Каждые несколько лет какой-нибудь
новый подполковник открывает для себя «Плутон».
После этого он звонит в лабораторию,
чтобы узнать дальнейшую судьбу ядерного ПВРД.

Модная нынче тема, но мне представляется, что гораздо интереснее ядерный прямоточный воздушно-реактивный двигатель, ведь ему не надо таскать с собой рабочее тело.
Предполагаю, что в послании Президента речь шла именно о нем, но почему-то все сегодня начали постить про ЯРД???
Соберу-ка я тут все в одном месте. Прелюбопытные мысли, скажу я вам, появляются, когда вчитаешься в тему. И очень неудобные вопросы.

Прямоточный воздушно-реактивный двигатель (ПВРД; англоязычный термин — ramjet, от ram — таран) — реактивный двигатель, является самым простым в классе воздушно-реактивных двигателей (ВРД) по устройству. Относится к типу ВРД прямой реакции, в которых тяга создается исключительно за счёт реактивной струи, истекающей из сопла. Необходимое для работы двигателя повышение давления достигается за счёт торможения встречного потока воздуха. ПВРД неработоспособен при низких скоростях полёта, тем более — при нулевой скорости, для вывода его на рабочую мощность необходим тот или иной ускоритель.

Во второй половине 1950-х годов, в эпоху холодной войны, в США и СССР разрабатывались проекты ПВРД с ядерным реактором.


Автор фото: Leicht modifiziert aus http://en.wikipedia.org/wiki/Image:Pluto1955.jpg

Источником энергии этих ПВРД (в отличие от остальных ВРД) является не химическая реакция горения топлива, а тепло, вырабатываемое ядерным реактором в камере нагрева рабочего тела. Воздух из входного устройства в таком ПВРД проходит через активную зону реактора, охлаждая его, нагревается сам до рабочей температуры (около 3000 К), а затем истекает из сопла со скоростью, сравнимой со скоростями истечения для самых совершенных химических ЖРД. Возможное назначения летательного аппарата с таким двигателем:
- межконтинентальная крылатая ракета-носитель ядерного заряда;
- одноступенчатый воздушно-космический самолёт.

В обеих странах были созданы компактные малоресурсные ядерные реакторы, которые вписывались в габариты большой ракеты. В США по программам исследований ядерного ПВРД «Pluto» и «Tory» в 1964 году были проведены стендовые огневые испытания ядерного прямоточного двигателя «Tory-IIC» (режим полной мощности 513 МВт в течение пяти минут с тягой 156 кН). Лётные испытания не проводились, программа была закрыта в июле 1964 года. Одна из причин закрытия программы — совершенствование конструкции баллистических ракет с химическими ракетными двигателями, которые вполне обеспечили решение боевых задач без применения схем с сравнительно дорогостоящими ядерными ПВРД.
Про вторую в российских источниках сейчас не принято говорить...

В проекте «Плутон» должна была использоваться тактика полета на низких высотах. Данная тактика обеспечивала скрытность от радаров системы ПВО СССР.
Для достижения скорости, на которой работал бы прямоточный воздушно-реактивный двигатель, «Плутон» должен был с земли запускаться при помощи пакета обычных ракетных ускорителей. Запуск ядерного реактора начинался только после того, как «Плутон» достигал высоты крейсерского полета и достаточно удалялся от населенных районов. Ядерный двигатель, дающий практически неограниченный радиус действия, позволял ракете летать над океаном кругами в ожидании приказа перехода на сверхзвуковую скорость к цели в СССР.


Эскизный проект SLAM

Было принято решение провести статическое испытание полномасштабного реактора, который предназначался для прямоточного двигателя.
Поскольку после запуска реактор «Плутона» становился чрезвычайно радиоактивным, его доставка на место испытаний осуществлялась по специально построенной полностью автоматизированной железнодорожной линии. По данной линии реактор перемещаться на расстояние примерно двух миль, которые разделяли стенд статических испытаний и массивное «демонтажное» здание. В здании «горячий» реактор демонтировался для проведения обследования при помощи оборудования, управляемого дистанционно. Ученые из Ливермора наблюдали за процессом испытаний с помощью телевизионной системы, которая размещалась в жестяном ангаре далеко от испытательного стенда. На всякий случай ангар оборудовался противорадиационным укрытием с двухнедельным запасом пищи и воды.
Только чтобы обеспечить поставки бетона необходимого для строительства стен демонтажного здания (толщина составляла от шести до восьми футов), правительство Соединенных Штатов приобрело целую шахту.
Миллионы фунтов сжатого воздуха хранились в трубах, использующихся в нефтедобыче, общей протяженностью 25 миль. Данный сжатый воздух предполагалось использовать для имитации условий, в которых прямоточный двигатель оказывается во время полета на крейсерской скорости.
Чтобы обеспечить в системе высокое воздушное давление, лаборатория позаимствовала с базы подводных лодок (Гротон, шт. Коннектикут) гигантские компрессоры.
Для проведения теста, во время которого установка работала на полной мощности в течение пяти минут, требовалось прогонять тонну воздуха через стальные цистерны, которые заполнялись более чем 14 млн. стальных шариков, диаметром 4 см. Данные цистерны нагревались до 730 градусов при помощи нагревательных элементов, в которых сжигали нефть.


Установленный на железнодорожной платформе, Тори-2С готов к успешным испытаниям. Май 1964 года

14 мая 1961 г. инженеры и ученые, находящиеся в ангаре, откуда управлялся эксперимент, задержали дыхание — первый в мире ядерный прямоточный реактивный двигатель, смонтированный на ярко-красной железнодорожной платформе, возвестил о своем рождении громким ревом. Тори-2А запустили всего на несколько секунд, во время которых он не развивал своей номинальной мощности. Однако считалось, что тест являлся успешным. Самым важным стало то, что реактор не воспламенился, чего крайне опасались некоторые представители комитета по атомной энергетике. Почти сразу после испытаний Меркл приступил к работам по созданию второго реактора «Тори», который должен был иметь большую мощность при меньшей массе.
Работы по Тори-2B дальше чертежной доски не продвинулись. Вместо него ливерморцы сразу построили Тори-2C, который нарушил безмолвие пустыни спустя три года после испытаний первого реактора. Спустя неделю данный реактор был вновь запущен и проработал на полной мощности (513 мегаватт) в течение пяти минут. Оказалась что радиоактивность выхлопа значительно меньше ожидаемой. На этих испытаниях также присутствовали генералы ВВС и чиновники из комитета по атомной энергетике.

В это время заказчиков из Пентагона, финансировавших проект «Плутон», начали одолевать сомнения. Поскольку ракета запускалась с территории США и летела над территорией американских союзников на малой высоте, чтобы избежать обнаружения системами ПВО СССР, некоторые военные стратеги задумались — а не будет ли ракета представлять для союзников угрозу? Еще до того как ракета «Плутон» сбросит бомбы на противника, она сначала оглушит, раздавит и даже облучит союзников. (Ожидалось, что от Плутона, пролетающего над головой, уровень шума на земле будет составлять около 150 децибел. Для сравнения — уровень шума ракеты, отправившей американцев на Луну (Сатурн-5), на полной тяге составила 200 децибел). Разумеется, разорванные барабанные перепонки были бы наименьшей проблемой, если бы вы оказались под пролетающим над вашей головой обнаженным реактором, который изжарил бы вас как цыпленка гамма- и нейтронным излучением.


Тори-2C

Хотя создатели ракеты утверждали, что «Плутон» изначально по своей сути также неуловим, военные аналитики выражали недоумение — как нечто такое шумное, горячее, большое и радиоактивное может оставаться незамеченным на протяжении времени, которое необходимо для выполнения задачи. В это же время военно-воздушные силы США уже начали развертывать баллистические ракеты «Атлас» и «Титан», которые были способны достичь целей на несколько часов раньше летающего реактора, и противоракетная система СССР, страх перед которой стал основным толчком для создания «Плутона», так и не стала для баллистических ракет помехой, несмотря на успешно проведенные испытательные перехваты. Критики проекта придумали собственную расшифровку аббревиатуры SLAM — slow, low, and messy — медленно, низко и грязно. После успешных испытаний ракеты «Полярис» флот, изначально проявлявший интерес к использованию ракет для пусков с подводных лодок или кораблей, также начал покидать проект. И, наконец, стоимость каждой ракеты составляла 50 миллионов долларов. Внезапно «Плутон» стал технологией, которой нельзя найти приложения, оружием, у которого не было подходящих целей.

Однако последним гвоздем в гроб «Плутона» стал всего один вопрос. Он настолько обманчиво простой, что можно извинить ливерморцев за то, что они ему сознательно не уделили внимания. «Где проводить летные испытания реактора? Как убедить людей в том, что во время полета ракета не потеряет управление и не полетит над Лос-Анджелесом или Лас-Вегасом на малой высоте?» — спрашивал физик ливерморской лаборатории Джим Хэдли, который до самого конца работал над проектом «Плутон». В настоящее время он занимается обнаружением ядерных испытаний, которые проводятся в других странах, для подразделения Z. По признанию самого Хэдли, не было никаких гарантий, что ракета не выйдет из под контроля и не превратится в летающий Чернобыль.
Было предложено несколько вариантов решения данной проблемы. Одно из них - запуск Плутона около острова Уэйк, где ракета летала бы, нарезая восьмерки над принадлежащей Соединенным Штатам частью океана. «Горячие» ракеты предполагалась затапливать на глубине 7 километров в океане. Однако даже тогда, когда комиссия по атомной энергетике склоняла мнение людей думать о радиации как о безграничном источнике энергии, предложения сбрасывать множество загрязненных радиацией ракет в океан было вполне достаточно, чтобы работы приостановили.
1 июля 1964 г, спустя семь лет и шесть месяцев с начала работ, проект «Плутон» закрыли комиссия по атомной энергетике и военно-воздушные силы.

По словам Хэдли, каждые несколько лет какой-нибудь новый подполковник военно-воздушных сил открывает для себя «Плутон». После этого он звонит в лабораторию, чтобы узнать дальнейшую судьбу ядерного ПВРД. Энтузиазм у подполковников пропадает сразу же после того как Хэдли рассказывает о проблемах с радиацией и летными испытаниями. Больше одного раза никто Хэдли не звонил.
Если кого-то захочет вернуть к жизни «Плутон», то, возможно, ему удастся найти несколько новобранцев в Ливерморе. Однако их много не будет. Идею того, что могло стать адским безумным оружием, лучше оставить в прошлом.

Технические характеристики ракеты SLAM:
Диаметр — 1500 мм.
Длинна — 20000 мм.
Масса — 20 тонн.
Радиус действия — не ограниченный (теоретически).
Скорость на уровне моря — 3 Маха.
Вооружение — 16 термоядерных бомб (мощность каждой 1 мегатонна).
Двигатель — ядерный реактор (мощность 600 мегаватт).
Система наведения — инерциальная + TERCOM.
Максимальная температура обшивки — 540 градусов Цельсия.
Материал планера — высокотемпературная, нержавеющая сталь Рене 41.
Толщина обшивки — 4 — 10 мм.

Тем не менее, ядерный ПВРД перспективен как двигательная система для одноступенчатых воздушно-космических самолётов и скоростной межконтинентальной тяжёлой транспортной авиации. Этому способствует возможность создания ядерного ПВРД, способного работать на дозвуковых и нулевых скоростях полёта в режиме ракетного двигателя, используя бортовые запасы рабочего тела. То есть, например, воздушно-космический самолёт с ядерным ПВРД стартует (в том числе взлетает), подавая в двигатели рабочее тело из бортовых (или подвесных) баков и, уже достигнув скоростей от М = 1, переходит на использование атмосферного воздуха.

Как заявил президент РФ В. В. Путин, в начале 2018 года «состоялся успешный пуск крылатой ракеты с ядерной энергоустановкой». При этом, по его заявлению, дальность такой крылатой ракеты "неограниченная".

Интересно, а в каком регионе проводились испытания и почему их проушехлопили соответствующие службы мониторинга за ядерными испытаниями. Или все-таки осенний выброс рутения-106 в атмосфере как-то связан с этими испытаниями? Т.е. челябинцев не только присыпали рутением, но еще и поджарили?
А куда упала эта ракета можно узнать? Проще говоря, где расколотили ядерный реактор? На каком полигоне? На Новой Земле?

**************************************** ********************

А теперь немного почитаем про ядерные ракетные двигатели, хотя это совсем другая история

Я́дерный раке́тный дви́гатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги. Бывают жидкостными (нагрев жидкого рабочего тела в нагревательной камере от ядерного реактора и вывод газа через сопло) и импульсно-взрывными (ядерные взрывы малой мощности при равном промежутке времени).
Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу. Существуют различные конструкции ЯРД: твёрдофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твёрдое, расплав или высокотемпературный газ (либо даже плазма).


Ист. https://commons.wikimedia.org/w/index.php?curid=1822546

РД-0410 (Индекс ГРАУ — 11Б91, известен также как «Иргит» и «ИР-100») — первый и единственный советский ядерный ракетный двигатель 1947-78 гг. Был разработан в конструкторском бюро «Химавтоматика», Воронеж.
В РД-0410 был применён гетерогенный реактор на тепловых нейтронах. Конструкция включала в себя 37 тепловыделяющих сборок, покрытых теплоизоляцией, отделявшей их от замедлителя. Проект ом предусматривалось, что поток водорода вначале проходил через отражатель и замедлитель, поддерживая их температуру на уровне комнатной, а затем поступал в активную зону, где нагревался при этом до 3100 К. На стенде отражатель и замедлитель охлаждались отдельным потоком водорода. Реактор прошёл значительную серию испытаний, но ни разу не испытывался на полную длительность работы. Внереакторные узлы были отработаны полностью.

********************************

А это американский ядерный ракетный двигатель. Его схема была на заглавной картинке


Автор: NASA - Great Images in NASA Description, Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=6462378

NERVA (англ. Nuclear Engine for Rocket Vehicle Application) — совместная программа Комиссии по атомной энергии США и НАСА по созданию ядерного ракетного двигателя (ЯРД), продолжавшаяся до 1972 года.
NERVA продемонстрировал, что ЯРД вполне работоспособен и подходит для исследования космоса, и в конце 1968 года SNPO подтвердил, что новейшая модификация NERVA, NRX/XE, отвечает требованиям для пилотируемого полета на Марс. Хотя двигатели NERVA были построены и испытаны в максимально возможной степени и считались готовыми к установке на космический аппарат, бо́льшая часть американской космической программы была отменена администрацией президента Никсона.

NERVA была оценена AEC, SNPO и НАСА как высокоуспешная программа, достигшая или даже превысившая свои цели. Главная цель программы заключалась в «создании технической базы для систем ядерных ракетных двигателей, которые будут использоваться в разработке и развитии двигательных установок для космических миссий». Практически все космические проекты, использующие ЯРД, основаны на конструкциях NERVA NRX или Pewee.

Марсианские миссии стали причиной упадка NERVA. Члены Конгресса из обеих политических партий решили, что пилотируемый полет на Марс будет молчаливым обязательством для Соединенных Штатов в течение десятилетий поддерживать дорогостоящую космическую гонку. Ежегодно программа RIFT задерживалась и цели NERVA усложнялись. В конце концов, хотя двигатель NERVA прошёл много успешных испытаний и имел мощную поддержку Конгресса, он никогда не покидал Землю.

В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017—2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе.

Уже в конце нынешнего десятилетия в России может быть создан космический корабль для межпланетных путешествий на ядерной тяге. И это резко изменит ситуацию и в околоземном пространстве, и на самой Земле.

Ядерная энергодвигательная установка (ЯЭДУ) будет готова к полету уже в 2018 году. Об этом сообщил директор Центра имени Келдыша, академик Анатолий Коротеев . «Мы должны подготовить первый образец (ядерной энергетической установки мегаваттного класса. – Прим. "Эксперта Online") к летно-конструкторским испытаниям в 2018 году. Полетит она или нет, это другое дело, там может быть очередь, но она должна быть готова к полету», – передало его слова РИА « Новости» . Сказанное означает, что один из самых амбициозных советско-российских проектов в области освоения космоса вступает в фазу непосредственной практической реализации.

Суть этого проекта, корни которого уходят еще в середину прошлого века, вот в чем. Сейчас полеты в околоземное пространство осуществляются на ракетах, которые движутся за счет сгорания в их двигателях жидкого или твердого топлива. По сути, этот тот же двигатель, что и в автомобиле. Только в автомобиле бензин, сгорая, толкает поршни в цилиндрах, передавая через них свою энергию колесам. А в ракетном двигателе сгорающие керосин или гептил непосредственно толкают ракету вперед.

За прошедшие полвека эта ракетная технология была отработана во всем мире до мелочей. Но и сами ракетостроители признают, что . Совершенствовать – да, нужно. Пытаться увеличить грузоподъемность ракет с нынешних 23 тонн до 100 и даже 150 тонн на основе «усовершенствованных» двигателей сгорания – да, нужно пытаться. Но это тупиковый путь с точки зрения эволюции. «Сколько бы специалисты всего мира по ракетным двигателям ни трудились, максимальный эффект, который мы получим, будет исчисляться долями процентов. Из существующих ракетных двигателей, будь это жидкостные или твердотопливные, грубо говоря, выжато все, и попытки увеличения тяги, удельного импульса просто бесперспективны. Ядерные же энергодвигательные установки дают увеличение в разы. На примере полета к Марсу – сейчас надо лететь полтора-два года туда и обратно, а можно будет слетать за два-четыре месяца », – оценивал в свое время ситуацию экс-глава Федерального космического агентства России Анатолий Перминов .

Поэтому ещё в 2010 году, тогдашнем президентом России, а ныне премьер-министром Дмитрием Медведевым было дано распоряжение к концу этого десятилетия создать в нашей стране космический транспортно-энергетический модуль на основе ядерной энергетической установки мегаваттного класса. На разработку этого проекта до 2018 года из средств федерального бюджета, «Роскосмоса» и «Росатома» запланировано выделить 17 млрд рублей. 7,2 млрд из этой суммы выделено госкопорации «Росатом» на создание реакторной установки (этим занимается Научно-исследовательский и конструкторский институт энерготехники имени Доллежаля), 4 млрд – Центру имени Келдыша на создание ядерной энергодвигательной установки. 5,8 млрд рублей предназначается РКК «Энергия» для создания транспортно-энергетического модуля, то есть, проще говоря, ракеты-корабля.

Естественно, все эти работы делаются не на пустом месте. С 1970 по 1988 годы в космос только СССР запустил более трех десятков спутников-шпионов, оснащенных ядерными силовыми установками малой мощности типа «Бук» и «Топаз». Они использовались при создании всепогодной системы наблюдения за надводными целями на всей акватории Мирового океана и выдачи целеуказания с передачей на носители оружия или командные пункты – система морской космической разведки и целеуказания «Легенда» (1978 год).

NASA и американские компании, производящие космические аппараты и средства их доставки, так и не смогли за это время, хоть и трижды пытались, создать ядерный реактор, который бы устойчиво работал в космосе. Поэтому в 1988 году через ООН был проведен запрет на использование космических аппаратов с ядерными энергетическими двигательными установками, и производство спутников типа УС-А с ЯЭДУ на борту в Советском Союзе было прекращено.

Параллельно в 60-70-е годы прошлого века Центр имени Келдыша вел активные работы по созданию ионного двигателя (электроплазменного двигателя), который наиболее подходит для создания двигательной установки большой мощности, работающей на ядерном топливе. Реактор выделяет тепло, оно генератором преобразуется в электричество. С помощью электричества инертный газ ксенон в таком двигателе сначала ионизируется, а затем положительно заряженные частицы (положительные ионы ксенона) ускоряются в электростатическом поле до заданной скорости и создают тягу, покидая двигатель. Вот такой принцип работы ионного двигателя, прототип которого уже создан в Центре имени Келдыша.

«В 90-х годах XX века мы в Центре Келдыша возобновили работы по ионным двигателям. Сейчас должна быть создана новая кооперация для такого мощного проекта. Уже есть прототип ионного двигателя, на котором можно отрабатывать основные технологические и конструктивные решения. А штатные изделия еще нужно создавать. У нас срок определен – к 2018 году изделие должно быть готово к летным испытаниям, а к 2015 году должна быть завершена основная отработка двигателя. Дальше – ресурсные испытания и испытания всего агрегата в целом », – отмечал в прошлом году начальник отдела электрофизики Исследовательского центра имени М.В. Келдыша, профессор факультета аэрофизики и космических исследований МФТИ Олег Горшков.

Какая практическая польза России от этих разработок? Эта польза намного превышает те 17 млрд рублей, которые государство намерено потратить до 2018 года на создание ракеты-носителя с ядерной силовой установкой на борту мощностью 1 МВт. Во-первых, это резкое расширение возможностей нашей страны и человечества вообще. Космический корабль с ядерным двигателем дает реальные возможности людям совершить и другим планетам. Сейчас многие страны таких кораблей. Возобновились они и в США в 2003 году, после того как к американцам попали два образца российских спутников с ядерными силовыми установками.

Однако, несмотря на это, член спецкомиссии NASA по пилотируемым полетам Эдвард Кроули, например, считает, что на корабле для международного полета к Марсу должны стоять российские ядерные двигатели. «Востребован российский опыт в сфере разработки ядерных двигателей. Я думаю, у России есть очень большой опыт как в разработке ракетных двигателей, так и в ядерных технологиях. У нее есть также большой опыт адаптации человека к условиям космоса, поскольку российские космонавты совершали очень долгие полеты », – сказал Кроули журналистам весной прошлого года после лекции в МГУ, посвященной американским планам пилотируемых исследований космоса.

Во-вторых , такие корабли позволяют резко активизировать деятельность и в околоземном пространстве и дают реальную возможность началу колонизации Луны (уже есть проекты строительства на спутнике Земли атомных станций). «Использование ядерных энергодвигательных установок рассматривается для больших пилотируемых систем, а не для малых космических аппаратов, которые могут летать на других типах установок, использующих ионные двигатели или энергию солнечного ветра. Использовать ЯЭДУ с ионными двигателями можно на межорбитальном многоразовом буксире. К примеру, возить грузы между низкими и высокими орбитами, осуществлять полеты к астероидам. Можно создать многоразовый лунный буксир или отправить экспедицию на Марс », – считает профессор Олег Горшков. Подобные корабли резко меняют экономику освоения космоса. По расчетам специалистов РКК «Энергия», ракета-носитель на ядерной тяге обеспечивает снижение стоимости выведения полезного груза на окололунную орбиту более чем в два раза по сравнению с жидкостными ракетными двигателями.

В-третьих , это новые материалы и технологии, которые будут созданы в ходе реализации этого проекта и затем внедрены в другие отрасли промышленности – металлургию, машиностроение и т.д. То есть это один из таких прорывных проектов, которые реально могут толкнуть вперед и российскую, и мировую экономику.


В конце прошлого года российские ракетные войска стратегического назначения испытали совершенно новое оружие, существование которого, как раньше считалось, невозможно. Крылатая ракета с ядерным двигателем, которой военные эксперты дают обозначение 9М730 - именно то новое оружие, о котором президент Путин говорил в своем Послании Федеральному собранию. Испытание ракеты проводилось предположительно на полигоне Новая земля, ориентировочно в конце осени 2017 года, однако точные данные будут рассекречены еще не скоро. Разработчиком ракеты, также предположительно, является Опытное конструкторское бюро "Новатор" (город Екатеринбург). По заявлению компетентных источников ракета в штатном режиме поразила цель и испытания были признаны полностью успешными. Далее в СМИ появились предполагаемые фотографии пуска (выше) новой ракеты с ядерной силовой установкой и даже косвенные подтверждения, связанные с присутствием в предполагаемое время испытаний в непосредственной близости от полигона "летающей лаборатории" Ил-976 ЛИИ Громова с отметками "Росатома". Однако вопросов появилось еще больше. Реальна ли заявленная возможность ракеты осуществлять полет неограниченной дальности и за счет чего она достигается?

Характеристика крылатой ракеты с ядерной силовой установкой

Характеристики крылатой ракеты с ЯСО, появившиеся в СМИ сразу после выступления Владимира Путина, могут отличаться от реальных, которые будут известны позже. На сегодняшний день достоянием общественности стали следующие данные по размерам и ТТХ ракеты:

Длина
- стартовая - не менее 12 метров,
- маршевая - не менее 9 метров,

Диаметр корпуса ракеты - около 1 метра,
Ширина корпуса - около 1.5 метров,
Высота хвостового оперения - 3.6 - 3.8 метров

Принцип работы российской крылатой ракеты с ядерным двигателем

Разработки ракет с ядерной силовой установкой вели сразу несколько стран, причем разработки начались еще в далеких 1960-х годах. Конструкции, предложенные инженерами отличались лишь в деталях, упрощенно принцип работы можно описать следующим образом: ядерный ректор нагревает поступающую в специальные емкости смесь (разные варианты, от аммиака до водорода) с последующим выбросом через сопла под высоким давлением. Однако вариант крылатой ракеты, о которой говорил российский президент, не подходит ни под один из примеров конструкций, разрабатываемых ранее.

Дело в том, что, по словам Путина, ракета имеет практически неограниченную дальность полета. Это, конечно, нельзя понимать так, что ракета может летать годами, но можно расценить как прямое указание на то, что дальность ее полета многократно превышает дальность полета современных крылатых ракет. Второй момент, который нельзя не заметить, тоже связан с заявленной неограниченной дальностью полета и, соответственно, работы силового агрегата крылатой ракеты. К примеру гетерогенный реактор на тепловых нейтронах, испытанный в двигателе РД-0410, разработкой которого занимались Курчатов, Келдыш и Королев, имел ресурс работы на испытаниях только 1 час и в этом случае о неограниченной дальности полета такой крылатой ракеты с ядерным двигателем не может быть и речи.

Все это наводит на мысль о том, что российские ученые предложили совершенно новую, ранее не рассматриваемую концепцию строения, в которой для нагрева и последующего выброса из сопла используется вещество, имеющее намного экономный ресурс расходования на больших расстояниях. Как пример, это может быть ядерный воздушно-реактивный двигатель (ЯВРД) совершенно нового образца, в котором рабочей массой является атмосферный воздух, нагнетаемый в рабочие емкости компрессорами, нагреваемый ядерной установкой с последующим выбросом через сопла.

Также стоит отметить, что анонсированная Владимиром Путиным крылатая ракета с ядерным силовым агрегатом умеет облетать зоны активного действия систем противовоздушной и противоракетной обороны, а также держать путь к цели на малых и сверхмалых высотах. Это возможно только за счет оснащения ракеты системами следования ландшафту местности, устойчивыми к помехам, создаваемых средствами радиоэлектронной борьбы противника.

Осторожно много букв.

Летный образец космического аппарата с ядерной энергодвигательной установкой (ЯЭДУ) в России планируется создать к 2025 году. Соответствующие работы заложены в проекте Федеральной космической программы на 2016–2025 годы (ФКП-25), направленной Роскосмосом на согласование в министерства.

Ядерные системы электроэнергии считают основными перспективными источниками энергии в космосе при планировании масштабных межпланетных экспедиций. Обеспечить мегаваттные мощности в космосе в перспективе позволит ЯЭДУ, созданием которой сейчас занимаются предприятия «Росатома».

Все работы по созданию ЯЭДУ идут в соответствии с запланированными сроками. Мы можем с большой долей уверенности говорить, что работы будут сданы в срок, предусмотренный целевой программой, - говорит руководитель проекта департамента коммуникаций госкорпорации «Росатом» Андрей Иванов.

За последнее время в рамках проекта пройдено два важных этапа: создана уникальная конструкция тепловыделяющего элемента, обеспечивающая работоспособность в условиях высоких температур, больших градиентов температур, высокодозного облучения. Также успешно завершены технологические испытания корпуса реактора будущего космического энергоблока. В рамках этих испытаний корпус подвергали избыточному давлению и проводили 3D-измерения в зонах основного металла, кольцевого сварного соединения и конического перехода.

Принцип действия. История создания.

С атомным реактором для космического применения нет принципиальных затруднений. В период с 1962 по 1993 год в нашей стране был накоплен богатый опыт производства аналогичных установок. Похожие работы велись и в США. С начала 1960-х годов в мире было разработано несколько типов электрореактивных двигателей: ионный, стационарный плазменный, двигатель с анодным слоем, импульсный плазменный двигатель, магнитоплазменный, магнитоплазмодинамический.

Работы по созданию ядерных двигателей для космических аппаратов активно велись в СССР и США в прошлом веке: американцы закрыли проект в 1994 году, СССР - в 1988-м. Закрытию работ во многом способствовала чернобыльская катастрофа, которая негативно настроила общественное мнение в отношении использования ядерной энергии. К тому же испытания ядерных установок в космосе не всегда проходили штатно: в 1978 году советский спутник «Космос-954» вошел в атмосферу и развалился, разбросав тысячи радиоактивных осколков на территории в 100 тыс. кв. км в северо-западных районах Канады. Советский Союз выплатил Канаде денежную компенсацию в объеме более $10 млн.

В мае 1988 года две организации - Федерация американских ученых и Комитет советских ученых за мир против ядерной угрозы - сделали совместное предложение о запрещении использования ядерной энергии в космосе. Формальных последствий то предложение не получило, однако с тех пор ни одна страна не производила запусков космических аппаратов с ядерными энергетическими установками на борту.

Большими достоинствами проекта являются практически важные эксплуатационные характеристики - высокий ресурс (10 лет эксплуатации), значительный межремонтный интервал и продолжительное время работы на одном включении.

В 2010 году были сформулированы технические предложения по проекту. С этого года началось проектирование.

ЯЭДУ содержит три главные устройства: 1) реакторную установку с рабочим телом и вспомогательными устройствами (теплообменник-рекуператор и турбогенератор-компрессор); 2) электроракетную двигательную установку; 3) холодильник-излучатель.

Реактор.

С физической точки зрения это компактный газоохлаждаемый реактор на быстрых нейтронах.
В качестве топлива используется соединение (диоксид или карбонитрид) урана, но, поскольку конструкция должна быть очень компактной, уран имеет более высокое обогащение по изотопу 235, чем в твэлах на обычных (гражданских) атомных станциях, возможно, выше 20%. А оболочка их - монокристаллический сплав тугоплавких металлов на основе молибдена.

Этому топливу придется работать при очень высоких температурах. Поэтому необходимо было выбрать такие материалы, которые смогут сдерживать негативные факторы, связанные с температурой, и в то же время позволят топливу выполнять его основную функцию - нагревать газовый теплоноситель, с помощью которого будет производиться электроэнергия.

Холодильник.

Охлаждение газа в процессе работы ядерной установки совершенно необходимо. Как же сбрасывать тепло в открытом космосе? Единственная возможность - охлаждение излучением. Нагретая поверхность в пустоте охлаждается, излучая электромагнитные волны в широком диапазоне, в том числе видимый свет. Уникальность проекта в использовании специального теплоносителя - гелий-ксеноновой смеси. В установке обеспечивается высокий коэффициент полезного действия.

Двигатель.

Принцип действия ионного двигателя следующий. В газоразрядной камере с помощью анодов и катодного блока, расположенных в магнитном поле, создается разреженная плазма. Из нее эмиссионным электродом "вытягиваются" ионы рабочего тела (ксенона или другого вещества) и ускоряются в промежутке между ним и ускоряющим электродом.

Для реализации задуманного в период с 2010 по 2018 год было обещано 17 млрд рублей. Из этих средств 7,245 млрд рублей предназначались госкорпорации "Росатом" на создание самого реактора. Другие 3,955 млрд - ФГУП "Центр Келдыша" на создание ядерной - энергодвигательной установки. Еще 5,8 млрд рублей - для РКК "Энергия", где в те же сроки предстоит сформировать рабочий облик всего транспортно-энергетического модуля.

По планам, к концу 2017 года будет осуществлена подготовка ядерной энергодвигательной установки для комплектации транспортно-энергетического модуля (перелетного межпланетного модуля). К концу 2018 года ЯЭДУ будет подготовлена к летно-конструкторским испытаниям. Финансирование проекта осуществляется за счет средств федерального бюджета.

Не секрет, что работы по созданию ядерных ракетных двигателей были начаты в США и в СССР еще в 60-х годах прошлого века. Как далеко они продвинулись? И с какими проблемами пришлось столкнуться на этом пути?

Анатолий Коротеев: Действительно, работы по использованию ядерной энергии в космосе были начаты и активно велись у нас и в США в 1960-70-е годы.

Первоначально была поставлена задача создать ракетные двигатели, которые вместо химической энергии сгорания горючего и окислителя использовали бы нагрев водорода до температуры около 3000 градусов. Но оказалось, что такой прямой путь все-таки неэффективен. Мы на короткое время получаем большие тяги, но при этом выбрасываем струю, которая в случае нештатной работы реактора может оказаться радиоактивно зараженной.

Определенный опыт был накоплен, но ни нам, ни американцам не удалось тогда создать надежных двигателей. Они работали, но мало, потому что нагреть водород до 3000 градусов в ядерном реакторе - серьезная задача. А кроме того, возникали проблемы экологического свойства во время наземных испытаний таких двигателей, поскольку радиоактивные струи выбрасывались в атмосферу. Уже не секрет, что подобные работы проводились на специально подготовленном для ядерных испытаний Семипалатинском полигоне, который остался в Казахстане.

То есть критичными оказались два параметра - запредельная температура и выбросы радиации?

Анатолий Коротеев: В общем, да. В силу этих и некоторых других причин работы у нас и в США были прекращены или приостановлены - оценивать можно по-разному. И возобновить их таким, я бы сказал, лобовым образом, чтобы сделать ядерный двигатель со всеми уже названными недостатками, нам показалось неразумным. Мы предложили совершенно иной подход. От старого он отличается тем же, чем отличается гибридный автомобиль от обычного. В обычном авто двигатель крутит колеса, а в гибридных - от двигателя вырабатывается электроэнергия, и уже это электричество крутит колеса. То есть создается некая промежуточная электростанция.

Вот и мы предложили схему, в которой космический реактор не нагревает струю, выбрасываемую из него, а вырабатывает электричество. Горячий газ от реактора крутит турбину, турбина крутит электрогенератор и компрессор, который обеспечивает циркуляцию рабочего тела по замкнутому контуру. Генератор же вырабатывает электричество для плазменного двигателя с удельной тягой в 20 раз выше, чем у химических аналогов.

Мудреная схема. По существу, это мини-АЭС в космосе. И в чем ее преимущества перед прямоточным ядерным двигателем?

Анатолий Коротеев: Главное - выходящая из нового двигателя струя не будет радиоактивной, поскольку через реактор проходит совершенно другое рабочее тело, которое содержится в замкнутом контуре.

Кроме того, нам не надо при этой схеме нагревать до запредельных значений водород: в реакторе циркулирует инертное рабочее тело, которое нагревается до 1500 градусов. Мы серьезно упрощаем себе задачу. И в итоге поднимем удельную тягу не в два раза, а в 20 раз по сравнению с химическими двигателями.

Немаловажно и другое: отпадает потребность в сложных натурных испытаниях, для которых нужна инфраструктура бывшего Семипалатинского полигона, в частности, та стендовая база, что осталась в городе Курчатове.

В нашем случае все необходимые испытания можно провести на территории России, не втягиваясь в длинные международные переговоры об использовании ядерной энергии за пределами своего государства.

Ведутся ли сейчас подобные работы в других странах?

Анатолий Коротеев: У меня была встреча с заместителем руководителя НАСА, мы обсуждали вопросы, связанные с возвращением к работам по ядерной энергии в космосе, и он заявил, что американцы проявляют к этому большой интерес.

Вполне возможно, что и Китай может ответить активными действиями со своей стороны, поэтому работать надо быстро. И не только ради того, чтобы опередить кого-то на полшага.

Работать надо быстро в первую очередь для того, чтобы в формирующейся международной кооперации, а де-факто она формируется, мы выглядели достойно.

Я не исключаю, что уже в ближайшей перспективе может быть инициирована международная программа по ядерной космической энергоустановке наподобие реализуемой сейчас программы по управляемому термоядерному синтезу.

Советские и американские ученые разрабатывали ракетные двигатели на ядерном топливе с середины XX века. Дальше прототипов и единичных испытаний эти разработки не продвинулись, но сейчас единственная ракетная двигательная установка, которая использует ядерную энергию, создается в России. «Реактор» изучил историю попыток внедрения ядерных ракетных двигателей.

Когда человечество только начало покорять космос, перед учеными встала задача энергообеспечения космических аппаратов. Исследователи обратили внимание на возможность использования ядерной энергии в космосе, создав концепцию ядерного ракетного двигателя. Такой двигатель должен был использовать энергию деления или синтеза ядер для создания реактивной тяги.

В СССР уже в 1947 году начались работы по созданию ядерного ракетного двигателя. В 1953 году советские специалисты отмечали, что «использование атомной энергии позволит получить практически неограниченные дальности и резко снизить полетный вес ракет» (цитата по изданию «Ядерные ракетные двигатели » под редакцией А.С. Коротеева, М, 2001). Тогда двигательные установки на ядерной энергии предназначались, в первую очередь, для оснащения баллистических ракет, поэтому интерес правительства к разработкам был большим. Президент США Джон Кеннеди в 1961 году назвал национальную программу по созданию ракеты с ядерным ракетным двигателем (Project Rover) одним из четырех приоритетных направлений в завоевании космоса.

Реактор KIWI, 1959 год. Фото: NASA.

В конце 1950-х американские ученые создали реакторы KIWI. Они много раз были испытаны, разработчики сделали большое количество модификаций. Часто при испытаниях происходили неудачи, например, однажды произошло разрушение активной зоны двигателя и обнаружилась большая утечка водорода.

В начале 1960-х как в США, так и в СССР были созданы предпосылки для реализации планов по созданию ядерных ракетных двигателей, но каждая страна шла своей дорогой. США создавали много конструкций твердофазных реакторов для таких двигателей и испытывали их на открытых стендах. СССР вел отработку тепловыделяющей сборки и других элементов двигателя, готовя производственную, испытательную, кадровую базу для более широкого «наступления».

Схема ЯРД NERVA. Иллюстрация: NASA.

В США уже в 1962 году президент Кеннеди заявил, что «ядерная ракета не будет применяться в первых полетах на Луну», поэтому стоит направлять средства, выделяемые на освоение космоса, на другие разработки. На рубеже 1960-1970-х были испытаны еще два реактора (PEWEE в 1968 году и NF-1 в 1972 году) в рамках программы NERVA . Но финансирование было сосредоточено на лунной программе, поэтому программа США по созданию ядерных двигателей сокращалась в объеме, и в 1972 году была закрыта.

Фильм NASA про ядерный реактивный двигатель NERVA.

В Советском Союзе разработки ядерных ракетных двигателей продолжались до 1970-х годов, а руководила ими известнейшая ныне триада отечественных ученых-академиков: Мстислав Келдыш, Игорь Курчатов и . Они оценивали возможности создания и применения ракет с ядерными двигателями достаточно оптимистично. Казалось, что вот-вот, и СССР запустит такую ракету. Прошли огневые испытания на Семипалатинском полигоне - в 1978 году состоялся энергетический пуск первого реактора ядерного ракетного двигателя 11Б91 (или РД-0410), потом еще две серии испытаний - второго и третьего аппаратов 11Б91-ИР-100. Это были первые и последние советские ядерно-ракетные двигатели.

М.В. Келдыш и С.П. Королев в гостях у И.В. Курчатова, 1959 г.