LTE , он же 4G LTE , представляет собой перспективную методику высокоскоростной передачи информации посредством GSM/EDGE и UMTS/HSPA протоколов в телефонах. Известно, что LTE это стандарт, который предназначен, прежде всего, для увеличения скорости обмена данными с помощью мобильных телефонов, КПК и других интерактивных устройств с возможностью подключения к сотовым терминалам мобильной связи.

Что это такое LTE 4 G на смартфонах? Будучи «стандартом четвертого поколения передачи данных» на телефонах, ЛТЕ представляет собой логическое развитие более старого стандарта передачи данных – стандарта третьего поколения известного также как 3G.

В основу стандарта LTE легла концепция сохранения максимального удешевления стоимости передачи, при сопутствующем увеличении скорости и возможности перспективного опционального подключения разнообразных информационных услуг.

Иными словами, создатели 4G LTE поставили себе цель разработать более совершенную и в то же время дешевую методику передачи данных на телефоны, которая вдобавок стала бы базой для последующих улучшений и нововведений. И, замечу, 4G LTE полностью удовлетворил их амбиции. По-настоящему понять, что это LTE вы сможете только используя некоторое время эту технологию на своих гаджетах.

Характеристики технологии LTE

Благодаря инновационной методике цифровой модуляции радиосигнала и оптимизации (существующей на момент разработки 4G LTE) архитектуры 3G сетей, новый поток смог обеспечить скорость передачи данных до 326.4 Мбит/сек ! И это при том, что задержка между отправкой пакетов была снижена с существовавших на то время 2,8 секунд до 5 миллисекунд !

Вдобавок, эта технология 4G LTE позволяет осуществлять радиообмен в широчайшем диапазоне частот от 1,4 МГц до 20 МГц, и даже поддерживает частотную дифференциацию каналов (FDD), что обуславливает возможность использования данного протокола для разнообразных вспомогательных опций, например для IP-телефонии, голосового обмена на основе технологии VoLTE и прочих «увесистых» пакетных передач.

Также нельзя не отметить, что эта технология LTE, за счет оптимизации архитектурных наработок сети 3G, позволяет подключать даже к стандартной 5 МГц мобильной соте до двухсот активных абонентов. Благодаря данной особенности, стандарт 4G LTE позволил не только увеличить имеющиеся характеристики 3G сетей, но и удешевить непосредственно себестоимость обмена данными, так как для обеспечения радиообмена одного и того же количества устройств теперь стало требоваться меньше единиц оборудования.

Отличие 4G от 3G

Помимо вышеописанных ключевых особенностей, которые являются логическим развитием наработок стандарта 3G, 4G LTE также может похвастаться уникальными особенностями, в частности:

  • Возможностью взаимодействия с протоколом E-ULTRA;
  • Концептуально новой методикой поддержки мобильности передачи сигнала, позволяющей осуществлять радиообмен с терминалом, движущимся на скорости до 350км/ч;
  • Радио коммутацией пакетных данных;
  • Ранее недоступными диапазонами частотного спектра.

Как можно подключиться к сети LTE

Стоит отметить, что большинство современных аппаратов поддерживали LTE еще до его повсеместного внедрения, и это не случайность – разработчики ориентировались на возможность кооперации со старыми GSM/EDGE, UMTS и CDMA2000 клиентскими терминалами (мобильниками, КПК). Что это такое стандарт LTE мы разобрались, теперь узнаем как пользоваться ЛТЕ на телефоне.

Однако, для использования всех преимуществ данного протокола «на полную» все же потребуется наличие устройства поддерживающего стандарт 4G, так как в противном случае скорость передачи данных будет ограничена параметрами клиентского устройства, а не мощностью сотовой вышки.

Что касается программной настройки, каких-либо приложений или утилит для сопряжения с 4G LTE сетью не требуется – достаточно прописать терминалу стандартные авторизационные данные оператора сотовой связи. Проще говоря, если ваш телефон выходил в интернет на территории РФ с помощью протокола 3G, то «найдя» 4G LTE соту, он подключится к ней без какого-либо участия с вашей стороны, а вам останется лишь довольствоваться высокоскоростным мобильным интернетом.

Вконтакте

Большинство операторов по всему миру используют базовую конструкцию сети. Verizon Wireless, Sprint-Nextel, Leap Wireless, MetroPCS, C Spire Wireless и американские сотовые операторы настроены или будут настроены на той же базовой конструкции с одним существенным изменением: eHRPD заменит связи опорной сети с традиционными сетями UMTS.

Как на самом деле работает LTE

LTE использует два различных типа воздушных интерфейсов (радиолиний): один для нисходящей линии связи (от станции к устройству), и один для восходящего канала (от устройства к станции). При использовании различных типов интерфейсов для нисходящего и восходящего каналов, LTE использует способ сделать беспроводные соединения в обоих направлениях оптимальными, что позволяет лучше оптимизировать сети и продлить срок службы аккумулятора на LTE устройствах.

Для нисходящей линии связи LTE использует OFDMA (Orthogonal Frequency Division Multiple Access) воздушный интерфейс, в отличие от CDMA (Code Division Multiple Access) и TDMA (Time Division Multiple Access) воздушного интерфейса, который мы использовали с 1990 года. Что это значит? OFDMA (в отличие от CDMA и TDMA) использут принцип MIMO (Multiple In, Multiple Out). Функционал MIMO означает, что устройства имеют несколько подключений к одной соте, что повышает устойчивость соединения и уменьшает задержки. Это также увеличивает общую пропускную способность соединения. Мы уже видим реальные преимущества MIMO по маршрутизаторам и сетевым адаптерам. MIMO это то, что позволяет 802.11n WiFi достигать скорости до 600 Мбит, хотя большинство работает на скоростях до 300-400 Мбит. Но существует значительный недостаток. MIMO работает лучше, если антенны разных операторов находятся дальше друг от друга. На небольших расстояниях помехи, вызванные близкорасположенными антеннами, приводят к падению LTE производительности. WiMAX также предусматривает использование MIMO, поскольку она использует OFDMA. HSPA +, которая использует W-CDMA для радиоинтерфейса,также может дополнительно использовать MIMO.

Для восходящего канала (от устройства к станции) LTE использует DFTS-OFDMA (discrete Fourier transform spread orthogonal frequency division multiple access) схему генерации SC-FDMA (одна несущая частота Division Multiple Access) сигнала. В отличие от регулярных OFDMA, SC-FDMA лучше для восходящего канала, потому что она имеет лучший пик в средней мощности более OFDMA по восходящей линии. LTE-устройства, в целях экономии батареи, как правило, не имеют сильного и мощного сигнала, идущий обратно к станции, таким образом многие преимуществ нормального OFDMA будут потеряны со слабым сигналом. Несмотря на название, SC-FDMA - по прежнему считается системой MIMO. LTE использует SC-FDMA 1 × 2 конфигурацию, которая означает, что для каждой антенны на передающее устройство есть две антенны на базовой станции для приема.

LTE технология сама по себе также поставляется в двух вариантах: FDD (frequency division duplex) вариант и TDD (time division duplex) вариант. Самый распространенный вариант использования является вариант FDD. Вариант FDD использует отдельные частоты для нисходящего и восходящего каналов в виде полосной пары. Это означает, что для каждого канала, поддерживаемого телефоном, он фактически использует два частотных диапазона. Они известны как парные полосы частот. Например, 10 МГц сети Verizon находится в FDD, поэтому полоса пропускания выделяется для восходящей и нисходящей линии связи.

В Соединенных Штатах Clearwire является единственным оператором сотовой сети развертывания LTE в варианте TDD. Все остальные сосредоточились на варианте FDD. Вариант TDD становится все более важным в Азии, так China Mobile (крупнейший оператор сотовой сети в мире с точки зрения количества абонентов) использует TDD частоты для своих 3G-сетей и планирует перейти на вариант TDD в LTE. К счастью, LTE устройства могут быть легко адаптированы для поддержки обоих вариантов на устройстве без особых проблем.

LTE и потребление энергии

Как LTE влияет на срок службы батареи? Причина, почему LTE устройства активно уменьшают заряд батареи в том, что сетевые операторы заставляют эти устройства находиться в активном двойном режиме работы.

Для Verizon Wireless это означает, что все свои LTE-устройства подключаются как CDMA2000 и LTE одновременно и остаются на связи и там, и там. Это означает, что расходуется в два раза больше заряда аккумулятора за каждую минуту, пока вы подключены, чем если бы вы были подключены только к CDMA2000 или LTE. Отправка и получение текстовых сообщений вызывает импульсы CDMA2000 деятельности, которая увеличивает расход зарядки аккумулятора.

Кроме это, есть хэндовер (handover - процедура смены абонентом канала связи во время разговора без потери соединения). Это процедура является важным компонентом, который делает возможным любую сотовую беспроводную сеть. Без хэндовера пользователю придется вручную выбирать нового оператора каждый раз, когда пользователь выходит из диапазона станции. (WiFi - пример технологии беспроводной сети, которая по сути не поддерживает handover.). Когда пользователь путешествует за пределами диапазона Wi-Fi сети, WiFi-радио будет просто разрывать соединение. Для сотовых сетей это даже более важно, потому что диапазон башни не очень предсказуем из-за факторов, находящихся вне чьего-либо контроля (например, погода, и т.д.). LTE поддерживает handover как и все другие сотовые беспроводные сети, но это делает это лучше и быстрее при передаче в поддерживаемый тип сети или ячейки.

Отключения LTE позволит значительно увеличить время автономной работы, потому что телефон переключается в один режим. Или, как в случае AT & T телефонами, пассивный двойной режим работы (для GSM / HSPA + handover), поскольку они обычно находятся в пассивном трехрежимном варианте работы для GSM / HSPA + / LTE handover. Пассивный мультирежим означает, что устройство не постоянно подключено к нескольким сетям, но установит соединение и передаст его, если сигнал на существующей сети слишком слабый или пропадающий. Это идеально подходит для мультирежима, но это не возможно для операторов сетей CDMA / LTE, пока они не позволяют LTE обрабатывать вызовы и текстовые сообщения.

Голосовой трафик в LTE - за счет IP-телефонии поверх LTE?

Конечная цель развертывания операторами сетей LTE – замена всех остальных технологий передачи данных на этот стандарт. Это означает, что LTE должна обрабатывать голосовые вызовы, текстовые сообщения, передачу служебных данных и т.д. по сети передачи данных.

Тем не менее, никто не разработал спецификации LTE с голосовыми и текстовыми сообщениями. LTE была разработана только как сеть передачи данных. Как же решаются эти проблемы? Разрабатывая решения VoIP , которые соответствют их потребностям. Появились два основных стандарта: VoLGA (Voice over LTE via Generic Access) и VoLTE-IMS (Voice over LTE via IMS). VoLGA была основанана GAN (Generic Network Access), который также известен как UMA (Unlicensed Mobile Access). Deutsche Telekom был единственным сетевым оператором, который хотел использовать этот метод, поскольку проект для VoLGA был в большой степени получен из реализации США T-Mobile UMA для ее функции Wi-Fi Calling. Никто больше из желал использовать этот вариант в качестве окончательного или промежуточного решения, поскольку это будет означать наличие устаревшей сети ядра GSM.

Все остальные поддерживали VoLTE-IMS (сейчас называется VoLTE), что позволило им полностью отказаться от своих старых сетей и упростить их сети, поскольку они списаны с традиционных сетей. Тем не менее, IMS является гораздо более дорогими и сложными в развертывании, чем VoLGA, по крайней мере, для операторов GSM сети.

VoLTE использует расширенный вариант SIP (Session Initiation Protocol) для обработки голосовых вызовов и текстовых сообщений. Для голосовых вызовов VoLTE использует AMR (Adaptive Multi-Rate) кодек с широкополосным версия используется, если поддерживается сетью и устройством. Кодек AMR уже давно используется в качестве стандарта кодека для GSM и UMTS голосовых звонков. Широкополосная версия поддерживает высокое качество кодирования речи, которая позволила бы сделать четкими голосовые вызовы. Текстовые сообщения поддерживаются с помощью SIP MESSAGE запросов. Видеосвязь использует H.264 CBP (ограничена базовым профилем) с AMR-WB аудио кодеком над RTP (Real-Time Transport Protocol) с VBR (Variable Bit Rate).При этом, видео-звонки через IMS должны быть очень высокого качества, независимо от того, каково качество передачи данных. С VBR вызов может адаптироваться к меняющимся уровеням нагрузки на сеть передачи данных для поддержания качественного видеозвонка.

О будущем 4G LTE

LTE представляет собой значительный скачок в оптимизированных сотовых беспроводных технологиях.

Станет ли LTE историей успеха мобильной индустрии еще предстоит выяснить. Сети операторов по всему миру только сейчас развернули LTE на более - менее видимую величину. И уже сейчас практические решения в области LTE превращаются в кашу.

3GPP уже утвердил более сорока полос частот для LTE. Тридцать из них для LTE FDD, а остальные для LTE TDD. Роуминг будет очень трудным на LTE. В одних только Соединенных Штатах и Канаде есть десять полос FDD и TDD одна полоса для LTE. В Европе есть еще три полосы для FDD LTE. В Азии и Океании есть те же три полосы для FDD, что и в Европе, еще три полосы частот для FDD и еще две полосы TDD. Остальная часть группы еще не используются, но они будут использоваться. Кому-то придется выяснить, как разместить больше полос на LTE устройствах без ущерба для портативности.

Кроме того, непонятно что же считается 4G. Вопреки распространенному мнению, LTE на данном этапе не всегда считается 4G.

Неизвестно, что будущее за у LTE , но оно, безусловно, будет очень интересным. Это самое захватывающее время в мобильной индустрии со времен перехода от аналогового к цифровому еще в начале 1990-х годов. LTE представляет собой сдвиг парадигмы от гибридной передачи голоса и данных в сторону передачи данных только по сети. Вероятнее, беспроводные сетевые технологии станут более широко использоваться, потому что они более доступны, чем кабельные услуги (кабель, DSL, и т.д.). Хотя, конечно, сомнительно, что это могло бы полностью их заменить. Стоит надеяться, что вопросы, связанные с LTE, решатся с течением времени. По крайней мере, это могло бы подтолкнуть развитие более продвинутых аккумуляторов и портативных технологий радиосвязи, которые могут обрабатывать больше, чем нынешние.

Оставьте свой комментарий!

LTE (от английского Long-Term Evolution - долговременное развитие) — стандарт беспроводной высокоскоростной передачи данных для мобильных устройств (и не только), работающих с данными. Часто обозначается как LTE 4G.

LTE является развитием стандартов GSM/UMTS. Целью данного стандарта связи было увеличение пропускной способности и скорости с помощью метода цифровой обработки сигналов и модуляции, которые были разработаны еще в конце прошлого столетия. Беспроводной интерфейс LTE несовместим с 2G и 3G, а потому должен работать на отдельной частоте.

Где я могу услышать про LTE?

Про LTE вы можете узнать, например, в обзоре очередного смартфона, который поддерживает данный стандарт, или при покупке смартфона в магазине, где менеджер будет уверять вас в том, что вам однозначно нужно приобрести устройство с поддержкой LTE. Отчасти он будет прав, ведь при наличии LTE в смартфоне и поддержке технологии в вашем городе вы сможете передавать файлы на огромной скорости с помощью беспроводного интернета или, к примеру, смотреть фильмы в FHD-разрешении прямо в интернете, если, конечно, устройство поддерживает просмотр роликов в Full HD-разрешении.

Скорость LTE

Спецификация LTE такова, что обеспечивает скорость загрузки до 326,4 Мбит/с, а скорость отдачи может достигать 172,8 Мбит/с. Задержка в передаче данных составляет 5 миллисекунд.

Особенности технологии LTE

Радиус действия станции LTE зависит фактически от мощности излучения, при этом не ограничен в теории, а вот максимальная скорость передачи данных зависит от удаленности от станции и радиочастоты. Предел для скорости в 1 Мбит/сек составляет от 3,2 км (2600 МГц) до 19,7 км (450 МГц). В нашей стране многие операторы работают на частотах 2600 МГц, 1800 МГц и 800 МГц. В мире наиболее часто используется диапазон 1800 МГц.

LTE в России и в мире

Если верить различным источникам, то в зоне покрытия LTE на момент написания статьи находится более 50% всего населения России. В некоторых странах эта цифра на порядок выше. Например, внедрение LTE в Южной Корее достигает 97%, в Японии — 90%, а в Сингапуре — 84%.

Зона покрытия в России постоянно расширяется, так что стоит ожидать, что технология LTE в перспективе будет доступна едва ли не по всей стране.

Как подключиться к LTE?

В первую очередь абоненту нужно уточнить, поддерживает ли его оператор сотовой связи LTE. Если поддерживает, тогда понадобится смартфон с поддержкой данной технологии. После этого единственное, что нужно сделать абоненту, это просто подключиться к мобильному интернету и, по возможности, подключение будет производиться с помощью мобильной связи четвертого поколения (4G). Обращаем ваше внимание, что далеко не везде поддерживается LTE даже в пределах одного города. Например, зона покрытия может быть актуальна только для некоторых районов города.

В некоторых случаях необходимо заменить старую сим-карту на новую, если она не поддерживает новые технологии. Кроме того, если планируете использовать высокоскоростной интернет, лучше подключить безлимитный интернет, так как при такой высокой скорости трафик расходуется очень быстро и, что самое главное, почти незаметно для самого абонента.

В наше время, быстрыми темпами распространяется мобильная связь четвёртого поколения - 4G, на подходе уже пятое поколение связи так называемое 5G. В основном стандартом в 4G на данный момент является LTE . Как нам говорит история, ЛТЕ не был первым стандартом четвёртого поколения, первым широко распространённым был стандарт WiMAX (на нем работали провайдер FreshTel и Yota). Максимальная скорость передачи данных WiMAX - 40 Мбит/с, однако реальные показатели от 10 до 20 Мбит/с.

Но вернёмся к нашему LTE. Именно он сейчас наиболее распространён в России. Но что такое 4G LTE ? LTE (с англ. Long-Term Evolution ) - это стандарт беспроводной высокоскоростной передачи данных для мобильных устройств. Основан он на всё тех же GSM/UMTS протоколах, однако теоретические и реальные скорости передачи данных в сетях LTE значительно выше, порой даже превосходят проводные соединения.

Стандарт четвертого поколения (ЛТЕ) бывает двух видов, различия между которыми довольно существенны.

FDD - Frequency Division Duplex (частотный разнос входящего и исходящего канала)
TDD - Time Division Duplex (временной разнос входящего и исходящего канала).

Грубо говоря, FDD - это параллельный LTE, а TDD - последовательный LTE. Например, при ширине канала в 20 МГц в FDD LTE часть диапазона (15 МГц) отдаётся для загрузки (download), а часть (5 МГц) для выгрузки (upload). Таким образом каналы не пересекаются по частотам, что позволяет работать одновременно и стабильно для загрузки и выгрузки данных. В TDD LTE всё тот же канал в 20 МГц полностью отдаётся и как для загрузки, так и для выгрузки, а данные передаются в ту и другую сторону поочерёдно, при этом приоритет имеет всё таки загрузка. В целом FDD LTE предпочтительней, т.к. он работает быстрее и стабильнее.

Частоты LTE

Мобильные сети LTE (FDD и TDD) работают на разных частотах в разных странах. Во многих странах эксплуатируются сразу несколько частотных диапазонов. Стоит отметить, то не всё оборудование умеет работать на разных, частотных диапазонах. FDD-диапазоны нумеруются с 1 по 31, TDD-диапазоны с 33 по 44. Существуют дополнительно несколько стандартов, которым еще не присвоены номера. Спецификации на частотные полосы называются бендами (BAND). В России и Европе в основном используются band 7, band 20, band 3 и band 38.

FDD LTE бенды и частоты
Номер полосы LTE Частотный диапазон Upload (МГц) Частотный диапазон Download (МГц) Ширина диапазона (МГц)
band 1 1920 - 1980 2110 - 2170 2x60
band 2 1850 - 1910 1930 - 1990 2x60
band 3 1710 - 1785 1805 -1880 2x75
band 4 1710 - 1755 2110 - 2155 2x45
band 5 824 - 849 869 - 894 2x25
band 6 830 - 840 875 - 885 2x10
band 7 2500 - 2570 2620 - 2690 2x70
band 8 880 - 915 925 - 960 2x35
band 9 1749.9 - 1784.9 1844.9 - 1879.9 2x35
band 10 1710 - 1770 2110 - 2170 2x60
band 11 1427.9 - 1452.9 1475.9 - 1500.9 2x20
band 12 698 - 716 728 - 746 2x18
band 13 777 - 787 746 - 756 2x10
band 14 788 - 798 758 - 768 2x10
band 15 1900 - 1920 2600 - 2620 2x20
band 16 2010 - 2025 2585 - 2600 2x15
band 17 704 - 716 734 - 746 2x12
band 18 815 - 830 860 - 875 2x15
band 19 830 - 845 875 - 890 2x15
band 20 832 - 862 791 - 821 2x30
band 21 1447.9 - 1462.9 1495.5 - 1510.9 2x15
band 22 3410 - 3500 3510 - 3600 2x90
band 23 2000 - 2020 2180 - 2200 2x20
band 24 1625.5 - 1660.5 1525 - 1559 2x34
band 25 1850 - 1915 1930 - 1995 2x65
band 26 814 - 849 859 - 894 2x35
band 27 807 - 824 852 - 869 2x17
band 28 703 - 748 758 - 803 2x45
band 29 н/д 717 - 728 11
band 30 2305 - 2315 2350 - 2360 2x10
band 31 452.5 - 457.5 462.5 - 467.5 2x5
TDD LTE бенды и частоты
Номер полосы LTE Частотный диапазон (МГц) Ширина диапазона (МГц)
band 33 1900 - 1920 20
band 34 2010 - 2025 15
band 35 1850 - 1910 60
band 36 1930 - 1990 60
band 37 1910 - 1930 20
band 38 2570 - 2620 50
band 39 1880 - 1920 40
band 40 2300 - 2400 100
band 41 2496 - 2690 194
band 42 3400 - 3600 200
band 43 3600 - 3800 200
band 44 703 - 803 100

Приведём список частотных диапазонов сетей 4G LTE операторов России. Существуют также региональные сети четвертого поколения местных операторов, работающих в других частотных диапазонах.

Сети 4G LTE в России
Оператор Частотный диапазон /↓ (МГц) Ширина канала (МГц) Тип дуплекса Номер полосы
Yota 2500-2530 / 2620-2650 2x30 FDD band 7
Мегафон 2530-2540 / 2650-2660 2x10 FDD band 7
Мегафон 2575-2595 20 TDD band 38
МТС 2540-2550 / 2660-2670 2x10 FDD band 7
МТС 2595-2615 20 TDD band 38
Билайн 2550-2560 / 2670-2680 2x10 FDD band 7
Теле2 2560-2570 / 2680-2690 2x10 FDD band 7
МТС 1710-1785 / 1805-1880 2x75 FDD band 3
Теле2 832-839.5 / 791-798.5 2x7.5 FDD band 20
МТС 839.5-847 / 798.5-806 2x7.5 FDD band 20
Мегафон 847-854.5 / 806-813.5 2x7.5 FDD band 20
Билайн 854.5-862 / 813.5-821 2x7.5 FDD band 20

Скорость 4G LTE

Скорость передачи данных, прежде всего зависит от ширины частотного диапазона того или иного оператора, а так же типа повторителя, используемого в сети. Например, для канала в 10 МГц скорость 4G (LTE), будет равняться 75 Мбит/с. Именно с такой номинальной скоростью работают сети LTE FDD (band 7) операторов Теле2, МТС и Билайн .

Что же касается оператора Мегафон, он может позволить себе больше. Несколько лет назад произошло слияние, а точнее поглощение Мегафоном, оператора Йоты, то сейчас Мегафон имеет лицензии и на частоты Yota, соответственно максимальная ширина канала может достигать 40 МГц в частотном диапазоне 2600 МГц (band 7), что в теории даёт целых 300 Мбит/с. Но в основном сеть Мегафон 4G работает в канале 15-20 МГц, что даёт скорость загрузки 100-150 Мбит/с.

Раньше вопросов про LTE задавали много. Сегодня остался самый главный: когда ? Когда это счастье придет к нам, в Россию? Еще месяц назад я не знал, что отвечать людям. Сильно комплексовал по этому поводу, ведь так близок к теме. Сомневался, то ли конец 2012-го, то ли начало 2013-го. Никакой определенности! Но сейчас, после исторического решения ГКРЧ от 8 сентября , всё, наконец, стало ясно.

Я слоупок, что такое LTE?

LTE - Long Term Evolution (англ., долгосрочная эволюция). Когда ученые доводили до ума 3G (он же UMTS, он же WCDMA) в рамках проекта 3GPP, они «рассчитались на первый-второй». Половина стала «докручивать» 3G до HSPA: это были минорные доработки радиоинтерфейса при сохранении основы - принципа кодового разделения каналов (CDMA). Планировали закончить быстро, поэтому называли между собой краткосрочной эволюцией. Другую половину озаботили вопросом: а что, если абоненты захотят мобильного интернета на скоростях на порядок выше, чем в 3G? Такие вопросы быстро не решаются. Тут думать нужно, крепко и долго. Отсюда и эволюция долгосрочная - LTE. Маркетологи, кстати, часто называют LTE 4G.

Про железо

Базовые станции LTE не содержат ничего сверхъестественного. Там есть радиомодули (они же приемопередатчики, TRXы), блок цифровой обработки сигнала (BBU), интерфейсные платы (FE/GE порты, электрические, оптические). Радиомодули бывают выносные - RRU. Монтируются вблизи антенны (для уменьшения потерь в ВЧ-фидере), к BBU подключаются по отпике (стандарт CPRI). Всё как в БС 3G, но называются красиво - evolved NodeB (дословно - продукт эволюции «узла Б», т.е. собственно БС 3G).


Базовая станция

Базовая станция

А поскольку БС разных стандартов больше похожи, чем отличаются, производители быстро догадались делать всё «в одном флаконе». Решение называется SingleRAN. Одна БС на 3 стандарта: GSM, 3G и LTE. Очень удобно оператору с точки зрения экономии места и питания на сайте, сокращения времени на монтаж и так далее. Мы такие уже начали закупать и устанавливать на сети. Так что, как только, так сразу…

Для LTE не нужны какие-то особенные антенны. Вполне подойдут обычные панельные антенны с кросс-поляризацией. Они, например, используются в сетях GSM и в 3G. Правда, если в GSM и 3G две поляризации обычно используются на прием, а на передачу только одна (схема 2Rx/1Tx), то в LTE обе поляризации задействованы по полной, и на прием, и на передачу (схема 2Rx/2Tx). Это необходимо для реализации технологии MIMO2х2. На первом этапе внедрения LTE этого будет достаточно. Дальше пропускную способность сектора можно будет увеличить, добавив еще по одной кросс-пол антенне. Получится схема 4Rx/4Tx и MIMO4х4. Главное разнести антенны в пространстве на достаточное расстояние (порядка 10 длин волн).

Что еще из «железа»? Контроллера сети доступа (как BSC в GSM, или RNC в 3G), как отдельного физического и логического узла в сети LTE, нет, БС подключаются напрямую к узлам Core, причем исключительно по IP. Core используется только пакетный. Называется EPC (evolved Packet Core). К нашему счастью, относительно новый обычный Packet Core превращается в EPC путем апгрейда софта. Функционал MME (узел управления мобильностью в LTE) можно накатить на используемый для GPRS/3G узел SGSN, а с функциями PGW/SGW должен уметь справляться GGSN. Не скажу, что все SGSN/GGSN-ы «Билайна» HW-ready к LTE, но мы уверенно движемся в этом направлении.

Плюс SAE-HSS (хранилище абонентских профайлов), который также поднимается на существующей HW-платформе ngHLR"a. Вот, собственно, и вся сеть LTE.


Архитектура LTE

Про транспорт

GE-порты на БС. Это, как любил говаривать Винни Пух, неспроста: вы же наверняка понимаете, какой должен быть backbone при таком backhaul"e! Если у кого-нибудь из уважаемых читателей есть несколько свободных миллиардов долларов, могу подсказать, как потратить их с пользой…

Про частоты

В отличие от других стандартов мобильной связи LTE не привязан к какому-то конкретному диапазону частот. В этом его сила. Разработчики (3GPP) определили более 30 диапазонов, для которых производители могут выпускать стандартное радиооборудование LTE. Сюда попали как частоты, используемые сейчас под другие стандарты (например, 900, 1800 (GSM), 2100 (UMTS), 2500 (WiMAX), так и “новые”, например 700-800 Мгц (так называемый “цифровой дивиденд”). Понятно, что далеко не все из возможных диапазонов найдут широкое распространение в мире. Скорее всего, в итоге “выживет” не больше 4-5 диапазонов. Большее количество очень трудно реализовать в одном абонентском девайсе, а это уже проблема для обеспечения глобального роуминга. Если спросите, на какие диапазоны сделать ставку, мои предпочтения следующие:
  • 800 Мгц (3GPP band 20) – выделен или планируется под LTE практически во всех европейских странах, включая Россию; выгоден с точки зрения затрат на обеспечение сплошного покрытия; оборудование выпускается всеми ведущими производителями;
  • 2,5 Ггц (3GPP band 7) – выделен или планируется под LTE практически во всех странах Европы и Азии, включая Россию; выгоден при обеспечении емкости в хот-спотах; оборудование выпускается всеми ведущими производителями.
  • 1800 Мгц (3GPP band 3) – будет освобождаться по мере уменьшения количества GSM-only телефонов и расширения покрытия 3G (чтобы было, куда переводить голос); хорош с точки зрения обеспечения в сети баланса между емкостью и покрытием; GSM-операторам даст возможность сэкономить за счет переиспользования инфраструктуры сети доступа (приемопередатчики, антенны); оборудование выпускается почти всеми ведущими производителями
Вообще, выбор правильного диапазона для развития LTE – задача не из простых. В нижних диапазонах, где всё отлично с покрытием, проблема найти полосу достаточной для полноценного LTE ширины. В верхних обычно хорошо с частотным ресурсом, но БС нужно ставить через каждые 400-500 метров, разоришься на сплошном покрытии! Вероятно, большинство сетей LTE, аналогично GSMу, будут двух-диапазонные.

Про скорости

Максимальные скорости передачи данных – ключевой показатель крутости стандарта для конечных пользователей. И LTE реально крут! Можно долго говорить о теоретических возможностях разных стандартов, перспективах их развития и так далее, но то, что абонентам в уже работающих сетях LTE доступны скорости более 100 Мбит/с – это факт. И это только начало светлого будущего: уверен, что достижение в сетях LTE скоростей до 1 Гбит/с – вопрос нескольких лет. Дальше посмотрим. Скорее всего, нужен будет очередной прорыв, как в теории радиосвязи, так и в технологии производства элементной базы.

Про покрытие

Зона покрытия одной БС в LTE может быть абсолютно разной. От чего это зависит прежде всего? Правильно! От используемого диапазона частот. Если сравнить крайние варианты, то площадь покрытия одной eNodeB, работающей в самом нижнем LTE-диапазоне (700 Мгц) оказывается, при прочих равных, в 5-6 раз больше, чем для базы, работающей в 2.5 ГГц. В условиях городской застройки радиус соты, таким образом, может быть от нескольких сот метров до нескольких километров. Что касается рекорда по дальности действия БС LTE, он был установлен в ходе трайла греческого оператора Cosmote на оборудовании Huawei в начале этого года – на расстоянии 102 км от БС была получена скорость передачи 135 Мбит/с. Конечно, это была прямая видимость и один абонент в соте. Но с точки зрения предельных возможностей стандарта – довольно убедительно.

Про гаджеты

Доступные сейчас на рынке абонентские устройства с поддержкой LTE включают (по типам):


USB-модемы (на картинке – Huawei E398)

Смартфоны (на фото – HTC Thunderbolt, OS Android)

Планшет (на фото – Samsung Galaxy Tab 10.1, OS Android)


Портативный LTE/Wi-Fi Hotspot (на фото – Samsung SCH-LC11)


Ноутбук (на картинке HP Pavilion DM1-3010NR)

На данный момент на рынке доступно уже более 100 абонентских устройств с поддержкой LTE и это количество растет с каждым днем. Основные игроки на этом рынке – наши старые знакомые: Samsung, LG, HTC, ZTE, Huawei.

Про опыты

Посмотреть, как работает LTE вживую, хотелось очень давно. Первый раз довелось в начале прошлого года в Стокгольме. Спасибо коллегам из Ericsson, позвали посмотреть на первую в мире коммерческую сеть LTE – Telia-Sonera. Честно признаться, был немного разочарован. Скорости, пока катались по городу на микроавтобусе, колебались в пределах от 0 до 8 Мбит/с. К тому же, соединение постоянно рвалось. Коллеги оправдывались тем, что сеть пока не оптимизирована, БС мало, диапазон высокий - 2.5 Ггц. Всё, конечно, понятно, но хотелось чуда.

По приезде из Швеции задумали построить пилотную сеть LTE в одной из наших стран. Проще всего договориться с Регулятором о выделении (на время пилота) частот под LTE оказалось в Казахстане. Диапазон частот выбрали самый низкий из доступных – 700 Мгц (точнее band 13, именно те номиналы, на которых строит сеть американский Verizon). К концу октября 2010 построили в сотрудничестве с Alcatel-Lucent сети в двух главных городах Казахстана (Астане и Алматы). То что получилось показали и чиновникам, и журналистам, и наиболее интересующимся из потенциальных клиентов. Подробнее можно почитать .

Про голос

Нужна ли передача голоса в LTE? С одной стороны, стандарту мобильной связи, претендующему на роль глобального, без базовой связной услуги оставаться, вроде как, неприлично. С другой – представить, что покрытие LTE появится там, где нет GSM или 3G, сложно. То есть без голоса абонент всяко не останется.
Рано или поздно придёт LTE-Advanced, потребуются дополнительные частоты. А где их взять, как не у сетей GSM и 3G? Тогда LTE останется один на один с абонентом, которому, как и раньше, нужно будет поговорить - а, значит, голос в LTE обязательно будет, вопрос времени. Сейчас в первых коммерческих сетях, для предоставления голосовых звонков реализована функция CS Fallback. Получив по служебному каналу в сети LTE сообщение о входящем вызове, абонентское устройство переключается в режим GSM или 3G и информирует сеть о готовности принять вызов. После этого звонок проключается через GSM/3G CS Core.


CS Fallback в действии

В будущем, при переходе к all-IP архитектуре, голос в мобильных сетях останется только в виде VoIP. Тогда вопрос выбора сети радиодоступа, через которую будут идти голосовые звонки, сведется к емкостным характеристикам – чем больше пропускная способность сектора, тем больше одновременных звонков он может обслужить.