Описание, характеристики, Datasheet и методы проверки оптронов на примере PC817.

В продолжение темы «Популярные радиодетали при ремонтах импульсных блоков питания» разберем еще одну деталь- оптопара (оптрон) PC817. Он состоит из светодиода и фототранзистора. Между собой электрически никак не связанны, благодаря чему на основе PC817 можно реализовать гальваническую развязку двух частей схемы — например с высоким напряжением и с низким. Открытие фототранзистора зависит от освещенности светодиодом. Как это происходит более подробно я разберу в следующей статье где в экспериментах подавая сигналы с генератора и анализируя его при помощи осциллографа можно понять более точную картину работы оптопары.

Еще в других статьях я расскажу о нестандартном использовании оптрона первая в роли , а во второй . И используя эти схемные решения соберу очень простой тестер оптопар. Которому не не нужны никакие дорогие и редкие приборы, а всего лишь несколько дешевых радиодеталей.

Деталь не редкая и не дорогая. Но от нее зависит очень многое. Она используется практически в каждом ходовом (я не имею ввиду каком нибудь эксклюзивном) импульсном БЛОКЕ ПИТАНИЯ и выполняет роль обратной связи и чаще всего в связке тоже с очень популярной радиодеталью TL431

Для тех читателей, кому легче информацию воспринимать на слух, советуем посмотреть видео в самом низу страницы.

Оптопара (Оптрон) PC817

Краткие характеристики:

Корпус компактный:

  • шаг выводов – 2,54 мм;
  • между рядами – 7,62 мм.

Производитель PC817 – Sharp, встречаются другие производители электронных компонентов выпускают аналоги- например:

  • Siemens – SFH618
  • Toshiba – TLP521-1
  • NEC – PC2501-1
  • LITEON – LTV817
  • Cosmo – KP1010

Кроме одинарного оптрона PC817 выпускаются и другие варианты:

  • PC827 - сдвоенный;
  • PC837 – строенный;
  • PC847 – счетверенный.

Проверка оптопары

Для быстрой проверки оптопары я провел несколько тестовых экспериментов. Сначала на макетной плате.

Вариант на макетной плате

В результате удалось получить очень простую схему для проверки PC817 и других похожих оптронов.

Первый вариант схемы

Первый вариант я забраковал по той причине что он инвертировал маркировку транзистора с n-p-n на p-n-p

Поэтому чтобы не возникало путаницы я изменил схему на следующую;

Второй вариант схемы

Второй вариант работал правильно но неудобно было распаять стандартную панельку

под микросхему

Панелька SCS- 8

Третий вариант схемы

Самый удачный

Uf — напряжение на светодиоде при котором начинает открываться фототранзистор.

в моем варианте Uf = 1.12 Вольт.

В результате получилась такая очень простая конструкция:

Вид сверху

Вид снизу

Как видно из фото деталь развернута не по ключу.

Используя которую можно очень быстро проверить деталь. За свою практику ремонтов конечно не часто, но я сталкивался с неработающими оптопарами и раньше мне приходилось заморачиваться над проверкой детали когда иногда бывало заходил в тупик во время сложного ремонта.

Конечный вариант — все очень просто.

Печать

Иногда бывает такая неисправность, при вроде бы исправных элементах блока питания включение телевизора вызывает взрыв микросхемы в БП телевизора (или транзистора), а точную причину установить не удается. В этом случае стоит обратить внимание на оптопару.

Я не буду описывать все оптопары затрону лишь PC817 , ее datasheet и методику проверки.

Оптопара PC817 достаточно распространена и купить ее не проблема, да и цена невелика. Конечно в запасе всегда должно быть несколько оптопар, на всякий случай.

Оптопара РС817 состоит из светодиода и фототранзистора. Открытие фототранзистора зависит от освещенности светодиодом.

Если нужной оптопары нет, то можно установить другую, для этого проверьте datasheet имеющихся у вас оптопар на совпадение выводов с datasheet PC817 и основные параметры входное напряжение (светодиод), ток и напряжение транзистора. Пользуйтесь литературой или интернетом. Аналоги РС817 привожу в таблице

Проверка омметром это приблизительная проверка и сводится к проверке диода (сопротивление около 1,5 Ком) и транзистора (не звонится) смотрите datasheet, то есть – если с помощью омметра видно, что оптрон неисправен – значит неисправен. Если дефекта не обнаруживается — это не значит что оптрон исправен.

100% гарантии не может дать и проверка исправности оптопары с помощью небольших схем. Их вы можете легко найти в интернете. Вот одна из них.

С помощью этой схемы можно проверить оптопары двух видов, переключение происходит с помощью переключателя S1. Можно и еще проще

Свечение светодиода D1 и LED1 будет говорить об исправности оптопары. При подключении сверяйтесь с datasheet .

Выход из строя оптопары достаточно редок, хотя и случается, например в Шарпах после грозы, можно назвать типовым дефектом.


Оптопара оказывается весьма полезным прибором для осуществления обратной связи. Обычно вы можете встретить оптрон в схемах с передачей сигнала между частями схемы с различным напряжением, в импульсных блоках питания, когда напряжение на выходе становится выше нормы светодиод оптрона начинает светиться, открывая при этом фототранзистор, который уже в свою очередь прикрывает силовой транзистор первичной обмотки.


Вообще этот прибор появился уже давно, тогда вместо светодиодов использовались лампы накаливания, мощность, потребляемая ними высока, светоотдача маленькая, а частота с которой можно использовать его крайне мала, так как нить накала выходит в рабочее состояние медленно, да и тухнет далеко не мгновенно. Сейчас существует большой ассортимент оптронов с разной степенью интеграции, с закрытым или открытым оптическим каналом, с многими типами фотоприёмниками и источника света, но нас интересует самый распространенный PC817 в дискретном исполнении.


Ток на входе максимальный 0,05 А, максимальный импульсный может доходить до 1 А, напряжение типичное 1,2В. Обратное напряжение max 6 В, а рассеиваемая мощность до 70 мВт. В фототранзисторе ток коллектора может доходить до 50 мА, мощность коллектора 0,15 W, напряжение коллектор-эмиттер 35 В, эмиттер-коллектор 6 В. Внизу простая схема для проверки работоспособности вашего экземпляра.