Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод.

Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Например, когда процесс их функционирования описан дифференциальными или интегро-дифференциальными уравнениями. Метод назван условно, так как он объединяет возможности имитации процесса, модель которого получена в виде аналитически замкнутого решения, или решения полученного методами вычислительной математики.

Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это – численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла). В последствии этот метод стал применяться для имитации процессов, происходящих в системах, внутри которых есть источник случайности или которые подвержены случайным воздействиям. Он получил название метода статистического моделирования .

При исследовании сложных систем, подверженных случайным возмущениям используются вероятностные аналитические модели и вероятностные имитационные модели.

В вероятностных аналитических моделях влияние случайных факторов учитывается с помощью задания вероятностных характеристик случайных процессов (законы распределения вероятностей, спектральные плотности или корреляционные функции). При этом построение вероятностных аналитических моделей представляет собой сложную вычислительную задачу. Поэтому вероятностное аналитическое моделирование используют для изучения сравнительно простых систем.

Подмечено, что введение случайных возмущений в имитационные модели не вносит принципиальных усложнений, поэтому исследование сложных случайных процессов проводится в настоящее время, как правило, на имитационных моделях.

В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров процессов и систем. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.



Статистическая модель случайного процесса - это алгоритм, с помощью которого имитируют работу сложной системы, подверженной случайным возмущениям; имитируют взаимодействие элементов системы, носящих вероятностный характер.

При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий задачу генерирования последовательности случайных чисел с заданными законами распределения, получил название "метод статистических испытаний" или "метод Монте-Карло".

Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины.

Итак, статистическое моделирование - это способ изучения сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационных моделей.

Метод Монте-Карло - это численный метод, моделирующий на ЭВМ псевдослучайные числовые последовательности с заданными вероятностными характеристиками

Методика статистического моделирования состоит из следующих этапов:

1. Моделирование на ЭВМ псевдослучайных последовательностей с заданной корреляцией и законом распределения вероятностей (метод Монте-Карло), имитирующих на ЭВМ случайные значения параметров при каждом испытании;

2. Преобразование полученных числовых последовательностей на имитационных математических моделях.

3. Статистическая обработка результатов моделирования.

Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических, так и аналитических моделей, которые взаимодействуют как единое целое. Причем, в набор модулей могут входить не только модули, соответствующие динамическим моделям, но и модули, соответствующие статическим математическим моделям.

Проект имитационного моделирования включает следующие этапы: концептуальный, этап интерпретации, экспериментальный этап. Рассмотрим их более подробно.

1. Концептуальный. На этом этапе происходит первичное ознакомление с объектом исследования и выясняется, какие данные необходимы для выполнения проекта. Формируются общие сведения о модели: наименование модели, её назначение и цель разработки. Определяется перечень объектов, на которых планируется использование модели, указываются должностные лица, в чьих интересах будет решаться задача. Описывается физическая сущность моделируемого процесса и область применения модели.

На этом же этапе определяются критерии, по которым будет оцениваться эффективность модели или её качество. Описываются ограничения и допущения, принятые при разработке модели. Перечисляются аналитические методы, которые планируется использовать при разработке модели. Определяется порядок запуска и управления моделью, возможные режимы её использования и связь с другими моделями. Выясняются источники информации, используемой в модели, а также состав и структура этой информации. Если при построении модели планируется использовать случайные величины, то именно на концептуальном этапе обосновываются законы их распределения.

Важно также на этом этапе определить требования к конфигурации технических и программных средств: продумать характеристики технических средств (тип центрального процессора, наличие сопроцессора, объемы оперативной и постоянной памяти и т.д.) и подготовить общее программное обеспечение (операционные системы, сетевые операционные системы и т.п.), общесистемное программное обеспечение (СУБД, офисные пакеты и т.п.).

Следует обеспечить защиту информации, используемой в модели, с этой целью на концептуальном этапе определяется политика безопасности (потенциальные угрозы, возможный ущерб в случае нарушения защиты, группы пользователей, права доступа и т.д.).

2. Этап интерпретации. Он включает в себя формализацию описания моделируемого объекта на основе выбранного CASE - средства. На этом этапе, на естественном языке дается семантическое (смысловое) описание состава исследуемого объекта, взаимодействия между элементами объекта и объекта с внешней средой. На основе описания объекта создается имитационная модель, средствами выбранного для этой цели языка моделирования. На рисунке 6.4. приведен пример модели, созданной средствами ARIS.

Рис. 6.4. Пример модели, выполненной в средеARIS

Здесь же определяются временные и стоимостные характеристики

функций и бизнес-процессов. Пример приведен на рисунке 6.5.

Рис. 6.5. Описание количественных и качественных характеристик

На этом этапе осуществляется и проверка полученной модели на соответствие ее той теоретической схеме, которая была положена в основу формального описания объекта моделирования. Этот процесс часто называют верификацией модели. Заканчивается второй этап проверкой соответствия имитационной модели свойствам реальной системы. Если этого нет, то следует снова вернуться к моменту формализации модели.

3. Экспериментальный этап. Этот этап заключается в проведении численного эксперимента на разработанной модели путем «прогона» ее на ЭВМ. Перед началом исследования полезно составить такую последовательность «прогонов» модели, которая позволила бы получить необходимый объем информации при заданном составе и достоверности исходных данных. Далее на основе разработанного плана эксперимента осуществляют «прогоны» имитационной модели на ЭВМ и проводят обработку результатов с целью представления их в виде, удобном для анализа.

На основе анализа результатов подготавливаются и формулируются окончательные выводы по проведенному моделированию и разрабатываются рекомендации по использованию результатов моделирования для достижения поставленных целей. Часто на основе этих выводов возвращаются к началу процесса моделирования для необходимых изменений в теоретической и практической части модели и повторным исследованиям с измененной моделью. В результате нескольких подобных циклов получают имитационную модель, наилучшим образом удовлетворяющую поставленным задачам.

Существует довольно много программных систем, позволяющих создавать имитационные модели. К ним относятся:

Ø Business Studio (Имитационное моделирование бизнес-процессов)

Ø PTV Vision VISSIM

Ø Tecnomatix Plant Simulation

Некоторые из этих систем рассматриваются более подробно в главе 7

Вопросы к главе 6

1. Что такое имитационное моделирование?

2. Дайте определение имитационной модели.

3. Что является основой всякой имитационной модели?

4. Что является целью имитационного моделирования?

5. Перечислите основные достоинства имитационного моделирования

6. Назовите недостатки имитационного моделирования:

7. Приведите типичные примеры, где может быть применить ИМ

8. Какие существует виды имитационного моделирования?

9. Что такое системная динамика?

10. Каковы компоненты дискретно-событийного моделирования

11. Какова цель агентных моделей?

12. Перечислите этапы имитационного моделирования


Введение

Одна из важных особенностей АСУ – принципиальная невозможность проведения реальных экспериментов до завершения проекта. Возможным выходом является использование имитационных моделей. Однако их разработка и использование чрезвычайно сложны, возникают затруднения в достаточно точном определении степени адекватности моделируемому процессу. Поэтому важно принять решение – какую создать модель.

Другой важный аспект – использование имитационных моделей в процессе эксплуатации АСУ для принятия решений. Такие модели создаются в процессе проектирования, чтобы их можно было непрерывно модернизировать и корректировать в соответствии с изменяющимися условиями работы пользователя.

Эти же модели могут быть использованы для обучения персонала перед вводом АСУ в эксплуатацию и для проведения деловых игр.

Вид модели производственного процесса зависит в значительной степени от того, является ли он дискретным или непрерывным. В дискретных моделях переменные изменяются дискретно в определенные моменты имитационного времени. Время может приниматься как непрерывным, так и дискретным в зависимости от того, могут ли дискретные изменения переменных происходить в любой момент имитационного времени или только в определенные моменты. В непрерывных моделях переменные процесса являются непрерывными, а время может быть как непрерывным, так и дискретным в зависимости от того, являются непрерывные переменные доступными в любой момент имитационного времени или только в определенные моменты. В обоих случаях в модели предусматривают блок задания времени, который имитирует продвижение модельного времени, обычно ускоренного относительно реального.

Разработка имитационной модели и проведение моделирующих экспериментов в общем случае могут быть представлены в виде нескольких основных этапов, приведенных на рис. 1.


Компонента модели, отображающая определенный элемент моделируемой системы, описывает набором характеристик количественного или логического типа. В зависимости от длительности существования различают компоненты условно-постоянные и временные. Условно-постоянные компоненты существуют в течение всего времени эксперимента с моделью, а временные – генерируются и уничтожаются в ходе эксперимента. Компоненты имитационной модели делят на классы, внутри которых они имеют одинаковый набор характеристик, но отличаются их значениями.

Состояние компоненты определяется значениями ее характеристик в данный момент модельного времени, а совокупность значений характеристик всех компонент определяет состояние модели в целом.

Изменение значений характеристик, являющееся результатом отображения в модели взаимодействия между элементами моделируемой системы, приводит к изменению состояния модели. Характеристика, значение которой в ходе моделирующего эксперимента изменяется, является переменной, в противном случае это параметр. Значения дискретных переменных не изменяются в течение интервала времени между двумя последовательными особыми состояниями и меняются скачком при переходе от одного состояния к другому.

Моделирующий алгоритм представляет собой описание функциональных взаимодействий между компонентами модели. Для его составления процесс функционирования моделируемой системы разбивается на ряд последовательных событий, каждое из которых отражает изменение состояния системы в результате взаимодействия ее элементов или воздействия на системы внешней среды в виде входных сигналов. Особые состояния возникают в определенные моменты времени, которые планируются заранее, либо определяются в ходе эксперимента с моделью. Наступление событий в модели планируется путем составления расписания событий по временам их свершения либо проводится анализ, выявляющий достижение переменными характеристиками установленных значений.

Для этой цели наиболее удобно использовать СИВС. Представленные на них материальные и информационные потоки легко анализировать для выявления особых состояний. Такими состояниями являются отражаемые на СИВС моменты окончания обработки изделия на каждом рабочем месте или его транспортировки; приема и выдачи на постоянное или временное хранение; сборки деталей в узлы, узлов в изделие и т.п. Для дискретного производства изменение характеристик между особыми состояниями можно также считать дискретным, имея в виду переход условным скачком от исходного материала к заготовке, от заготовки к полуфабрикату, от полуфабриката к детали и т.д.

Таким образом, каждая производственная операция рассматривается как оператор, изменяющий значение характеристик изделия. Для простых моделей последовательность состояний можно принимать детерминированной. Лучше отражают действительность случайные последовательности, которые можно формализовать в виде случайных приращений времени, имеющих заданное распределение, либо случайного потока однородных событий, аналогично потокам заявок в теории массового, обслуживания. Аналогичным образом можно проанализировать и выявить с помощью СИВС особые состояния при движении и обработке информации.

На рис. 2 представлена структура обобщенной имитационной модели.

При моделировании непрерывных производственных процессов по принципу ∆t датчик временных интервалов выдает тактовые импульсы для работы моделирующего алгоритма. Блоки случайных и управляющих воздействий, а также начальных условий служат для ручного ввода условий проведения очередного модельного эксперимента.

Комплекс имитационных функциональных программ по каждому моделируемому объекту определяет условное распределение вероятностей состояний объекта к окончанию каждого момента ДЛ При случайном выборе одного из возможных состояний это осуществляется функциональной подпрограммой; при выборе экспериментатором – программой, заложенной в блоке управляющих воздействий, или, при желании осуществлять этот выбор вручную на каждом такте, вводом новых начальных условий исходя из текущего состояния, определяемого с помощью блока индикации.

Функциональная программа определяет параметры технологической установки на каждом такте в зависимости от заданных начальных условий – характеристик сырья, заданного режима, свойств и условий работы установки. Из модели технологической части программным путем могут быть добавлены соотношения весового и объемного баланса.

Координацию и взаимодействие всех блоков и программ осуществляет программа-диспетчер.

При моделировании дискретных процессов, при котором обычно используют принцип особых состояний, структура имитационной модели изменяется незначительно. Вместо датчика временных интервалов вводится блок, определяющий наличие особого состояния и выдающий команду на переход к следующему. Функциональная программа имитирует на каждом переходе одну операцию на каждом рабочем месте. Характеристики таких операций могут быть детерминированными во времени, например при работе станка-автомата, либо случайными с заданными распределениями. Кроме времени могут имитироваться и другие характеристики – наличие или отсутствие брака, отнесение к некоторому сорту или классу и т.п. Аналогично имитируются сборочные операции, с той разницей, что на каждой операции изменяются не характеристики обрабатываемого материала, а вместо одних наименований – детали, узлы – появляются другие – узлы, изделия – с новыми характеристиками. Однако принципиально операции сборки имитируются аналогично операциям обработки – определяются случайные или детерминированные затраты времени на операцию, значения физических и производственных характеристик.

Для имитации сложных производственных систем требуется создание логико-математической модели исследуемой системы, позволяющей проведение с нею экспериментов на ЭВМ. Модель реализуют в виде комплекса программ, написанных на одном из универсальных языков программирования высокого уровня либо на специальном языке моделирования. С развитием имитационного моделирования появились системы и языки, сочетающие возможности имитации как непрерывных, так и дискретных систем, что позволяет моделировать сложные системы типа предприятий и производственных объединений.

При построении модели, прежде всего, следует определить ее назначение. В модели должны быть отражены все существенные с точки зрения цели ее построения функции моделируемого объекта и в то же время в ней не должно быть ничего лишнего, иначе она будет слишком громоздкой и мало эффективной.

Основным назначением моделей предприятий и объединений является их исследование с целью совершенствования системы управления либо обучения и повышения квалификации управленческого персонала. При этом моделируется не само производство, а отображение производственного процесса в системе управления.

Для построения модели используется укрупненная СИВС. Методом единичной нити выявляют те функции и задачи, в результате которых может быть получен искомый результат в соответствии с назначением модели. На основании логико-функционального анализа строят структурную схему модели. Построение структурной схемы позволяет выделить ряд самостоятельных моделей, входящих в виде составных частей в модель предприятия. На рис. 3 приведен пример построения структурной схемы моделирования финансово-экономических показателей предприятия. Модель учитывает как внешние факторы – спрос на продукцию, план поставок, так и внутренние – затраты на производство, существующие и планируемые производственные возможности.


Некоторые из моделей являются детерминированными – расчет планируемого полного дохода по номенклатуре и количествам в соответствии с планом производства при известных ценах и стоимости упаковки. Модель плана производства является оптимизационной, настраиваемой на один из возможных критериев – максимизацию дохода или использования производственных мощностей; наиболее полное удовлетворение спроса; минимизацию потерь поставляемых материалов и комплектующих изделий и пр. В свою очередь модели спроса на продукцию, планируемых производственных мощностей и плана поставок являются вероятностными с различными законами распределения.

Взаимосвязь между моделями, координация их работы и связь с пользователями осуществляется с помощью специальной программы, которая на рис. 3 не показана. Эффективная работа пользователей с моделью достигается в режиме диалога.

Построение структурной схемы модели не формализовано и во многом зависит от опыта и интуиции ее разработчика. Здесь важно соблюдать общее правило – лучше на первых этапах составления схемы включить в нее большее число элементов с последующим их постепенным сокращением, чем начать с некоторых, кажущихся основными, блоков, намереваясь в последующем их дополнять и детализировать.

После построения схемы, обсуждения ее с заказчиком и корректировки переходят к построению отдельных моделей. Необходимая для этого информация содержится в системных спецификациях – перечень и характеристики задач, необходимые для их решения исходные данные и выходные результаты и т д. Если системные спецификации не составлялись, эти сведения берут из материалов обследования, а иногда прибегают к дополнительным обследованиям.

Важнейшими условиями эффективного использования моделей являются проверка их адекватности и достоверность исходных данных. Если проверка адекватности осуществляется известными методами, то достоверность имеет некоторые особенности. Они заключаются в том, что во многих случаях исследование модели и работу с нею лучше проводить не с реальными данными, а со специально подготовленным их набором. При подготовке набора данных руководствуются целью использования модели, выделяя ту ситуацию, которую хотят промоделировать и исследовать.

Имитационное моделирование является мощным инструментом исследования поведения реальных систем. Методы имитационного моделирования позволяют собрать необходимую информацию о поведении системы путем создания ее компьютерной модели. Эта информация используется затем для проектирования системы.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами в предметной области для проведения различных экспериментов.

Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны.

К имитационному моделированию прибегают, когда:

1. Дорого или невозможно экспериментировать на реальном объекте.

2. Невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные.

3. Необходимо сымитировать поведение системы во времени.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950х — 1960х годах.

Можно выделить две разновидности имитации:

1. Метод Монте-Карло (метод статистических испытаний);

2. Метод имитационного моделирования (статистическое моделирование).

В настоящее время выделяют три направления имитационных моделей:

1. Агентное моделирование — относительно новое (1990е-2000е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот. Когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы.

Цель агентных моделей — получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Агент — некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.

2. Дискретно-событийное моделирование — подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений — от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов.


3. Системная динамика — парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии.

Основные понятия построения модели

Имитационное моделирование основано на воспроизведении с помощью компьютеров развернутого во времени процесса функционирования системы с учетом взаимодействия с внешней средой.

Основой всякой имитационной модели (ИМ) является:

· разработка модели исследуемой системы на основе частных имитационных моделей (модулей) подсистем, объединенных своими взаимодействиями в единое целое;

· выбор информативных (интегративных) характеристик объекта, способов их получения и анализа;

· построение модели воздействия внешней среды на систему в виде совокупности имитационных моделей внешних воздействующих факторов;

· выбор способа исследования имитационной модели в соответствии с методами планирования имитационных экспериментов (ИЭ).

Условно имитационную модель можно представить в виде действующих, программно (или аппаратно) реализованных блоков.

На рисунке показана структура имитационной модели. Блок имитации внешних воздействий (БИВВ) формирует реализации случайных или детерминированных процессов, имитирующих воздействия внешней среды на объект. Блок обработки результатов (БОР) предназначен для получения информативных характеристик исследуемого объекта. Необходимая для этого информация поступает из блока математической модели объекта (БМО). Блок управления (БУИМ) реализует способ исследования имитационной модели, основное его назначение - автоматизация процесса проведения ИЭ.

Целью имитационного моделирования является конструирование ИМ объекта и проведение ИЭ над ней для изучения закономерностей функционирования и поведения с учетом заданных ограничений и целевых функций в условиях имитации и взаимодействия с внешней средой.

Принципы и методы построения имитационных моделей

Процесс функционирования сложной системы можно рассматривать как смену ее состояний, описываемых ее фазовыми переменными

Z1(t), Z2(t), Zn(t) в n - мерном пространстве.

Задачей имитационного моделирования является получение траектории движения рассматриваемой системы в n - мерном пространстве (Z1, Z2, Zn), а также вычисление некоторых показателей, зависящих от выходных сигналов системы и характеризующих ее свойства.

В данном случае “движение” системы понимается в общем смысле - как любое изменение, происходящее в ней.

Известны два принципа построения модели процесса функционирования систем:

1. Принцип Δt для детерминированных систем

Предположим, что начальное состояние системы соответствует значениям Z1(t0), Z2(t0), Zn(t0). Принцип Δt предполагает преобразование модели системы к такому виду, чтобы значения Z1, Z2, Zn в момент времени t1 = t0 + Δt можно было вычислить через начальные значения, а в момент t2 = t1+ Δt через значения на предшествующем шаге и так для каждого i-ого шага (t = const, i = 1 M).

Для систем, где случайность является определяющим фактором, принцип Δt заключается в следующем:

1. Определяется условное распределение вероятности на первом шаге (t1 = t0+ Δt) для случайного вектора, обозначим его (Z1, Z2, Zn). Условие состоит в том, что начальное состояние системы соответствует точке траектории.

2. Вычисляются значения координат точки траектории движения системы (t1 = t0+ Δt), как значения координат случайного вектора, заданного распределением, найденным на предыдущем шаге.

3. Отыскиваются условное распределение вектора на втором шаге (t2 = t1 + Δ t), при условии получения соответствующих значений на первом шаге и т.д., пока ti = t0 + i Δ t не примет значения (tМ = t0 + М Δ t).

Принцип Δ t является универсальным, применим для широкого класса систем. Его недостатком является неэкономичность с точки зрения затрат машинного времени.

2. Принцип особых состояний (принцип δz).

При рассмотрении некоторых видов систем можно выделить два вида состояний δz:

1. Обычное, в котором система находится большую часть времени, при этом Zi(t), (i=1 n) изменяются плавно;

2. Особое, характерное для системы в некоторые моменты времени, причем состояние системы изменяется в эти моменты скачком.

Принцип особых состояний отличается от принципа Δt тем, что шаги по времени в этом случае не постоянны, является величиной случайной и вычисляется в соответствии с информацией о предыдущем особом состоянии.

Примерами систем, имеющих особые состояния, являются системы массового обслуживания. Особые состояния появляются в моменты поступления заявок, в моменты освобождения каналов и т.д.

Основные методы имитационного моделирования.

Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод.

Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Метод назван условно, так как он объединяет возможности имитации процесса, модель которого получена в виде аналитически замкнутого решения, или решения полученного методами вычислительной математики.

Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это - численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла). В последствии этот метод стал применяться для имитации процессов, происходящих в системах, внутри которых есть источник случайности или которые подвержены случайным воздействиям. Он получил название метода статистического моделирования.

Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических так и аналитических моделей, которые взаимодействуют как единое целое. Причем в набор модулей могут входить не только модули соответствующие динамическим моделям, но и модули соответствующие статическим математическим моделям.

Вопросы для самопроверки

1. Определить, что такое оптимизационная математическую модель.

2. Для чего могут использоваться оптимизационные модели?

3. Определить особенности имитационного моделирования.

4. Дать характеристику метода статистического моделирования.

5. Что есть модель типа «черный ящик», модель состава, структуры, модель типа «белый ящик»?


Введение

Одна из важных особенностей АСУ – принципиальная невозможность проведения реальных экспериментов до завершения проекта. Возможным выходом является использование имитационных моделей. Однако их разработка и использование чрезвычайно сложны, возникают затруднения в достаточно точном определении степени адекватности моделируемому процессу. Поэтому важно принять решение – какую создать модель.

Другой важный аспект – использование имитационных моделей в процессе эксплуатации АСУ для принятия решений. Такие модели создаются в процессе проектирования, чтобы их можно было непрерывно модернизировать и корректировать в соответствии с изменяющимися условиями работы пользователя.

Эти же модели могут быть использованы для обучения персонала перед вводом АСУ в эксплуатацию и для проведения деловых игр.

1. Понятие имитационного моделирования

Имитационное моделирование – это метод исследования, заключающийся в имитации на ЭВМ с помощью комплекса программ процесса функционирования системы или отдельных ее частей и элементов. Сущность метода имитационного моделирования заключается в разработке таких алгоритмов и программ, которые имитируют поведение системы, ее свойства и характеристики в необходимом для исследования системы составе, объеме и области изменения ее параметров.

Принципиальные возможности метода весьма велики, он позволяет при необходимости исследовать системы любой сложности и назначения с любой степенью детализации. Ограничениями являются лишь мощность используемой ЭВМ и трудоемкость подготовки сложного комплекса программ.

В отличие от математических моделей, представляющих собой аналитические зависимости, которые можно исследовать с помощью достаточно мощного математического аппарата, имитационные модели, как правило, позволяют проводить на них лишь одиночные испытания, аналогично однократному эксперименту на реальном объекте. Поэтому для более полного исследования и получения необходимых зависимостей между параметрами требуются многократные испытания модели, число и продолжительность которых во многом определяются возможностями используемой ЭВМ, а также свойствами самой модели.

Использование имитационных моделей оправдано в тех случаях, когда возможности методов исследования системы с помощью аналитических моделей ограничены, а натурные эксперименты по тем или иным причинам нежелательны или невозможны.

Даже в тех случаях, когда создание аналитической модели для исследования конкретной системы в принципе возможно, имитационное моделирование может оказаться предпочтительным по затратам времени ЭВМ и исследователя на проведение исследования. Для многих задач, возникающих при создании и функционировании АСУ, имитационное моделирование иногда оказывается единственным практически реализуемым методом исследования. Этим в значительной степени объясняется непрерывно возрастающий интерес к имитационному моделированию и расширение класса задач, для решения которых оно применяется.

Методы имитационного моделирования развиваются и используются в основном в трех направлениях: разработка типовых методов и приемов создания имитационных моделей; исследование степени подобия имитационных моделей реальным системам; создание средств автоматизации программирования, ориентированных на создание комплексов программ для имитационных моделей.

Различают два подкласса систем, ориентированных на системное и логическое моделирование. К подклассу системного моделирования относят системы с хорошо развитыми общеалгоритмическими средствами; с широким набором средств описания параллельно выполняемых действий, временных последовательностей выполнения процессов; с возможностями сбора и обработки статистического материала. В таких системах используют специальные языки программирования и моделирования – СИМУЛА, СИМСКРИПТ, GPSS и др. Первые два из этих языков являются подмножествами процедурно-ориентированных языков программирования типа ФОРТРАН, ПЛ/1, расширенными средствами динамических структур данных, операторами управления квазипараллельными процессами, специальными средствами сбора статистики и обработки списков. Эти дополнительные возможности позволяют вести статистические исследования моделей, поэтому такие системы иногда называют системами статистического моделирования.

К подклассу логического моделирования относят системы, позволяющие в удобной и сжатой форме отражать логические и топологические особенности моделируемых объектов, обладающие средствами работы с частями слов, преобразования форматов, записи микропрограмм. К этому подклассу систем относят языки программирования АВТОКОД, ЛОТИС и др.

В большинстве случаев при имитационном моделировании экономических, производственных и других организационных систем управления исследование модели заключается в проведении стохастических экспериментов. Отражая свойства моделируемых объектов, эти модели содержат случайные переменные, описывающие как функционирование самих систем, так и воздействия внешней среды. Поэтому наибольшее распространение получило статистическое моделирование.

Имитационная модель характеризуется наборами входных переменных

наблюдаемых или управляемых переменных

управляющих воздействий

возмущающих воздействий

Состояние системы в любой момент времени

и начальные условия Y(t0), R(t0), W(t0) могут быть случайными величинами, заданными соответствующим распределением вероятностей. Соотношения модели определяют распределение вероятностей величин в момент t + ∆t:

Существуют два основных способа построения моделирующего алгоритма – принцип ∆t и принцип особых состояний.

Принцип ∆t. Промежуток времени (t0, t), в котором исследуется поведение системы, разбивают на интервалы длиной ∆t. В соответствии с заданным распределением вероятностей для начальных условий по априорным соображениям или случайным образом выбирают для начального момента t0 одно из возможных состояний z0(t0). Для момента t0 + ∆t вычисляется условное распределение вероятностей состояний (при условии состояния z0(t0)). Затем аналогично предыдущему выбирают одно из возможных состояний z0(t0 + ∆t), выполняют процедуры вычисления условного распределения вероятностей состояний для момента t0 + 2∆t и т.д.

В результате повторения этой процедуры до момента t0 + n∆t = T получают одну из возможных реализаций исследуемого случайного процесса. Таким же образом получают ряд других реализаций процесса. Описанный способ построения моделирующего алгоритма занимает много машинного времени.

Принцип особых состояний. Все возможные состояния системы Z(t) = {zi(t)} разбивают на два класса – обычные и особые. В обычных состояниях характеристики zi(t) меняются плавно и непрерывно. Особые состояния определяются наличием входных сигналов или выходом, по крайней мере, одной из характеристик zi(t) на границу области существования. При этом состояние системы меняется скачкообразно.

Моделирующий алгоритм должен предусматривать процедуры определения моментов времени, соответствующих особым состояниям, и величин характеристик системы в эти моменты. При известном распределении вероятностей для начальных условий выбирают одно из возможных состояний и по заданным закономерностям изменений характеристик zi(t) находят их величины перед первым особым состоянием. Таким же образом переходят ко всем последующим особым состояниям. Получив одну из возможных реализаций случайного многомерного процесса, с использованием аналогичных процедур строят другие реализации. Затраты машинного времени при использовании моделирующего алгоритма по принципу особых состояний обычно меньше, чем по принципу ∆t.

Имитационное моделирование используют в основном для следующих применений:

1) при исследовании сложных внутренних и внешних взаимодействий динамических систем с целью их оптимизации. Для этого изучают на модели закономерности взаимосвязи переменных, вносят в модель изменения и наблюдают их влияние на поведение системы;

2) для прогнозирования поведения системы в будущем на основе моделирования развития самой системы и ее внешней среды;

3) в целях обучения персонала, которое может быть двух типов: индивидуальное обучение оператора, управляющего некоторым технологическим процессом или устройством, и обучение группы людей, осуществляющих коллективное управление сложным производственным или экономическим объектом.

В системах обоих типов комплекс программ задает некоторую обстановку на объекте, однако между ними имеется существенное различие. В первом случае программное обеспечение имитирует функционирование объектов, описываемых технологическими алгоритмами или передаточными функциями; модель ориентирована на тренировку психофизиологических характеристик человека, поэтому такие модели называются тренажерами. Модели второго типа гораздо сложнее. Они описывают некоторые аспекты функционирования предприятия или фирмы и ориентированы на выдачу некоторых технико-экономических характеристик при воздействии на входы чаще всего не отдельного человека, а группы людей, выполняющих различные функции управления;

4) для макетирования проектируемой системы и соответствующей части управляемого объекта с целью прикидочной проверки предполагаемых проектных решений. Это позволяет в наиболее наглядной и понятной заказчику форме продемонстрировать ему работу будущей системы, что способствует взаимопониманию и согласованию проектных решений. Кроме того, такая модель позволяет выявить и устранить возможные неувязки и ошибки на более ранней стадии проектирования, что на 2–3 порядка снижает стоимость их исправления.

В статье поговорим об имитационных моделях. Это довольно сложная тема, которая требует отдельного рассмотрения. Именно поэтому мы попробуем доступным языком объяснить этот вопрос.

Имитационные модели

О чем же идет речь? Начнем с того, что имитационные модели необходимы для воспроизведения каких-либо характеристик сложной системы, в которой происходит взаимодействие элементов. При этом такое моделирование имеет ряд особенностей.

Во-первых, это объект моделирования, который чаще всего представляет собой сложную комплексную систему. Во-вторых, это факторы случайности, которые присутствуют всегда и оказывают определенное влияние на систему. В-третьих, это необходимость описания сложного и длительного процесса, который наблюдается в результате моделирования. Четвертый фактор заключается в том, что без использования компьютерных технологий получить желаемые результаты невозможно.

Разработка имитационной модели

Она заключается в том, что каждый объект имеет определенный набор своих характеристик. Все они хранятся в компьютере при помощи специальных таблиц. Взаимодействие значений и показателей всегда описывается при помощи алгоритма.

Особенность и прелесть моделирования в том, что каждый его этап постепенный и плавный, что дает возможность пошагово менять характеристики и параметры и получать разные результаты. Программа, в которой задействованы имитационные модели, выводит информацию о полученных результатах, опираясь на те или иные изменения. Часто используется графическое или анимированное их представление, сильно упрощающее восприятие и понимание многих сложных процессов, которые осознать в алгоритмичном виде довольно сложно.

Детерминированность

Имитационные математические модели строятся на том, что они копируют качества и характеристики неких реальных систем. Рассмотрим пример, когда необходимо исследовать количество и динамику численности определённых организмов. Для этого при помощи моделирования можно отдельно рассматривать каждый организм, чтобы анализировать конкретно его показатели. При этом условия чаще всего задаются вербально. К примеру, по истечении какого-то отрезка времени можно задать размножение организма, а по прошествии более длительного срока - его гибель. Выполнение всех этих условий возможно в имитационной модели.

Очень часто приводят примеры моделирования движения молекул газа, ведь известно, что они двигаются хаотично. Можно изучать взаимодействие молекул со стенками сосуда или друг с другом и описывать результаты в виде алгоритма. Это позволит получать усредненные характеристики всей системы и выполнять анализ. При этом надо понимать, что подобный компьютерный эксперимент, по сути, можно назвать реальным, так как все характеристики моделируются очень точно. Но в чём смысл этого процесса?

Дело в том, что имитационная модель позволяет выделить конкретные и чистые характеристики и показатели. Она как бы избавляется от случайных, лишних и ещё ряда других факторов, о которых исследователи могут даже не догадываться. Заметим, что очень часто детерминирование и математическое моделирование схожи, если в качестве результата не должна быть создана автономная стратегия действий. Примеры, которые мы выше рассмотрели, касаются детерминированных систем. Они отличаются тем, что у них нет элементов вероятности.

Случайные процессы

Наименование очень просто понять, если провести параллель из обычной жизни. Например, когда вы стоите в очереди в магазине, который закрывается через 5 минут, и гадаете, успеете ли вы приобрести товар. Также проявление случайности можно заметить, когда вы звоните кому-то и считаете гудки, думая, с какой вероятностью дозвонитесь. Возможно, кому-то это покажется удивительным, но именно благодаря таким простым примерам в начале прошлого века зародилась новейшая отрасль математики, а именно теория массового обслуживания. Она использует статистику и теорию вероятности для того, чтобы сделать некоторые выводы. Позже исследователи доказали, что эта теория очень тесно связана с военным делом, экономикой, производством, экологией, биологией и т. д.

Метод Монте-Карло

Важный метод решения задачи на самообслуживание - это метод статистических испытаний или метод Монте-Карло. Заметим, что возможности исследования случайных процессов аналитическим путем довольно сложны, а метод Монте-Карло очень прост и универсален, в чем его главная особенность. Мы можем рассмотреть пример магазина, в который заходит один покупатель или несколько, приход больных в травмпункт по одному или целой толпой и т. д. При этом мы понимаем, что всё это случайные процессы, и промежутки времени между какими-то действиями - это независимые события, которые распределяются по законам, которые можно вывести, только проведя огромное количество наблюдений. Иногда это невозможно, поэтому берется усредненный вариант. Но какова цель моделирования случайных процессов?

Дело в том, что это позволяет получить ответы на множество вопросов. Банально необходимо рассчитать, сколько человеку придется стоять в очереди при учете всех обстоятельств. Казалось бы, это довольно простой пример, но это лишь первый уровень, а подобных ситуаций может быть очень много. Иногда рассчитать время очень важно.

Также можно задать вопрос о том, как можно распределить время, ожидая обслуживание. Еще более сложный вопрос касается того, как должны соотнестись параметры, чтобы до только что вошедшего покупателя очередь не дошла никогда. Кажется, что это довольно лёгкий вопрос, но если задуматься о нем и начать хотя бы немножко усложнять, становится понятно, что ответить не так легко.

Процесс

Как же происходит случайное моделирование? Используются математические формулы, а именно законы распределения случайных величин. Также используются числовые константы. Заметьте, что в данном случае не надо прибегать ни к каким уравнениям, которые используют при аналитических методах. В данном случае просто происходит имитация той же очереди, о которой мы говорили выше. Только сначала используются программы, которые могут генерировать случайные числа и соотносить их с заданным законом распределения. После этого проводится объемная, статистическая обработка полученных величин, которая анализирует данные на предмет, отвечают ли они изначальной цели моделирования. Продолжая дальше, скажем, что можно найти оптимальное количество людей, которые будут работать в магазине для того, чтобы очередь не возникала никогда. При этом используемый математический аппарат в данном случае - это методы математической статистики.

Образование

Анализу имитационных моделей в школах уделяется мало внимания. К сожалению, это может отразиться на будущем довольно серьезно. Дети должны со школы знать некоторые базовые принципы моделирования, так как развитие современного мира без этого процесса невозможно. В базовом курсе информатики дети могут с легкостью использовать имитационную модель "Жизнь".

Более основательное изучение может преподаваться в старших классах или в профильных школах. Прежде всего надо заняться изучением имитационного моделирования случайных процессов. Помните, что в российских школах такое понятие и методы только начинают вводиться, поэтому очень важно держать уровень образования учителей, которые со стопроцентной гарантией столкнутся с рядом вопросов от детей. При этом не будем усложнять задачу, акцентируя внимание на том, что речь идет об элементарном введении в эту тему, которое можно подробно рассмотреть за 2 часа.

После того как дети усвоили теоретическую базу, стоит осветить технические вопросы, которые касаются генерации последовательности случайных чисел на компьютере. При этом не надо загружать детей информацией о том, как работает вычислительная машина и на каких принципах строится аналитика. Из практических навыков их нужно учить создавать генераторы равномерных случайных чисел на отрезке или случайных чисел по закону распределения.

Актуальность

Поговорим немного о том, зачем нужны имитационные модели управления. Дело в том, что в современном мире обойтись без моделирования практически невозможно в любой сфере. Почему же оно так востребовано и популярно? Моделирование может заменить реальные события, необходимые для получения конкретных результатов, создание и анализ которых стоят слишком дорого. Или же может быть случай, когда проводить реальные эксперименты запрещено. Также люди пользуются им, когда просто невозможно построить аналитическую модель из-за ряда случайных факторов, последствий и причинных связей. Последний случай, когда используется этот метод, - это тогда, когда необходимо имитировать поведение какой-либо системы на протяжении данного отрезка времени. Для всего этого создаются симуляторы, которые пытаются максимально воспроизвести качества первоначальной системы.

Виды

Имитационные модели исследования могут быть нескольких видов. Так, рассмотрим подходы имитационного моделирования. Первое - это системная динамика, которая выражается в том, что есть связанные между собой переменные, определенные накопители и обратная связь. Таким образом чаще всего рассматриваются две системы, в которых есть некоторые общие характеристики и точки пересечения. Следующий вид моделирования - дискретно-событийное. Оно касается тех случаев, когда есть определенные процессы и ресурсы, а также последовательность действий. Чаще всего таким способом исследуют возможность того или иного события через призму ряда возможных или случайных факторов. Третий вид моделирования - агентный. Он заключается в том, что изучаются индивидуальные свойства организма в их системе. При этом необходимо косвенное или прямое взаимодействие наблюдаемого объекта и других.

Дискретно-событийное моделирование предлагает абстрагироваться от непрерывности событий и рассматривать только основные моменты. Таким образом случайные и лишние факторы исключаются. Этот метод максимально развит, и он используется во множестве сфер: от логистики до производственных систем. Именно он лучше всего подходит для моделирования производственных процессов. Кстати, его создал в 1960-х годах Джеффри Гордон. Системная динамика - это парадигма моделирования, где для исследования необходимо графическое изображение связей и взаимных влияний одних параметров на другие. При этом учитывается фактор времени. Только на основе всех данных создается глобальная модель на компьютере. Именно этот вид позволяет очень глубоко понять суть исследуемого события и выявить какие-то причины и связи. Благодаря этому моделированию строят бизнес-стратегии, модели производства, развитие болезней, планирование города и так далее. Этот метод был изобретён в 1950-х годах Форрестером.

Агентное моделирование появилось в 1990-х годах, оно является сравнительно новым. Это направление используется для анализа децентрализованных систем, динамика которых при этом определяется не общепринятыми законами и правилами, а индивидуальной активностью определенных элементов. Суть этого моделирования заключается в том, чтобы получить представление о новых правилах, в целом охарактеризовать систему и найти связь между индивидуальными составляющими. При этом изучается элемент, который активен и автономен, может принимать решения самостоятельно и взаимодействовать со своим окружением, а также самостоятельно меняться, что очень важно.

Этапы

Сейчас рассмотрим основные этапы разработки имитационной модели. Они включают её формулировку в самом начале процесса, построение концептуальной модели, выбор способа моделирования, выбор аппарата моделирования, планирование, выполнение задачи. На последнем этапе происходит анализ и обработка всех полученных данных. Построение имитационной модели - это сложный и длительный процесс, который требует большого внимания и понимания сути дела. Заметьте, что сами этапы занимают максимум времени, а процесс моделирования на компьютере - не больше нескольких минут. Очень важно использовать правильные модели имитационного моделирования, так как без этого не получится добиться нужных результатов. Какие-то данные получены будут, но они будут не реалистичны и не продуктивны.

Подводя итоги статьи, хочется сказать, что это очень важная и современная отрасль. Мы рассмотрели примеры имитационных моделей, чтобы понять важность всех этих моментов. В современном мире моделирование играет огромную роль, так как на его основании развиваются экономика, градостроение, производство и так далее. Важно понимать, что модели имитационных систем очень востребованы, так как они невероятно выгодны и удобны. Даже при создании реальных условий не всегда можно получить достоверные результаты, так как всегда влияет множество схоластических факторов, которые учесть просто невозможно.