В современной отрасли нефтедобычи гидроразрыв пласта (ГРП) представляет собой эффективный метод воздействия на призабойную область скважины. Этот способ необходим для увеличения продуктивной отдачи от месторождения нефти или газа, степени поглощения нагнетательных разновидностей скважин, а также в рамках работ по изоляции грунтовых вод. Сам процесс гидравлического разрыва пласта включает создание новых трещин и увеличение уже имеющихся, которые пролегают в призабойной породе. Воздействие на трещины происходит посредством регулировки давления жидкости, подаваемой в скважину. В результате гидроразрыва пласта из скважины становится возможно добывать ценные ресурсы, расположенные на удаленном расстоянии от ствола.

Из истории появления гидроразрывов пласта

Разработки по увеличению производительности нефтедобычи из готовых скважин проводились в Штатах уже в конце XIXвека: тогда был опробован способ стимулирования посредством взрыва нитроглицерина, который разбивал твердые породы и позволял получать оттуда ценные ресурсы. В тот же период производились испытания по разработке призабойной зоны при помощи кислоты, и последний метод получил активное распространение в 30-е годы прошлого века.

В ходе применения кислоты для стимулирования продуктивности скважин было установлено, что повышение давления может привести к разрывам пластов. С этого началось развитие идеи гидроразрыва пластов породы, и первую попытку предприняли уже в 1947 году. Несмотря на неудачу, исследователи продолжали разработку метода, и их работы увенчались успехом спустя два года. В 50-е годы в Штатах все чаще стали проводиться разработки с применением метода гидравлических разрывов пласта, и к последней трети XXвека число таких операций превысило миллион только в самой Америке.

Гидравлический разрыв пласта как методика разработки скважин стал использоваться и в СССР: первые попытки отмечены 1959 годом. После этого наступил период угасания популярности этого способа, поскольку на территории Сибири стали разрабатывать скважины, которые и без дополнительных манипуляций обеспечивали бесперебойную добычу нефти и газа в нужных объемах. С конца 80-х методика вновь получила распространение, когда прежние месторождения перестали давать такое же количество ценных ресурсов, но еще не могли быть сочтены полностью исчерпанными. В настоящее время методика гидравлического разрыва пласта применяется на территории всей России, а также в других государствах.

Разновидности гидравлических разрывов пласта

В современной области разработки ресурсов различают два вида гидравлического разрыва:

  • Проппантный гидроразрыв пласта. При этом методе применяется специальный материал для расклинивания. Во время процедуры проппант заливают внутрь для того, чтобы создаваемые от давления трещины не соединялись обратно. Такая разновидность способа хорошо подходит для песчаников, алевролитных и других терригенных пород. Гидравлический разрыв с пропаннтом используется чаще всего.
  • Гидроразрыв пласта с применением кислоты. Такой метод более приемлем для карбонатных пород, и трещины, которые получаются при сочетании повышения давления и добавления разрушающей жидкости, не нуждаются в дополнительном закреплении, как в первом случае. Главное отличие кислотного гидравлического разрыва от обычной обработки той же кислотой заключается в количестве материала и степени давления.
Вне зависимости от типа обработки успешность применения ГРП зависит от ряда факторов. Прежде всего, объект для осуществления метода должен быть выбран с учетом его особенностей, видов пластов, а также глубины и интенсивности разработки. Выбор технологии зависит от условий, в которых находится скважина. При правильном применении эффективность нефтедобычи в обработанной скважине становится намного выше.

Процесс проведения гидроразрыва пласта


Гидроразрыв пласта целесообразно проводить для скважин с невысокой продуктивной способностью, которая происходит из-за естественной плотности слоев или при снижении качества фильтрации после вскрытия очередного слоя.

Процесс обработки занимает несколько этапов:

  • Исследование скважины, в ходе которого определяется ее способность к поглощению, устойчивости к давлению и другие параметры.
  • Очистка скважины. Для этого применяют дренажные насосы и промывают ствол, чтобы свойства фильтрации в призабойной области были достаточными для дальнейшей работы. Также скважина может быть обработана соляной кислотой, чтобы условия для формирования трещин от разрыва были оптимальны.
  • Спуск в скважину труб для подачи жидкости в забой. Обсадная колонна оснащается пакером и гидроякорем для того, чтобы давление не деформировало трубу. Устье оснащается головкой для подсоединения оборудования, которое необходимо для нагнетания промывочной жидкости.
  • Сам гидроразрыв производится посредством нагнетания жидкости до того времени, пока в пласте не появятся трещины. Сразу после гидравлического воздействия требуется закачать жидкость на высокой скорости.
  • Устье перекрывается, скважину не трогают до уменьшения показателей давления.
  • Промывка скважины после гидравлического разрыва и освоение.

При небольшой глубине гидроразрыв пласта может быть осуществлен без труб НКТ либо без предохранителя. В первой ситуации нагнетание производится по обсадным трубам, а во второй оно может быть организовано и по кольцу вокруг них. Данная методика позволяет минимизировать потери в показателях давления, если в процессе используется жидкость очень густой консистенции. Кроме того, для некоторых скважин проводят многоступенчатый разрыв, при котором разные пласты получают трещины, благодаря чему их проницаемость сильно возрастает.

Для определения местоположения самих трещин применяется метод радиоактивного каротажа. Данная технология позволяет узнать, где именно находятся разрывы, при введении обыкновенного и заряженного песка.

Группа исследователей пришла к выводу, что фрекинг может сказываться на низком весе ребенка, рожденного в пределах трех километров от зоны его использования.

Что такое фрекинг?

Если вы в курсе самых обсуждаемых апокалиптических сценариев, которые основываются на антропогенном факторе, то наверняка знаете о возможном истощении ресурсов нашей планеты и погружении человечества в хаос анархии. Несмотря на довольно отдаленные перспективы подобного развития событий, ограниченность ресурсов, необходимых для комфортной, и нужно подчеркнуть это слово, жизни, действительно имеется. Однако, помимо десятка направлений поиска комплексного решения этой проблемы, от изобретения вечного двигателя до разработок проектов по добыче ресурсов на других планетах, существует пара упрощенных решений: найти новые источники или хорошенько потрясти старые.

Если первый вариант, в принципе, может сопровождаться строительством инфраструктуры вокруг нового объекта, содержащего полезные ископаемые, то второй действительно вызывает опасение. Один из методов, который особенно популярен сегодня в топливно-энергетической отрасли, это фрекинг .

Фрекинг, или гидравлический разрыв пласта, подразумевает, как следует из названия, жесткий, но максимально эффективный (с экономической точки зрения) способ разработки уже истощившегося месторождения. В основе технологий фрекинга лежит использование целого спектра химических реагентов, которые при взаимодействии вызывают образование высокопроводимых трещин для выкачивания последних остатков нефти и газа, находящихся в труднодоступных пластах земли.

Сбор данных

Эта варварская методика уже снискала дурную славу, но законы определенных стран, включая США, разрешают её использование. Хотя отдельные штаты и стараются запретить применение фрекинга на своей территории, чтобы остановить жадных до денег компании, требуется собрать неоспоримый набор доказательств его негативного влияния на окружающую среду и здоровье населения.

В частности, опубликованное в Science Advance исследование вносит свой вклад в эту борьбу. Коллектив исследователей из Принстона, Кембриджа и других университетов США установил, что фрекинг имеет прямое воздействие на здоровье беременных женщин. Их работа показала, что дети, рожденные в пределах трех километров от зоны добычи ресурсов методом разрыва пласта, на 25% больше подвержены риску родиться с низким весом.

В ходе исследования были изучены записи рождения более чем 1 млн детей с 2004 по 2013 гг. Более того, для чистоты исследования было дополнительно изучено семейное положение каждой матери, её место проживания, раса и образование.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Малая история ГРП

В мировой практике добычи нефти и газа, гидроразрыв пласта занимает видное место среди прочих методов интенсификации притока углеводородов. Однако в Украине последние несколько лет он подвергается критике, основанной на применении исключительно при добыче сланцевого газа, и сомнениях относительно совершенства технологий, которые нам якобы «навязывают» западные компании.

Альтернативой добыче собственных нефтегазовых ресурсов является их импорт. Стоимость импорта газа из России, основного поставщика для Украины, широко известна и она стала основной причиной активизации мер по снижению энергетической зависимости – диверсификации маршрутов и источников поставки газа, в т.ч.: внешней – поставки газа из Европы по схеме «реверса» и в виде СПГ , а также внутренней – увеличения собственной добычи на суше и шельфе.

Последнее время немногим компаниям, работающим на территории Восточной Европы, удается достигнуть значительного прогресса в добыче нефти и газа. В первую очередь это объясняется истощенностью месторождений и низким уровнем запасов, при которых традиционные методы бурения и добычи уже не работают. Другими словами, шансы на то, что после бурения обычной вертикальной скважины будет зафиксировано попадание в подземный природный резервуар скопления газообразных углеводородов и будет получен стабильный приток товарной продукции – невелики.

Условия добычи газа остаются почти неизменными на Севере России, Катаре, Иране и еще нескольких регионах, которые географически расположены над такими резервуарами, которые имеют гигантские масштабы и благоприятные условия залегания ископаемых. Более того некоторые из этих стран осуществляют обратную закачку добытого газа для увеличения давления в нефтяных пластах и таким образом – извлечения больших объемов нефти.

Однако все же большая часть стран мира вынуждена внедрять способы интенсификации добычи газа на своей территории, т.е. применять новые методы извлечения углеводородов на истощенных месторождениях и в новых, более глубоких, продуктивных горизонтах, где нефть и газ содержатся в плотных породах: угольных пластах, сланцах, плотных песчаниках и др.

Технология добычи углеводородов в плотных породах, которые залегают узким, но протяженным пластом, изначально требует бурения обычной вертикальной секции скважины, а после – горизонтальной секции (путем искривления ствола), сооружаемой внутри и вдоль продуктивного горизонта длинной около 1 км. Это позволяет увеличить площадь контакта с породой и соответственно увеличить приток товарной продукции с применением методов интенсификации добычи, известных и в США и СССР еще с 50-х годов прошлого века, в частности, такого как гидравлический разрыв пласта (ГРП ).

Применение именно таких методов позволяет странам с недостаточным ресурсным потенциалом, но высоким энергопотреблением получить, хотя бы относительную энергетическую независимость, снижая внешнее влияние от дорогостоящего импорта углеводородов.

Что такое «гидроразрыв пласта»?

«ГРП - один из методов интенсификации работы нефтяных и газовых скважин и увеличения приёмистости нагнетательных скважин. Метод заключается в создании высокопроводимой трещины в целевом пласте для обеспечения притока добываемого флюида (газ, вода, конденсат, нефть либо их смесь) к забою скважины. После проведения ГРП дебит скважины, как правило, резко возрастает. Метод позволяет «оживить» простаивающие скважины, на которых добыча нефти или газа традиционными способами уже невозможна или малорентабельна. Кроме того, в настоящее время метод применяется для разработки новых нефтяных пластов, извлечение нефти из которых традиционными способами нерентабельно ввиду низких получаемых дебитов. Также применяется для добычи сланцевого газа и газа уплотненных песчаников» – Источник: Википедия.

Согласно терминологии «Газпрома»: «Гидроразрыв пласта – гидравлический разрыв пласта, - формирование трещин в массивах газо-, нефте-, водонасыщенных и других горных породах под действием подаваемой в них под давлением жидкости. Операция проводится в скважине для повышения дебита за счет разветвленной системы дренирования, полученной в результате образования протяженных трещин. Реализация гидроразрывов пластов на газовых скважинах стала возможной с появлением насосных агрегатов, обеспечивающих скорость закачки 3–4 куб.м/мин при давлении 100 МПа. При закачке в скважину рабочей жидкости с высокой скоростью на ее забое создается высокое давление. Если оно превышает горизонтальную составляющую горного давления, то образуется вертикальная трещина. В случае превышения горного давления формируется горизонтальная трещина.

В качестве рабочей жидкости, как правило, используют загущенные жидкости на водной или углеводородной основе. Вместе с рабочей жидкостью закачивают закрепляющий агент (песок или твердый материал фракции 0,5-1,5 мм), заполняющий трещину и препятствующий ее смыканию. При применении загущенной жидкости за счет снижения ее утечек в пласт можно поднять забойное давление при значительном снижении скорости закачки и за счет песконесущей ее способности транспортировать закрепляющий агент по всей длине трещины». На постсоветском пространстве общепринятым является сокращение – «ГРП», однако для подчеркивания негативного акцента процесса, чаще используется его иностранное название – «фрэкинг» (сокращение от англ. Hydraulic fracturing).

Некоторые факты про ГРП :

Жидкость для процесса в среднем 99,95% состоит из воды и песка с малой долей химических добавок, также используется вода и др. жидкости, азот или СО2, ранее применялся раствор с крахмалом;

Ежегодно десятки тысяч скважин подвергаются ГРП , по результатам которых пока что не доказано загрязнение подземных вод жидкостью применяемой при операции;

Лидерами применения и идеологами создания технологии являются США и Россия.

ГРП : насколько это новая технология?

ГРП не является новой технологией. Впервые он был применен в США в 1947 г. на газовом месторождении Hugoton в округе Грант юго-западного Канзаса компанией Stanolind. Эксперимент не был очень успешен. Патент на этом процессе был выпущен в 1949 г., а исключительная лицензия была выдана Halliburton Oil Well Cementing Company. 17 марта 1949 г. Halliburton выполнил первые два коммерческих ГРП в округе Стивенс (штат Оклахома), и округе Арчер (Техас). В качестве жидкости при первых ГРП использовалась техническая вода, в качестве расклинивающего агента – речной песок.
Чуть позже ГРП проводились и в СССР . В 1953-1955 гг. разработчиками теоретической основы стали советские учёные Христианович С.А. и Желтов Ю. П. (модель трещин ГРП «Христиановича-Желтова»), которые также оказали значительное влияние на развитие ГРП в мире. Сфера применения ГРП расширилась также на добычу метана из угольных пластов, газа уплотненных песчаников, а также сланцевого газа. Впервые в мире гидроразрыв угольного пласта был произведён в 1954 г. на Донбассе. Сегодня метод ГРП довольно часто применяется как государственными, так и частными добывающими компаниями как метод интенсификации добычи нефти и газа.

До 1988 г. в США было проведено более 1 млн. ГРП (1500 ГРП в месяц), а сфера применения этой операции настолько расширилась, что около 40% скважин после бурения подлежали проведению ГРП и более 30% запасов стало экономично выгодно разрабатывать с применением ГРП . Благодаря ГРП было обеспечено увеличение добываемых запасов на 1,3 млрд.т нефти.

В 2002 г. в Северной Америке была разработана модернизированная технология ГРП для коллекторов с высокой проницаемостью. Уже в 2005 г. было известно, что на 85% газовых и более 60% нефтяных скважин проводился ГРП . Таким образом, этот метод стал обычным методом завершения газовых скважин всех типов коллекторов.

За последние 65 лет, эта технология использовалась энергетическими компаниями для извлечения природного газа и нефти из ловушек в скальных образованиях, а также для стимулирования притока воды из водных скважин и доведения геотермальных скважин до коммерческой жизнеспособности. Сегодня, для получения или сохранения экономической целесообразности эксплуатации, девять из 10 сухопутных нефтегазовых скважин нуждаются в проведении ГРП .

ГРП – не является новинкой и для Европы. Например, во Франции, результаты отчета Парламентского управления по оценке научно-технологических решений (Office parlementaire d’évaluation des choix scientifiques et technologiques, OPECST ) указывали на то, что процесс ГРП использовался в стране с 1980-х годов не менее 45 раз без каких-либо последствий для окружающей среды. Для сравнения, в Великобритании начиная с 1970 г. было проведено более 200 ГРП . В 1980-х годах Германия и Нидерланды, для увеличения объемов добычи на существующих наземных скважинах, начали применять ГРП . Начиная с 1975 г. массивные ГРП были проведены в Германии на газовых скважинах в плотных песчаниках Rotliegend и угольных пластах (рис. 2), что до сих пор обеспечивает большую часть немецкой добычи природного газа.

До настоящего времени в Нидерландах ГРП произведен на более 200 скважинах. В частности за 2007-2011 гг. на 22 скважинах, в т.ч. 9 – на суше и 13 – на шельфе.

Этот период совпал с открытием новых нефтегазовых месторождений в Северном море. В 1970-х годах Великобритания, Норвегия, Нидерланды и др. начали их эксплуатацию.

Инновационные возможности горизонтального бурения, которое позволяет добывать газ в больших объемах, были подтверждены французской компаний Elf Aquitaine, которая, в период 1980-1983 гг., успешно осуществила бурение нескольких скважин на юго-западе Франции.

Несмотря на успешность продвижения технологии страны ЕС по-разному рассматривают применение ГРП и вообще разработку сланцевого газа.
Статья 194 Лиссабонского договора (международный договор, подписанный на саммите ЕС 13 декабря 2007 г.), который был призван заменить не вступившую в силу конституцию ЕС, гласит, что принятие решений о структуре потребляемых энергоресурсов относится к компетенции конкретных государств-членов ЕС в свете отдельных энергетических приоритетов, проблем энергетической безопасности и имеющихся ресурсов. Именно поэтому разные страны-члены ЕС применяют различные подходы к разработке сланцевого газа.

Пример тому, Польша – крупный импортер природного газа, а также крупнейший в ЕС производитель и потребитель угля. Правительство Польши приняло решение о разведке сланцевого газа, как средства для поддержки снижения внутренней добычи традиционного газа, декарбонизации своей экономики (уменьшения объемов потребления угля и его доли в структуре энергобаланса) и уменьшения зависимости от импортируемого газа.

Другие страны, такие как Великобритания, Дания, Швеция, Венгрия, Румыния и Литва также изучают, планируют изучить потенциал своих ресурсов и постепенно внедряют ГРП на своих месторождениях. Пока что лишь три страны ЕС: Франция, Чехия, Болгария заблокировали использование ГРП на своей территории.

К концу ХХ века совместное применение горизонтального бурения и гидроразрыва вызвали революцию в газовой отрасли, которая началась в США и теперь меняет мир. (О роли США в сланцевой революции см. публикацию .) Несмотря на различное отношение к добыче сланцевого газа, США и Россия являются странами, где ГРП получил наиболее широкое распространение как один из основных методов добычи нефти и газа, – ежегодно производится несколько тысяч таких операций.

Мировые тенденции развития и расширения использования этого метода затронули не только страны Европы, но и Россию, и Украину, которые уже более 65 лет используют его на своих истощаемых месторождениях. Однако с 2006 г., на фоне обострения межгосударственных взаимоотношений в вопросе стоимости импорта российского газа, Украина определила одной из альтернатив снижения газовой зависимости от России – активизацию деятельности по разведке и добыче сланцевого газа. С этого момента официальные позиции двух стран, профессионального сообщества и граждан общества двух братских народов, относительно ГРП , стали расходиться.

Александр Лактионов
Главный специалист по исследованию энергетических рынков компании “Смарт Энерджи”

Эта технология, применяемая для интенсификации работы и повышения отдачи нефтедобывающих скважин уже более полувека, вызывает, пожалуй, наиболее жаркие споры среди экологов, ученых, простых граждан, а нередко даже и самих работников добывающей отрасли. Между тем смесь, которая закачивается в скважину во время гидроразрыва, на 99% состоит из воды и песка, и лишь на 1% – из химических реагентов.

Что мешает нефтеотдаче

Основная причина низкой продуктивности скважин наряду с плохой естественной проницаемостью пласта и некачественной перфорацией - снижение проницаемости призабойной зоны пласта. Так называется область пласта вокруг ствола скважины, подверженная наиболее интенсивному воздействию различных процессов, сопровождающих строительство скважины и ее последующую эксплуатацию и нарушающих первоначальное равновесное механическое и физико-химическое состояние пласта. Само бурение вносит изменения в распределение внутренних напряжений в окружающей забой породе. Снижение продуктивности скважин при бурении происходит также в результате проникновения бурового раствора или его фильтрата в призабойную зону пласта

Причиной низкой продуктивности скважин может быть и некачественная перфорация вследствие применения маломощных перфораторов, особенно в глубоких скважинах, где энергия взрыва зарядов поглощается энергией больших гидростатических давлений.

Снижение проницаемости призабойной зоны пласта происходит и при эксплуатации скважин, сопровождающейся нарушением термобарического равновесия в пластовой системе и выделением из нефти свободного газа, парафина и асфальтосмолистых веществ, закупоривающих поровое пространство коллектора. Интенсивное загрязнение призабойной зоны пласта отмечается и в результате проникновения в нее рабочих жидкостей при проведении в скважинах различных ремонтных работ. Приемистость нагнетательных скважин ухудшается вследствие закупорки порового пространства пласта продуктами коррозии, илом, нефтепродуктами, содержащимися в закачиваемой воде. В результате протекания подобных процессов возрастают сопротивления фильтрации жидкости и газа, снижаются дебиты скважин и возникает необходимость в искусственном воздействии на призабойную зону пласта с целью повышения продуктивности скважин и улучшения их гидродинамической связи с пластом.

Технология фрекинга

Для повышения нефтеотдачи пласта, интенсификации работы нефтяных и газовых скважин и увеличения приёмистости нагнетательных скважин используется метод гидровлического разрыва пласта или фрекинга. Технология заключается в создании высокопроводимой трещины в целевом пласте под действием подаваемой в него под давлением жидкости для обеспечения притока добываемого флюида к забою скважины. После проведения ГРП дебит скважины, как правило, резко возрастает – либо же существенно снижается депрессия. Технология ГРП позволяет «оживить» простаивающие скважины, на которых добыча нефти или газа традиционными способами уже невозможна или малорентабельна.

Гидравлический разрыв пласта (ГРП) является одним из наиболее эффективных средств повышения производительности скважин, поскольку приводит не только к интенсификации выработки запасов, находящихся в зоне дренирования скважины, но и, при определенных условиях, позволяет существенно расширить эту зону, приобщив к выработке слабо дренируемые зоны и пропластки – и, следовательно, достичь более высокой конечной нефтеотдачи.

История метода ГРП

Первые попытки интенсификации добычи нефти из нефтяных скважин были предприняты еще в 1890-х годах. В США, где добыча нефти в это время развивалась стремительными темпами, был успешно испытан метод стимулирования добычи из плотных пород с помощью нитроглицерина. Идея заключалась в том, чтобы взрывом нитроглицерина раздробить плотные породы в призабойной зоне скважины и обеспечить увеличение притока нефти к забою. Метод успешно применялся некоторое время, несмотря на свою очевидную опасность.

Первый коммерчески успешный гидроразрыв пласта был осуществлен в 1949 году в США, после чего их количество стало резко возрастать. К середине 50-х годов количество проводимых ГРП достигло 3000 в год. В 1988 году общее количество проведенных ГРП перевалило за 1 миллион операций, и это только в США.

В отечественной практике метод ГРП начали применять с 1952 года. Пик применения метода был достигнут в 1959 году, после чего количество операций снизилось, а затем эта практика и вовсе прекратилась. С начала 1970-х и до конца 1980-х ГРП в отечественной нефтедобыче в промышленных масштабах не проводились. В связи с вводом в разработку крупных нефтяных месторождений Западной Сибири потребность в интенсификации добычи попросту отпала.

И день сегодняшний

Возрождение практики применения ГРП в России началось только в конце 1980-х. В настоящее время лидирующие позиции по количеству проводимых ГРП занимают США и Канада. За ними следует Россия, в которой применение технологии ГРП производят в основном на нефтяных месторождениях Западной Сибири. Россия – практически единственная страна (не считая Аргентины) за пределами США и Канады, где ГРП является привычной практикой и воспринимается вполне адекватно. В других странах применение технологии гидроразрыва затруднено из-за местных предубеждений и недопонимания технологии. В некоторых из них действуют существенные ограничения по использованию технологии ГРП вплоть до прямого запрета на ее применение.

Ряд экспертов утверждают, что использование технологии гидроразрыва при добыче нефти – это нерациональный, варварский подход к экосистеме. В то же время, метод широко применяется практически всеми крупными нефтяными компаниями.

Применение технологии ГРП достаточно обширно – от низко- до высоко проницаемых коллекторов в газовых, газоконденсатных и нефтяных скважинах. Кроме того, с использованием ГРП можно решать специфические задачи, например, ликвидировать пескопроявления в скважинах, получать информацию о ФЕС объектов испытания в поисково-разведочных скважинах и т.д..

В последние годы развитие технологий ГРП в России направлено на увеличение объемов закачки проппанта, производство азотных ГРП, а также многостадийных ГРП в пласте.

Оборудование для гидроразрыва пласта

Оборудование, необходимое для гидроразрыва пласта, производит целый ряд предприятий, как зарубежных, так и отечественных. Одно из них - компания «ТРАСТ-ИНЖИНИРИНГ» , которая представляет широкий выбор оборудования для ГРП в стандартном исполнении, так и в виде модификации, выполняемой по желанию заказчика.

В качестве конкурентных преимуществ продукции ООО «ТРАСТ-ИНЖИНИРИНГ» необходимо отметить высокую долю локализации производства; применение самых современных технологий проектирования и производства; использование узлов и комплектующих от мировых лидеров отрасли. Важно отметить и присущую специалистам компании высокую культуру проектирования, производства, гарантийного, постгарантийного и сервисного обслуживания. Оборудование для ГРП производства ООО «ТРАСТ-ИНЖИНИРИНГ» легче приобрести благодаря наличию представительств в Москве (Российская Федерация), Ташкенте (Республика Узбекистан), Атырау (Республика Казахстан), а также в Панчево (Сербия).

Разумеется, метод ГРП, как и любая другая технология, применяемая в добывающей отрасли, не лишен определенных недостатков. Один из минусов фрекинга – в том, что положительный эффект операции может быть сведён на нет непредвиденными ситуациями, риск возникновения которых при столь обширном вмешательстве довольно велик (например, возможно непредвиденное нарушение герметичности близлежащего водного резервуара). Вместе с тем. гидравлический разрыв пласта является сегодня одним из наиболее эффективных методов интенсификации скважин, вскрывающих не только низкопроницаемые пласты, но и коллекторы средней и высокой проницаемости. Наибольший эффект от проведения ГРП может быть достигнут при внедрении комплексного подхода к проектированию гидроразрыва как элемента системы разработки с учетом разнообразных факторов, таких как проводимость пласта, система расстановки скважин, энергетический потенциал пласта, механика трещины, характеристики жидкости разрыва и проппанта, технологические и экономические ограничения.

Молодежная экологическая организация «Стражи Земли» активно выступает за запрет технологий гидроразрыва пласта при добыче нефти и газа в штате Колорадо. Апелляционный суд штата согласился рассмотреть дело о том, чтобы отказаться от такого способа. сайт рассказывает, что такое гидроразрыв пласта, вредит ли он экологии и как обстоит ситуация с этой технологией в России.

Миру нужно все больше и больше нефти. Удобные месторождения и скважины не бесконечны, поэтому нефтяники придумывают все больше способов, чтобы выкачивать «черное золото» из более неудобных месторождений или из скважин, которые по каким-то причинам дают мало полезного ископаемого. Не все подобные способы одобряют экологи.

Что такое гидроразрыв пласта

Один из таких способов нефтедобычи - гидравлический разрыв пласта (ГРП). Он используется в том случае, если нефть плохо проходит по подземным порам или трещинам. Те либо «забились», либо изначально были мелкими. В ходе ГРП в нефтяную или газовую скважину закачивают так называемые жидкости разрыва, преимущественно воду или гель. В результате такого гидравлического воздействия давление внутри нефтеносного пласта повышается, трещины и поры расширяются, и, как правило, газ или нефть лучше проходят к месту, откуда их выкачивают на поверхность. После ГРП образовавшиеся или расширившиеся трещины и поры поддерживают в открытом состоянии при помощи гранулообразного материала под названием проппант или кислоты, которая разъедает стенки пор и трещин. Проппант обычно изготавливают из синтетических керамических материалов.

Проппант

Bill Cunningham, USGS/Wikimedia Commons

У этого метода есть и побочные эффекты: вместе с нефтью или газом в скважину легче поступают и сопутствующие воды, что мешает последующей добыче нефти и газа. Помимо гидроразрыва пласта для нефтедобычи применяют такие методы, как электромагнитное воздействие (колебания волн различных диапазонов влияют на нефтесодержащий пласт и пластовый флюид и тем самым меняют их свойства, влияющие на дополнительное извлечение нефти), бурение горизонтальных скважин, вытеснение нефти водными и химическими растворами, паротепловое воздействие на пласт и другие способы. «Про преимущества той или иной технологии интенсификации добычи можно говорить только в привязке к конкретному месторождению, иногда даже в той или иной части месторождения. Нет универсального ключа ко всем запасам. Подбор оптимальной технологии - сложная инженерно-техническая задача, которую решают эксперты десятка разных специальностей», - сообщила пресс-служба ПАО «Газпром нефть».

Экологи против

Экологические организации относятся к ГРП настороженно, потому что смесь, закачиваемая в скважину, включает в себя не только воду и песок, но и химические реагенты (до одного процента), благодаря которым снижается трение жидкости, гибнут водные бактерии и так далее. Половина состава химических реагентов обычно приходится на гуаровую камедь - загуститель, который получают из семян растения гуар (лат. Cyamopsis tetragonoloba ) и используют, кроме прочего, в пищевой промышленности.

Экологические активисты считают, что технологические реактивы, метан и примеси, попадающие в воды и почву при использовании гидроразрыва пласта, опасны для человека и могут вызвать заболевания пищеварительной, дыхательной и кровеносной систем. Впрочем, сервисные компании, специализирующиеся на проведении гидроразрывов, утверждают, что используют различные материалы (например, тампонажные цементные растворы) и многоколонные конструкции скважин с целью изолировать пласт и не допустить утечки жидкостей в грунтовые воды.

Молодежная экологическая организации «Стражи Земли» потребовала от Комиссии по сохранению нефтяных и газовых месторождений штата Колорадо прекратить использовать технологию как потенциально опасную и не выдавать новые разрешения на операции. В штатах Вермонт и Нью-Йорк власти уже запретили применять технологию гидравлического разрыва. В штате Техас в марте прошли протесты против использования методики гидроразрыва. В России отношение экологических активистов к технологии гидроразрыва пластов также достаточно негативное. Например, коренные народы Ямало-Ненецкого автономного округа высказались против технологии ГРП, так как нефтегазовые компании проникают на пастбищные угодья северных народов.

Методика гидроразрыва запрещена на законодательном уровне и в некоторых европейских государствах: в Болгарии, Великобритании и Франции. Одна из причин запрета - риск землетрясений. Так, в 2011 году в Великобритании произошло два небольших землетрясения, спровоцированных добычей сланцевого газа. Гидроразрыв сам по себе является искусственным микроземлетрясением, которое, впрочем, можно отследить только с помощью приборов. Однако в упомянутом случае толчки были настолько сильны, что люди почувствовали их и без аппаратуры.

Некоторые землетрясения, однако, объясняют увеличением сейсмической активности из-за истощения месторождений в целом. Это происходит благодаря росту напряженности в горных породах, причиной которой являются пустоты, образующиеся после выкачивания нефти или газа, и даже пробуренные скважины. Представитель пресс-службы «Газпром нефти» отрицает связь между технологией гидроразрывов и землетрясениями в России: «ГРП в подавляющем большинстве проводятся на глубине около 2,5 км (для сравнения - самые глубокие артезианские скважины едва достигают 500 метров). А землетрясений в Ханты-Мансийске, по моим сведениям, не было никогда».

В России метод гидроразрыва пласта был широко распространен на месторождениях нефтяной компании «ЮКОС», а сейчас используется компаниями «Газпром нефть» и «Роснефть». Метод используют на нефтяных месторождениях в Ханты-Мансийском автономном округе и Ямало-Ненецком автономном округе. В частности, на Приобском нефтяном месторождении в 2006 году был произведен крупнейший в России гидроразрыв: в пласт закачали 864 тонны проппанта.

На сегодняшний день «Роснефть» продолжает проводить гидравлические разрывы пластов и проводит не менее двух тысяч операций в год. Также развитие горизонтального бурения поспособствовало распространению технологии многостадийного гидроразрыва пласта, при котором трещины создаются на нескольких участках скважины. В 2016 году «Газпром нефть» провел 30-стадийный гидроразрыв пласта на Южно-Приобском месторождении, самый масштабный гидроразрыв в России.