет замены их характеристиками обобщенных значений параметров кластера. При проведении классификации объектов игнорируется очень часто возможность отсутствия в рассматриваемой совокупности каких-либо значений кластеров.

В кластерном анализе считается, что:

а) выбранные характеристики допускают в принципе желательное разбиение на кластеры;

б) единицы измерения (масштаб) выбраны правильно.

Выбор масштаба играет большую роль. Как правило, данные нормализуют вычитанием среднего и делением на стандартное отклоненение, так что дисперсия оказывается равной единице.

Задача кластерного анализа.

Задача кластерного анализа заключается в том, чтобы на основании данных, содержащихся во множестве Х, разбить множество объектов G на m (m – целое) кластеров (подмножеств) Q1, Q2, …, Qm, так, чтобы каждый объект Gj принадлежал одному и только одному подмножеству разбиения и чтобы объекты, принадлежащие одному и тому же кластеру, были сходными, в то время, как объекты, принадлежащие разным кластерам были разнородными.

Например, пусть G включает n стран, любая из которых характеризуется ВНП на душу населения (F1), числом М автомашин на 1 тысячу человек (F2), душевым потреблением электроэнергии (F3), душевым потреблением стали (F4) и т.д. Тогда Х1 (вектор измерений) представляет собой набор указанных характеристик для первой страны, Х2 - для второй, Х3 для третьей, и т.д. Задача заключается в том, чтобы разбить страны по уровню развития.

Решением задачи кластерного анализа являются разбиения, удовлетворяющие некоторому критерию оптимальности. Этот критерий может представлять собой некоторый функционал, выражающий уровни желательности различных разбиений и группировок, который называют целевой функцией. Например, в качестве целевой функции может быть взята внутригрупповая сумма квадратов отклонения:

где xj - представляет собой измерения j-го объекта.

Для решения задачи кластерного анализа необходимо определить понятие сходства и разнородности.

Понятно то, что объекты i-ый и j-ый попадали бы в один кластер, когда расстояние (отдаленность) между точками Хi и Хj было бы достаточно маленьким и попадали бы в разные кластеры, когда это расстояние было бы достаточно большим. Таким образом, попадание в один или разные кластеры объектов определяется понятием расстояния между Хi и Хj из Ер, где Ер - р-мерное евклидово пространство. Неотрицательная функция d(Хi , Хj) называется функцией расстояния (метрикой), если:

а) d(Хi , Хj) ³ 0, для всех Хi и Хj из Ер

б) d(Хi, Хj) = 0, тогда и только тогда, когда Хi = Хj

в) d(Хi, Хj) = d(Хj, Хi)

г) d(Хi, Хj) £ d(Хi, Хk) + d(Хk, Хj), где Хj; Хi и Хk - любые три вектора из Ер.

Значение d(Хi, Хj) для Хi и Хj называется расстоянием между Хi и Хj и эквивалентно расстоянию между Gi и Gj соответственно выбранным характеристикам (F1, F2, F3, ..., Fр).

Наиболее часто употребляются следующие функции расстояний:

1. Евклидово расстояние d2(Хi , Хj) =

2. l1 - норма d1(Хi , Хj) =

3. Сюпремум - норма d¥ (Хi , Хj) = sup

k = 1, 2, ..., р

4. lp - норма dр(Хi , Хj) =

Евклидова метрика является наиболее популярной. Метрика l1 наиболее легкая для вычислений. Сюпремум-норма легко считается и включает в себя процедуру упорядочения, а lp - норма охватывает функции расстояний 1, 2, 3,.

Пусть n измерений Х1, Х2,..., Хn представлены в виде матрицы данных размером p ´n:

Тогда расстояние между парами векторов d(Хi , Хj) могут быть представлены в виде симметричной матрицы расстояний:

Понятием, противоположным расстоянию, является понятие сходства между объектами Gi. и Gj. Неотрицательная вещественная функция S(Хi ; Хj) = Sij называется мерой сходства, если:

1) 0£ S(Хi , Хj)<1 для Хi¹ Хj

2) S(Хi , Хi) = 1

3) S(Хi , Хj) = S(Хj , Хi)

Пары значений мер сходства можно объединить в матрицу сходства:

Величину Sij называют коэффициентом сходства.

1.3. Методы кластерного анализа.

Сегодня существует достаточно много методов кластерного анализа. Остановимся на некоторых из них (ниже приводимые методы принято называть методами минимальной дисперсии).

Пусть Х - матрица наблюдений: Х = (Х1, Х2,..., Хu) и квадрат евклидова расстояния между Хi и Хj определяется по формуле:

1) Метод полных связей.

Суть данного метода в том, что два объекта, принадлежащих одной и той же группе (кластеру), имеют коэффициент сходства, который меньше некоторого порогового значения S. В терминах евклидова расстояния d это означает, что расстояние между двумя точками (объектами) кластера не должно превышать некоторого порогового значения h. Таким образом, h определяет максимально допустимый диаметр подмножества, образующего кластер.

2) Метод максимального локального расстояния.

Каждый объект рассматривается как одноточечный кластер. Объекты группируются по следующему правилу: два кластера объединяются, если максимальное расстояние между точками одного кластера и точками другого минимально. Процедура состоит из n - 1 шагов и результатом являются разбиения, которые совпадают со всевозможными разбиениями в предыдущем методе для любых пороговых значений.

3) Метод Ворда.

В этом методе в качестве целевой функции применяют внутригрупповую сумму квадратов отклонений, которая есть ни что иное, как сумма квадратов расстояний между каждой точкой (объектом) и средней по кластеру, содержащему этот объект. На каждом шаге объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов. Этот метод направлен на объединение близко расположенных кластеров.

Кластерный анализ

Большинство исследователей склоняются к тому, что впервые термин «кластерный анализ» (англ. cluster - гроздь, сгусток, пучок) был предложен математиком Р.Трионом . Впоследствии возник ряд терминов, которые в настоящее время принято считать синонимами термина «кластерный анализ»: автоматическая классификация; ботриология.

Кластерный анализ - это многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы (кластеры)(Q-кластеризация, или Q-техника, собственно кластерный анализ). Кластер - группа элементов, характеризуемых общим свойством, главная цель кластерного анализа - нахождение групп схожих объектов в выборке. Спектр применений кластерного анализа очень широк: его используют в археологии, медицине, психологии, химии, биологии, государственном управлении, филологии, антропологии, маркетинге, социологии и других дисциплинах. Однако универсальность применения привела к появлению большого количества несовместимых терминов, методов и подходов, затрудняющих однозначное использование и непротиворечивую интерпретацию кластерного анализа. Орлов А. И. предлагает различать следующим образом:

Задачи и условия

Кластерный анализ выполняет следующие основные задачи :

  • Разработка типологии или классификации.
  • Исследование полезных концептуальных схем группирования объектов.
  • Порождение гипотез на основе исследования данных.
  • Проверка гипотез или исследования для определения, действительно ли типы (группы), выделенные тем или иным способом, присутствуют в имеющихся данных.

Независимо от предмета изучения применение кластерного анализа предполагает следующие этапы :

  • Отбор выборки для кластеризации. Подразумевается, что имеет смысл кластеризовать только количественные данные.
  • Определение множества переменных, по которым будут оцениваться объекты в выборке, то есть признакового пространства.
  • Вычисление значений той или иной меры сходства (или различия) между объектами.
  • Применение метода кластерного анализа для создания групп сходных объектов.
  • Проверка достоверности результатов кластерного решения.

Кластерный анализ предъявляет следующие требования к данным :

  1. показатели не должны коррелировать между собой;
  2. показатели не должны противоречить теории измерений;
  3. распределение показателей должно быть близко к нормальному;
  4. показатели должны отвечать требованию «устойчивости», под которой понимается отсутствие влияния на их значения случайных факторов;
  5. выборка должна быть однородна, не содержать «выбросов».

Можно встретить описание двух фундаментальных требований предъявляемых к данным - однородность и полнота:

Однородность требует, чтобы все сущности, представленные в таблице, были одной природы. Требование полноты состоит в том, чтобы множества I и J представляли полную опись проявлений рассматриваемого явления. Если рассматривается таблица в которой I - совокупность, а J - множество переменных, описывающих эту совокупность, то должно должно быть представительной выборкой из изучаемой совокупности, а система характеристик J должна давать удовлетворительное векторное представление индивидов i с точки зрения исследователя .

Если кластерному анализу предшествует факторный анализ , то выборка не нуждается в «ремонте» - изложенные требования выполняются автоматически самой процедурой факторного моделирования (есть ещё одно достоинство - z-стандартизация без негативных последствий для выборки; если её проводить непосредственно для кластерного анализа, она может повлечь за собой уменьшение чёткости разделения групп). В противном случае выборку нужно корректировать.

Типология задач кластеризации

Типы входных данных

В современной науке применяется несколько алгоритмов обработки входных данных. Анализ путём сравнения объектов, исходя из признаков, (наиболее распространённый в биологических науках) называется Q -типом анализа, а в случае сравнения признаков, на основе объектов - R -типом анализа. Существуют попытки использования гибридных типов анализа (например, RQ -анализ), но данная методология ещё должным образом не разработана.

Цели кластеризации

  • Понимание данных путём выявления кластерной структуры. Разбиение выборки на группы схожих объектов позволяет упростить дальнейшую обработку данных и принятия решений, применяя к каждому кластеру свой метод анализа (стратегия «разделяй и властвуй »).
  • Сжатие данных . Если исходная выборка избыточно большая, то можно сократить её, оставив по одному наиболее типичному представителю от каждого кластера.
  • Обнаружение новизны (англ. novelty detection ). Выделяются нетипичные объекты, которые не удаётся присоединить ни к одному из кластеров.

В первом случае число кластеров стараются сделать поменьше. Во втором случае важнее обеспечить высокую степень сходства объектов внутри каждого кластера, а кластеров может быть сколько угодно. В третьем случае наибольший интерес представляют отдельные объекты, не вписывающиеся ни в один из кластеров.

Во всех этих случаях может применяться иерархическая кластеризация , когда крупные кластеры дробятся на более мелкие, те в свою очередь дробятся ещё мельче, и т. д. Такие задачи называются задачами таксономии . Результатом таксономии является древообразная иерархическая структура. При этом каждый объект характеризуется перечислением всех кластеров, которым он принадлежит, обычно от крупного к мелкому.

Методы кластеризации

Общепринятой классификации методов кластеризации не существует, но можно отметить солидную попытку В. С. Берикова и Г. С. Лбова . Если обобщить различные классификации методов кластеризации, то можно выделить ряд групп (некоторые методы можно отнести сразу к нескольким группам и потому предлагается рассматривать данную типизацию как некоторое приближение к реальной классификации методов кластеризации):

  1. Вероятностный подход . Предполагается, что каждый рассматриваемый объект относится к одному из k классов. Некоторые авторы (например, А. И. Орлов) считают, что данная группа вовсе не относится к кластеризации и противопоставляют её под названием «дискриминация», то есть выбор отнесения объектов к одной из известных групп (обучающих выборок).
  2. Подходы на основе систем искусственного интеллекта . Весьма условная группа, так как методов AI очень много и методически они весьма различны.
  3. Логический подход . Построение дендрограммы осуществляется с помощью дерева решений.
  4. Теоретико-графовый подход .
    • Графовые алгоритмы кластеризации
  5. Иерархический подход . Предполагается наличие вложенных групп (кластеров различного порядка). Алгоритмы в свою очередь подразделяются на агломеративные (объединительные) и дивизивные (разделяющие). По количеству признаков иногда выделяют монотетические и политетические методы классификации.
    • Иерархическая дивизивная кластеризация или таксономия. Задачи кластеризации рассматриваются в количественной таксономии.
  6. Другие методы . Не вошедшие в предыдущие группы.
    • Статистические алгоритмы кластеризации
    • Ансамбль кластеризаторов
    • Алгоритмы семейства KRAB
    • Алгоритм, основанный на методе просеивания
    • DBSCAN и др.

Подходы 4 и 5 иногда объединяют под названием структурного или геометрического подхода, обладающего большей формализованностью понятия близости . Несмотря на значительные различия между перечисленными методами все они опираются на исходную «гипотезу компактности »: в пространстве объектов все близкие объекты должны относиться к одному кластеру, а все различные объекты соответственно должны находиться в различных кластерах.

Формальная постановка задачи кластеризации

Пусть - множество объектов, - множество номеров (имён, меток) кластеров. Задана функция расстояния между объектами . Имеется конечная обучающая выборка объектов . Требуется разбить выборку на непересекающиеся подмножества, называемые кластерами , так, чтобы каждый кластер состоял из объектов, близких по метрике , а объекты разных кластеров существенно отличались. При этом каждому объекту приписывается номер кластера .

Алгоритм кластеризации - это функция , которая любому объекту ставит в соответствие номер кластера . Множество в некоторых случаях известно заранее, однако чаще ставится задача определить оптимальное число кластеров, с точки зрения того или иного критерия качества кластеризации.

Кластеризация (обучение без учителя) отличается от классификации (обучения с учителем) тем, что метки исходных объектов изначально не заданы, и даже может быть неизвестно само множество .

Решение задачи кластеризации принципиально неоднозначно, и тому есть несколько причин (как считает ряд авторов):

  • не существует однозначно наилучшего критерия качества кластеризации. Известен целый ряд эвристических критериев, а также ряд алгоритмов, не имеющих чётко выраженного критерия, но осуществляющих достаточно разумную кластеризацию «по построению». Все они могут давать разные результаты. Следовательно, для определения качества кластеризации требуется эксперт предметной области, который бы мог оценить осмысленность выделения кластеров.
  • число кластеров, как правило, неизвестно заранее и устанавливается в соответствии с некоторым субъективным критерием. Это справедливо только для методов дискриминации, так как в методах кластеризации выделение кластеров идёт за счёт формализованного подхода на основе мер близости.
  • результат кластеризации существенно зависит от метрики, выбор которой, как правило, также субъективен и определяется экспертом. Но стоит отметить, что есть ряд рекомендаций к выбору мер близости для различных задач.

Применение

В биологии

В биологии кластеризация имеет множество приложений в самых разных областях. Например, в биоинформатике с помощью нее анализируются сложные сети взаимодействующих генов, состоящие порой из сотен или даже тысяч элементов. Кластерный анализ позволяет выделить подсети, узкие места, концентраторы и другие скрытые свойства изучаемой системы, что позволяет в конечном счете узнать вклад каждого гена в формирование изучаемого феномена.

В области экологии широко применяется для выделения пространственно однородных групп организмов, сообществ и т. п. Реже методы кластерного анализа применяются для исследования сообществ во времени. Гетерогенность структуры сообществ приводит к возникновению нетривиальных методов кластерного анализа (например, метод Чекановского).

В общем стоит отметить, что исторически сложилось так, что в качестве мер близости в биологии чаще используются меры сходства , а не меры различия (расстояния).

В социологии

При анализе результатов социологических исследований рекомендуется осуществлять анализ методами иерархического агломеративного семейства, а именно методом Уорда, при котором внутри кластеров оптимизируется минимальная дисперсия, в итоге создаются кластеры приблизительно равных размеров. Метод Уорда наиболее удачен для анализа социологических данных. В качестве меры различия лучше квадратичное евклидово расстояние, которое способствует увеличению контрастности кластеров. Главным итогом иерархического кластерного анализа является дендрограмма или «сосульчатая диаграмма». При её интерпретации исследователи сталкиваются с проблемой того же рода, что и толкование результатов факторного анализа - отсутствием однозначных критериев выделения кластеров. В качестве главных рекомендуется использовать два способа - визуальный анализ дендрограммы и сравнение результатов кластеризации, выполненной различными методами.

Визуальный анализ дендрограммы предполагает «обрезание» дерева на оптимальном уровне сходства элементов выборки. «Виноградную ветвь» (терминология Олдендерфера М. С. и Блэшфилда Р. К. ) целесообразно «обрезать» на отметке 5 шкалы Rescaled Distance Cluster Combine, таким образом будет достигнут 80 % уровень сходства. Если выделение кластеров по этой метке затруднено (на ней происходит слияние нескольких мелких кластеров в один крупный), то можно выбрать другую метку. Такая методика предлагается Олдендерфером и Блэшфилдом.

Теперь возникает вопрос устойчивости принятого кластерного решения. По сути, проверка устойчивости кластеризации сводится к проверке её достоверности. Здесь существует эмпирическое правило - устойчивая типология сохраняется при изменении методов кластеризации. Результаты иерархического кластерного анализа можно проверять итеративным кластерным анализом по методу k-средних. Если сравниваемые классификации групп респондентов имеют долю совпадений более 70 % (более 2/3 совпадений), то кластерное решение принимается.

Проверить адекватность решения, не прибегая к помощи другого вида анализа, нельзя. По крайней мере, в теоретическом плане эта проблема не решена. В классической работе Олдендерфера и Блэшфилда «Кластерный анализ» подробно рассматриваются и в итоге отвергаются дополнительные пять методов проверки устойчивости:

В информатике

  • Кластеризация результатов поиска - используется для «интеллектуальной» группировки результатов при поиске файлов , веб-сайтов , других объектов , предоставляя пользователю возможность быстрой навигации, выбора заведомо более релевантного подмножества и исключения заведомо менее релевантного - что может повысить юзабилити интерфейса по сравнению с выводом в виде простого сортированного по релевантности списка .
    • Clusty - кластеризующая поисковая машина компании Vivísimo
    • Nigma - российская поисковая система с автоматической кластеризацией результатов
    • Quintura - визуальная кластеризация в виде облака ключевых слов
  • Сегментация изображений (англ. image segmentation ) - Кластеризация может быть использована для разбиения цифрового изображения на отдельные области с целью обнаружения границ (англ. edge detection ) или распознавания объектов .
  • Интеллектуальный анализ данных (англ. data mining) - Кластеризация в Data Mining приобретает ценность тогда, когда она выступает одним из этапов анализа данных, построения законченного аналитического решения. Аналитику часто легче выделить группы схожих объектов, изучить их особенности и построить для каждой группы отдельную модель, чем создавать одну общую модель для всех данных. Таким приемом постоянно пользуются в маркетинге, выделяя группы клиентов, покупателей, товаров и разрабатывая для каждой из них отдельную стратегию.

См. также

Примечания

Ссылки

На русском языке
  • www.MachineLearning.ru - профессиональный вики-ресурс, посвященный машинному обучению и интеллектуальному анализу данных
На английском языке
  • COMPACT - Comparative Package for Clustering Assessment . A free Matlab package, 2006.
  • P. Berkhin, Survey of Clustering Data Mining Techniques , Accrue Software, 2002.
  • Jain, Murty and Flynn: Data Clustering: A Review , ACM Comp. Surv., 1999.
  • for another presentation of hierarchical, k-means and fuzzy c-means see this introduction to clustering . Also has an explanation on mixture of Gaussians.
  • David Dowe, Mixture Modelling page - other clustering and mixture model links.
  • a tutorial on clustering
  • The on-line textbook: Information Theory, Inference, and Learning Algorithms , by David J.C. MacKay includes chapters on k-means clustering, soft k-means clustering, and derivations including the E-M algorithm and the variational view of the E-M algorithm.
  • «The Self-Organized Gene» , tutorial explaining clustering through competitive learning and self-organizing maps.
  • kernlab - R package for kernel based machine learning (includes spectral clustering implementation)
  • Tutorial - Tutorial with introduction of Clustering Algorithms (k-means, fuzzy-c-means, hierarchical, mixture of gaussians) + some interactive demos (java applets)
  • Data Mining Software - Data mining software frequently utilizes clustering techniques.
  • Java Competitve Learning Application A suite of Unsupervised Neural Networks for clustering. Written in Java. Complete with all source code.
  • Machine Learning Software - Also contains much clustering software.

С понятием кластеризации мы познакомились в первом разделе курса. В этой лекции мы опишем понятие " кластер " с математической точки зрения, а также рассмотрим методы решения задач кластеризации - методы кластерного анализа.

Термин кластерный анализ , впервые введенный Трионом (Tryon) в 1939 году, включает в себя более 100 различных алгоритмов.

В отличие от задач классификации, кластерный анализ не требует априорных предположений о наборе данных, не накладывает ограничения на представление исследуемых объектов, позволяет анализировать показатели различных типов данных (интервальным данным, частотам, бинарным данным). При этом необходимо помнить, что переменные должны измеряться в сравнимых шкалах.

Кластерный анализ позволяет сокращать размерность данных, делать ее наглядной.

Кластерный анализ может применяться к совокупностям временных рядов, здесь могут выделяться периоды схожести некоторых показателей и определяться группы временных рядов со схожей динамикой.

Кластерный анализ параллельно развивался в нескольких направлениях, таких как биология, психология, др., поэтому у большинства методов существует по два и более названий. Это существенно затрудняет работу при использовании кластерного анализа.

Задачи кластерного анализа можно объединить в следующие группы:

  1. Разработка типологии или классификации.
  2. Исследование полезных концептуальных схем группирования объектов.
  3. Представление гипотез на основе исследования данных.
  4. Проверка гипотез или исследований для определения, действительно ли типы (группы), выделенные тем или иным способом, присутствуют в имеющихся данных.

Как правило, при практическом использовании кластерного анализа одновременно решается несколько из указанных задач.

Рассмотрим пример процедуры кластерного анализа.

Допустим, мы имеем набор данных А, состоящий из 14-ти примеров, у которых имеется по два признака X и Y. Данные по ним приведены в таблице 13.1 .

Таблица 13.1. Набор данных А
№ примера признак X признак Y
1 27 19
2 11 46
3 25 15
4 36 27
5 35 25
6 10 43
7 11 44
8 36 24
9 26 14
10 26 14
11 9 45
12 33 23
13 27 16
14 10 47

Данные в табличной форме не носят информативный характер. Представим переменные X и Y в виде диаграммы рассеивания, изображенной на рис. 13.1 .


Рис. 13.1.

На рисунке мы видим несколько групп "похожих" примеров. Примеры (объекты), которые по значениям X и Y "похожи" друг на друга, принадлежат к одной группе (кластеру); объекты из разных кластеров не похожи друг на друга.

Критерием для определения схожести и различия кластеров является расстояние между точками на диаграмме рассеивания. Это сходство можно "измерить", оно равно расстоянию между точками на графике. Способов определения меры расстояния между кластерами, называемой еще мерой близости, существует несколько. Наиболее распространенный способ - вычисление евклидова расстояния между двумя точками i и j на плоскости, когда известны их координаты X и Y:

Примечание: чтобы узнать расстояние между двумя точками, надо взять разницу их координат по каждой оси, возвести ее в квадрат, сложить полученные значения для всех осей и извлечь квадратный корень из суммы.

Когда осей больше, чем две, расстояние рассчитывается таким образом: сумма квадратов разницы координат состоит из стольких слагаемых, сколько осей (измерений) присутствует в нашем пространстве. Например, если нам нужно найти расстояние между двумя точками в пространстве трех измерений (такая ситуация представлена на рис. 13.2), формула (13.1) приобретает вид:


Рис. 13.2.

Кластер имеет следующие математические характеристики : центр , радиус , среднеквадратическое отклонение , размер кластера .

Центр кластера - это среднее геометрическое место точек в пространстве переменных.

Радиус кластера - максимальное расстояние точек от центра кластера .

Как было отмечено в одной из предыдущих лекций, кластеры могут быть перекрывающимися. Такая ситуация возникает, когда обнаруживается перекрытие кластеров. В этом случае невозможно при помощи математических процедур однозначно отнести объект к одному из двух кластеров. Такие объекты называют спорными .

Спорный объект - это объект , который по мере сходства может быть отнесен к нескольким кластерам.

Размер кластера может быть определен либо по радиусу кластера , либо по среднеквадратичному отклонению объектов для этого кластера. Объект относится к кластеру, если расстояние от объекта до центра кластера меньше радиуса кластера . Если это условие выполняется для двух и более кластеров, объект является спорным .

Неоднозначность данной задачи может быть устранена экспертом или аналитиком.

Работа кластерного анализа опирается на два предположения. Первое предположение - рассматриваемые признаки объекта в принципе допускают желательное разбиение пула (совокупности) объектов на кластеры. В начале лекции мы уже упоминали о сравнимости шкал, это и есть второе предположение - правильность выбора масштаба или единиц измерения признаков.

Выбор масштаба в кластерном анализе имеет большое значение . Рассмотрим пример. Представим себе, что данные признака х в наборе данных А на два порядка больше данных признака у: значения переменной х находятся в диапазоне от 100 до 700, а значения переменной у - в диапазоне от 0 до 1.

Тогда, при расчете величины расстояния между точками, отражающими положение объектов в пространстве их свойств,

В ходе экспериментов возможно сравнение результатов, полученных с учетом экспертных оценок и без них, и выбор лучшего из них.