Титан особо ценится за низкую плотность в сочетании с высокой прочностью и отличной стойкостью к коррозии. Максимальный показатель прочности на разрыв чистого титана может достигнуть 740 Н/мм2, а показатель такого сплава как LT 33, содержащего алюминий, ванадий и олово, достигает 1200 Н/мм2. Температурный коэффициент расширения металла составляет около половины от температурного коэффициента расширения нержавеющей стали и меди, и одну третью часть от данного коэффициента алюминия. Его плотность составляет около 60% от плотности стали, одну вторую от плотности меди и в 1.7 раз больше, чем у алюминия. Его модуль упругости составляет половину от модуля упругости нержавеющей стали, что делает его стойким и прочным к ударам.Авиакосмическая промышленность остается самым крупным потребителем этого металла. Титановые сплавы, способные к функционированию при температурах от 0°С до 600°С, используются в авиадвигателях для дисков, лопастей, валов и корпусов. Высокопрочные сплавы широко используются в производстве различных деталей, входящих в конструкцию летательных аппаратов - от мелких крепежных деталей, которые весят несколько граммов, до тележек шасси и больших крыльевых балок, вес которых достигает 1 тонны. Титан может составлять 10 процентов ненагруженного веса некоторых серийных пассажирских самолетов. Сейчас титан в основном потребляется в виде диоксида титана - нетоксичного белого пигмента, который используют для производства красок, бумаги, пластмассы и косметики.

Начало

Хотя о существовании титановых минералов известно более 200 лет, серийное производство титана и пигмента диоксида титана для продажи началось не раньше 1940 года. В.Дж.Кроли запатентовал метод производства титана методом угле-хлорирования титанового диоксида в 1938году. Этот элемент был назван в честь Титанов из греческой мифологии немецким химиком МТ.Клапрот, который успешно отделил диоксид титана от рутила в конце восемнадцатого века.

Американское Геологическое управление подсчитало, что добыча ильменита в мире в 2004 году в целом составила 4.8 млн тонн, в то время как добыча рутила в мире в целом составила 400 000 тонн. Ильменит обеспечивает потребность в титановых минералах в мире на 90%. По подсчетам Американского Геологического управления мировые ресурсы анатаза, рутила и ильменита в общем составляют более двух миллиардов тонн.

Производство

Первый этап в производстве титана заключается в изготовлении губки путем хлорирования руды рутила. Хлор и кокс соединяют с рутилом для создания тетрахлорида титана, который затем в замкнутой системе соединяют с магнием для производства титановой губки и хлорида магния. Магний и хлорид магния извлекают для переработки путем использования вакуумного дистилляционного процесса или технологического процесса выщелачивания, создателем которого является Кроль. Основными производителями титановой губки являются США, Россия, Казахстан, Украина, Япония и Китай.

Метод вакуумно-дугового переплава или электронно-лучевая холодная подовая печь используются для плавки губки со скрапом и/или легирующими элементами, такими как ванадий, алюминий, молибден, олово и цирконий для производства переплавленных электродов. Данные электроды можно вновь переплавить методом вакуумно-дугового переплава для производства материала по наиболее строгим спецификациям в авиакосмической сфере и в сфере высоких технологий, или их можно отлить прямо в слябы.

Слитки ВДП имеют цилиндрическую форму и могут весить до 7.94 тонн. Их куют для изготовления слябов или биллетов или используют для прецизионного литья. Методом прокатки производят плиты, листы прутки, стержни и проволоку. Трубы производят из нарезанных из листов штрипсов.

Применение

В повседневной жизни титан обычно ассоциируется с ценными изделиями, такими как наручные часы, оправы для очков, спортивные товары и ювелирные изделия, но кроме этого он широко используется в авиации, а также в других областях, в которых титан, благодаря сочетанию своих физических свойств и био-совместимости, имеет преимущества перед другими металлами. В зависимости от непосредственного назначения, титан конкурирует с никелем, нержавеющей сталью и циркониевыми сплавами.

Многообещающие признаки роста показывает автомобильный сектор. В системах подвесок, например, замена стальных пружин на титановые дает преимущество в виде уменьшения веса на 60%. Также титан применяют в производстве коленчатых валов, соединительных тяг и выхлопных систем. Электростанции и заводы по опреснению морской воды также являются важными областями для роста применения титана. В то же время идет развитие производства титановых подложек для компьютерных жестких дисков.

Является одним из важнейших конструкционных материалов, поскольку сочетает прочность, твердость и легкость. Однако другие свойства металла весьма специфичны, что делает процесс получения вещества тяжелым и дорогостоящим. И сегодня нами будет рассмотрена мировая технология производства титана, кратко упомянем и .

Существует металл в двух модификациях.

  • α-Ti – существует до температуры в 883 С, обладает плотной гексагональной решеткой.
  • β-Ti – имеет объемно-центрированную кубическую решетку.

Переход осуществляется с очень небольшим изменением плотности, поскольку последняя при нагревании постепенно уменьшается.

  • Во время эксплуатации титановых изделий в большинстве случаев имеют дело с α-фазой. А вот при плавке и изготовлении сплавов металлурги работают с β-модификацией.
  • Вторая особенность материала – анизотропия. Коэффициент упругости и магнитная восприимчивость вещества зависит от направления, причем разница довольно заметная.
  • Третья черта – зависимость свойств металл от чистоты. Обычный технический титан не годится, например, для использования в ракетостроении, поскольку из-за примесей теряет свою жаростойкость. В этой области промышленности применяют только исключительно чистое вещество.

О составе титана поведает это видео:

Производство титана

Использовать металл начали только в 50-е годы прошлого века. Его добыча и производство являются сложным процессом, благодаря чему этот относительно распространенный элемент относили к условно редким. И далее мы рассмотрим технологию, оборудование цехов по производству титана.

Сырье

Титан занимает 7 место по распространенности в природе. Чаще всего это оксиды, титанаты и титаносиликаты. Максимальное количество вещества содержится в двуокисях – 94–99%.

  • Рутил – самая устойчивая модификация, представляет собой минерал синеватого, буровато-желтого, красного цвета.
  • Анатаз – довольно редкий минерал, при температуре в 800–900 С переходит в рутил.
  • Брукит – кристалл ромбической системы, при 650 С необратимо переходит в рутил с уменьшением объема.
  • Более распространены соединения металла с железом – ильменит (до 52,8% титана). Это гейкилит, пирофанит, кричтон – химический состав ильменита весьма сложен и колеблется в широких переделах.
  • Используется в промышленных целях результат выветривания ильменита – лейкоксен . Здесь происходит довольно сложная химическая реакция, при которой из ильменитовой решетки удаляется часть железа. В результате объем титана в руде повышается – до 60%.
  • Также используют руду, где металл связан не с закисным железом, как в ильмените, а выступает в виде титаната окисного железа – это аризонит, псевдобрукит .

Наибольшее значение имеют месторождения ильменита, рутила и титаномагнетита. Разделяют их на 3 группы:

  • магматические – связаны с участками распространения ультраосновных и основных пород, проще говоря, с распространением магмы. Чаще всего это ильменитовые, титаномагнетитовые ильменит-гематитовые руды;
  • экзогенные месторождения – россыпные и остаточные, аллювиальные, аллювиально-озерные месторождения ильменита и рутила. А также прибрежно-морские россыпи, титановые, анатазовые руды в корах выветривания. Наибольшее значение имеет прибрежно-морские россыпи;
  • метаморфизированные месторождения – песчаники с лейкоксеном, ильменит-магнетитовые руды, сплошные и вкрапленные.

Экзогенные месторождения – остаточные или россыпные, разрабатываются открытым методом. Для этого используют драги и экскаваторы.

Разработка коренных месторождений связана с проходкой шахт. Полученную руду на месте дробят и обогащают. Применяют гравитационное обогащение, флотацию, магнитную сепарацию.

В качестве исходного сырья может использоваться титановый шлак. Он содержит до 85% диоксида металла.

Технология получения

Процесс производства металла из ильменитовых руд состоит из нескольких стадий:

  • восстановительная плавка с целью получения титанового шлака;
  • хлорирование шлака;
  • производства металла восстановлением;
  • рафинирование титана – как правило, проводится с целью улучшения свойств продукта.

Процесс это сложный, многоэтапный и дорогостоящий. В результате достаточно доступный металл оказывается весьма дорогим в производстве.

О производстве титана расскажет данный видеосюжет:

Получение шлака

Ильменит является ассоциацией оксида титана с закисным железом. Поэтому целью первого этапа производства является отделение диоксида от оксидов железа. Для этого оксиды железа восстанавливают.

Процесс осуществляют в электродуговых печах. Ильменитовый концентрат загружают в печь, затем вводят восстановитель – древесный уголь, антрацит, кокс, и прогревают до 1650 С. При этом железо восстанавливается из оксида. Из восстановленного и науглероживающегося железа получают чугун, а оксид титана переходит в шлак. Последний в итоге содержит 82–90% титана.

Чугун и шлак разливают по отдельным изложницам. Чугун используют в металлургическом производстве.

Хлорирование шлака

Целью процесса является получение тетрахлорида металла, для дальнейшего применения. Непосредственно хлорировать ильменитовый концентрат оказывается невозможным, из-за образования большого количества хлорного железа – соединение очень быстро разрушает оборудование. Поэтому без стадии предварительного удаления оксида железа обойтись нельзя. Хлорирование проводится в шахтных или солевых хлораторах. Процесс несколько отличается.

  • Шахтный хлоратор – футерованное цилиндрическое сооружение высотой до 10 м и диаметром до 2 м. Сверху в хлоратор укладывают брикеты из измельченного шлака, а через фурмы подают газ магниевых электролизеров, содержащий 65–70% хлора. Реакция между титановых шлаком и хлором происходит с выделением тепла, что обеспечивает требуемый для процесса температурный режим. Газообразный тетрахлорид титана отводят через верх, а остатки шлака непрерывно удаляют снизу.
  • Солевой хлоратор , камера, футерованная шамотом и наполовину заполненная электролитом магниевых электролизеров – отработанным. В расплаве содержаться хлориды металлов – натрия, калия, магния и кальция. В расплав сверху подают измельченный титановый шлак и кокс, снизу вдувают хлор. Поскольку реакция хлорирования экзотермична, температурный режим поддерживается самим процессом.

Тетрахлорид титана очищают, причем несколько раз. Газ может содержать углекислый газ, угарный газ, другие примеси, так что очистка производится в несколько этапов.

Отработанный электролит периодически заменяют.

Получение металла

Металл восстанавливают из тетрахлорида магнием или натрием. Восстановление происходит с выделением тепла, что позволяет проводить реакцию без дополнительного обогрева.

Для восстановления используют электрические печи сопротивления. Сначала в камеру помещают герметичную колбу из хромо- сплавов высотой в 2–3 м. После того как емкость прогреют до +750 С, в нее вводят магний. А затем подают тетрахлорид титана. Подача регулируется.

1 цикл восстановления длится 30–50 ч, чтобы температура не повышалась выше 800–900 С, реторту обдувают воздухом. В итоге получают от 1 до 4 тонн губчатой массы – металл осаждается в виде крошек, которые спекаются в пористую массу. Жидкий хлорид магния периодически сливают.

Пористая масса впитывает довольно много хлорида магния. Поэтому после восстановления осуществляют вакуумную отгонку. Для этого реторту прогревают до 1000 С, создают в ней вакуум и выдерживают 30–50 часов. За это время примеси испаряются.

Восстановление натрием протекает почти таким же образом. Разница наличествует только в последнем этапе. Чтобы удалить примеси хлорида натрия, титановую губку измельчают и выщелачивают из нее соль обычной водой.

Рафинирование

Полученный описанным выше образом технический титан вполне годится для производства оборудования и емкостей для химической промышленности. Однако для областей, где требуется высокая жаростойкость и однородность свойств, металл не годится. В этом случае прибегают к рафинированию.

Рафинирование производится в термостате, где поддерживается температура в 100–200 С. В камеру помещают реторту с титановой губкой, а затем с помощью специального устройства в закрытой камере разбивают капсулу с йодом. Йод реагирует с металлом, образуя йодид титана.

В реторте натянуты титановые проволоки, по которым пропускают электрический ток. Проволока раскаляется до 1300–1400 С, полученный йодид разлагается на проволоке, формируя кристаллы чистейшего титана. Йод освобождается, вступает в реакцию. С новой порцией титановой губки и процесс продолжается, пока не исчерпается металл. Получение останавливают, когда благодаря наращиванию титана диаметр проволоки становится равным 25–30 мм. В одном таком аппарате можно получить 10 кг металла с долей в 99,9–99,99%.

Если необходимо получить ковкий металл в слитках, поступают иначе. Для этого титановую губку переплавляют в вакуумной дуговой печи, поскольку металл при высокой температуре активно впитывает газы. Расходуемый электрод получают из титановых отходов и губки. Жидкий металл затвердевает в аппарате в кристаллизаторе, охлаждаемом водой.

Плавку, как правило, повторяют дважды, чтобы улучшить качество слитков.

Из-за особенностей вещества – реакции с кислородом, азотом и впитывание газов, получение всех титановых сплавов также возможно лишь в электрических дуговых вакуумных печах.

Про Россию и другие страны-производители титана читайте ниже.

Популярные изготовители

Рынок производства титана достаточно закрытый. Как правило, страны, производящие большое количество металла, сами же и являются его потребителями.

В России самой большой и едва ли не единственной компанией, занимающейся получением титана, является «ВСМПО-Ависма». Она считается крупнейшим изготовителем металла, но это не совсем верно. Компания производит пятую часть титана, однако мировое потребление его выглядит иначе: около 5% расходуется на изделия и приготовление сплавов, а 95% – на получение диоксида.

Итак, производство титана в мире по странам:

  • Ведущей страной-производителем является Китай. Страна обладает максимальными запасами титановых руд. Из 18 известных заводов по получению титановой губки 9 расположены в Китае.
  • Второе место занимает Япония. Интересно, что в стране на авиакосмический сектор уходит только 2–3% металла, а остальной используется в химической промышленности.
  • Третье место в мире по производству титана занимает Россия и ее многочисленные заводы. Затем следует Казахстан.
  • США – следующая в списке страна-производитель, расходует титан традиционным образом: 60–75% титана использует авиакосмическая промышленность.

Производство титана – процесс технологически сложный, дорогостоящий и длительный. Однако потребности в этом материале настолько велики, что прогнозируется изрядное увеличение выплавки металла.

О том, как происходит резка титана на одном из производств в России, расскажет это видео:

Спрос на диоксид титана - важный продукт для лакокрасочной промышленности, производства пластмасс и бумаги - на российском рынке составляет 67-82 тыс. т/год, в то время как собственное производство диоксида титана до 2014 г. в России отсутствовало.

Диоксид титана, незаменимый пигмент в лакокрасочной, полимерной, целлюлозно-бумажной и других отраслях, представляет собой порошок белого цвета без запаха и вкуса, практически не растворимый в воде и минеральных кислотах (кроме плавиковой и концентрированной серной кислот).

Диоксид титана производится в двух формах: рутильной и анатазной (октаэдрит). Рутильный диоксид титана примерно на 30% лучше рассеивает свет, чем анатазный, обладает лучшей укрывистостью (укрывистость - способность диоксида титана перекрывать цвет окрашиваемой поверхности). Анатазная форма является менее атмосферостойкой, чем рутильная, и хуже защищает от УФ-воздействия. Рутильный диоксид титана предпочтительнее при производстве лакокрасочных материалов, пластмасс, косметики. Анатазные пигменты находят свое применение при выпуске бумаги, резины и мыла. Традиционно подавляющая часть всего диоксида титана применяется в производстве лакокрасочных материалов. При этом основной функцией диоксида титана в лакокрасочной промышленности является придание краскам белого цвета, яркости, а также улучшение укрывистости, защита покрытий от вредных ультрафиолетовых лучей, предотвращение старения пленки и пожелтения покрашенных поверхностей.

Исходным сырьем для производства диоксида титана является титансодержащий ильменитовый концентрат (FeTiO 3) - продукция горно-обогатительных предприятий. Ильменит - это руда, которая с химической точки зрения представляет собой смесь оксидов, большую часть из которых составляют оксиды титана и железа.

Существует два промышленных способа получения диоксида титана (рутильной и анатазной модификаций):

1. Сульфатный, или сернокислотный (из титансодержащего концентрата ).

Метод основан на обработке ильменитового концентрата серной кислотой с последующими выделением и гидролизом титанилсульфата с прокаливанием продукта гидролиза титанилсульфата (метатитановая к-та) до диоксида титана. Побочный продукт сульфатной технологии производства диоксида титана - железный купорос. Сульфатный способ был внедрен в промышленность в 1931 г. для производства анатазной формы диоксида титана, и позже, в 1941 г., рутильной формы.

2. Хлорный, или хлоридный (из тетрахлорида титана ).

Хлорный способ был изобретен компанией DuPont в 1950 г. для производства рутильного диоксида титана. Этот способ включает в себя высокотемпературные фазовые реакции. Титансодержащая руда вступает в реакцию с хлорным газом при пониженном давлении, в результате чего образуется тетрахлорид титана (TiCl 4) и примеси хлоридов металлов, которые затем удаляются. Высокочистый тетрахлорид титана (TiCl 4) подвергается окислению под действием высокой температуры для получения диоксида титана с высокой яркостью.

Мировые мощности по производству диоксида титана хлорным способом превышают мощности сульфатного способа и продолжают расти.

Сульфатная технология проще хлоридной и позволяет использовать более бедные и дешевые руды, но она обычно сопряжена с большими издержками производства.

Учитывая особенности обоих процессов, основными критериями выбора между ними являются возможность обеспечения производства сырьем соответствующего качества и проблемы, связанные с экологией. Сульфатный способ характеризуется наиболее высокими показателями загрязнения окружающей среды.

Общие мировые мощности по производству пигментного диоксида титана оцениваются примерно в 7,2 млн. т, причем около 85-90% приходится на рутильную форму и примерно 10-15% - на анатазную.

Рис. 1. Сферы потребления диоксида титана

Страна, обладающая самым большим производственным потенциалом по диоксиду титана, - Китай (около 3 млн. т/год). Крупнейшими в мире его производителями являются следующие компании: DuPont Titaniun Technologies (США), National Titanium Dioxide Co., Ltd. Cristal (Саудовская Аравия), Huntsman Pigments (США), Tronox, Inc. (США), Kronos Worldwide, Inc. (США), Sachtleben Chemie GmbH (Германия; 100% акций принадлежат Rockwood Holding), Ishihara Sangyo Kaisha, Ltd. (Япония).

Как упоминалось выше, основные потребляющие диоксид титана отрасли в мире - это лакокрасочная промышленность, производство пластмасс и бумаги (рис. 1). Большую часть в мировом потреблении диоксида титана занимает Китай. На втором и на третьем местах - Западная Европа и США соответственно.


Рис. 2. Структура потребления диоксида титана на российском рынке в 2015 г

Как следует из представленной на рис.2 структуры потребления диоксида титана на российском рынке, почти 95,1% этого продукта, поступающего на отечественный рынок, потребляется лакокрасочной отраслью. При этом больше всего (55,8%) диоксида титана используется в изготовлении красок водоэмульсионных и водно-дисперсионных, 31,3% потребляется на производство ЛКМ неводных, а 8,0% диоксида титана идет на прочие ЛКМ.

Спрос на диоксид титана на российском рынке за последние шесть лет колебался в пределах 67,2-82,9 тыс. т/год и до 2014 г. удовлетворялся исключительно за счет импорта.

Собственное производство диоксида титана до 2014 г. в России отсутствовало. Рассматривая ретроспективу, необходимо отметить, что до 2009 г. в ОАО «Соликамский магниевый завод» (г. Соликамск, Пермская обл.) диоксид титана производился в промышленных масштабах, но с 2009 г. после запуска производства титановой губки производство пигмента прекращено.


Рис. 3. Импорт диоксида титана в Россию в 2010-2015 гг., тыс. т

Небольшой объем диоксида титана до 2010 г. выпускался в ныне несуществующем Волгоградском ОАО «Химпром».

С середины 2014 г. на территории Российской Федерации диоксид титана производится в Армянском филиале ООО «Титановые инвестиции», зарегистрированного в Москве. В свою очередь, ЧАО «Юкрейниан Кемикал Продактс» (бывшее ЧАО «Крымский Титан»), зарегистрированное в Киеве, остается украинским предприятием, сдающим в долгосрочную аренду свой имущественный комплекс ООО «Титановые инвестиции». Такая комбинация позволила предприятию обеспечить бесперебойные поставки сырья, ввозимого из Украины, и сохранить европейские рынки сбыта, несмотря на санкции в отношении Крыма.


Рис. 4. Структура импорта диоксида титана в Россию в 2014 г. (по странам происхождения), тыс. т

Объем выпуска диоксида титана в Армянском филиале ООО «Титановые инвестиции» в июле-декабре 2014 г. составил 47,732 тыс. т, а в 2015 г. - 77,796 тыс. т.

Тем не менее уровень импорта в 2014 и 2015 гг. оставался высоким и составлял 80,3 и 67,6 тыс. т соответственно.

В 2014 г. более 30% российского рынка занимала Украина, представленная предприятиями ПАО «Сумыхимпром» (Украина, г. Сумы) и ЧАО «Крымский титан» (ныне ЧАО «Юкрейниан Кемикал Продактс», Республика Крым, г. Армянск). Более 18% поставок пришлось на США, представленные в основном компанией DuPont.


Рис. 5. Структура импорта диоксида титана в Россию в 2015 г. (по странам происхождения), тыс. т

В 2015 г. структура импорта несколько изменилась. Импорт диоксида титана из Украины возрос до 28,0 тыс. т и составил 41,4% всего импорта продукта в Россию.

Ввоз товара из Соединенных Штатов, напротив, снизился и составил 9,1 тыс. т (13,4% всего импорта).

Экспорт диоксида титана из России в 2010-2014 гг. осуществлялся почти полностью в страны Таможенного союза, был низким и составлял 0,1-0,4 тыс. т.


Рис. 6. Структура экспорта диоксида титана в Россию в 2015 г. (по странам происхождения), тыс. т

В 2015 г. в данной сфере внешнеторговой деятельности наблюдалась интересная картина: экспорт диоксида титана из России составил 74,56 тыс. т, причем 88,1% экспортируемого товара пришлось на Украину (рис. 6).

Таблица 1. Средние импортные цены на диоксид титана в 2014-2015 гг. (по странам происхождения, без НДС), долл./т

Страна-импортер

2014 г.

2015 г.

Германия

Финляндия

Великобритания

Саудовская Аравия

В 2014-2015 гг. американский диоксид титана, производимый хлоридным методом, соответствующий высоким техническим показателям и сравнительно невысокой ценой, был наиболее конкурентоспособен на российском рынке, о чем говорит значительная величина его продаж на российском рынке, несмотря на географическую отдаленность поставщиков от потребителей. Продукция ООО «Титановые инвестиции» и украинского ПАО «Сумыхимпром», несмотря на то, то производится сульфатным методом, также обладает хорошими техническими характеристиками и, пожалуй, самым оптимальным соотношением цена/качество для российского потребителя (табл. 1).

Ниже приведены характеристики диоксида титана производства некоторых компаний, ввозящих в Россию свою продукцию (табл. 2-5).

Таблица 2. Качественные характеристики диоксида титана ПАО «Сумыхимпром»

Показатель

SumTitan

SumTitan

SumTitan

SumTitan

Не менее

Массовая доля рутильной формы,%, не менее

Массовая доля веществ, растворимых в воде, %, не более

pH водной суспензии

Маслоемкость, г/100 пигмента, не более

Таблица 3. Качественные характеристики диоксида титана ООО «Титановые инвестиции»

Показатель

Массовая доля рутильной формы, %, не менее

Массовая доля летучих веществ, %, не более

Массовая доля водорастворимых веществ, %, не более

pH водной суспензии

Остаток на сите с сеткой 0045,%, не более

Разбеливающая способность, условные единицы, не менее

Укрывистость, г/м 2 , не более

Диспергируемость, мкм, не более

Белизна, условные единицы, не менее

Таблица 4. Качественные характеристики марок диоксида титана американской компании DuPont

Показатель

R-706 (для водных систем)

Структурная модификация

Рутильная

Рутильная

Рутильная

Рутильная

Массовая доля диоксида титана, %,

Массовая доля алюминия,%

Массовая доля аморфного диоксида кремния,%

Удельный вес, г/см 3

Насыпной объем, л/кг

Белизна, условные единицы

pH водной суспензии

Средний размер частицы, мкм

Маслоемкость, г/100 г пигмента, не более

Сопротивление при 30ºC (кОм)

Таблица 5. Качественные характеристики марок диоксида титана финской компании Sachtleben Pigments OY , предназначенных для применения в производстве ЛКМ

Показатель

Sachtleben RD3

Sachtleben R660

Sachtleben R-FD-I

Sachtleben 8700

Структурная модификация

Рутильная

Рутильная

Рутильная

Рутильно-анатазная, содержа-ние рутильной формы - min / 60%

Массовая доля диоксида титана, %,

Дополнительные компоненты

Al 2 O 3 , ZrO 3

Al 2 O 3 , ZrO 3

Удельный вес, г/см 3

Насыпная плотность, кг/м 3

Насыпная плотность утрамбованного продукта, кг/м 3

pH водной суспензии

Остаток на сите с сеткой 0,0044, %, не более

Средний размер частиц, мкм

Относительная разбеливающая способность, не менее

Маслоемкость (г/100 г пигмента)

Поверхностная обработка органическими веществами

Как видно из приведенных в табл. 2-5 данных, продукция ООО «Титановые инвестиции» незначительно уступает в качестве американской и европейской продукции, причем стоит существенно дешевле ее.

Учитывая интенсивное развитие лакокрасочной и полимерной промышленности, можно оценить, что к 2030 г. потребность в диоксиде титана на российском рынке будет достигать 220-260 тыс. т.

Из данного предположения следует, что существует необходимость создания и наращивания в России производственного потенциала по диоксиду титана.

Россия обладает хорошей сырьевой базой титансодержащего сырья в Республике Коми, в Читинской, Мурманской, Челябинской, Амурской, Тамбовской, Томской, Нижегородской, Омской, Тюменской областях, в Красноярском и Ставропольском краях. Наличие такой сырьевой базы позволяет организовать производство диоксида титана как сульфатным, так и хлоридным способом. Пока основным фактором, сдерживающим организацию этого производства, являются относительно низкие цены на диоксид титана и сравнительно невысокая рентабельность производства.


Рис. 7. Основные титановые месторождения в РФ

Крупнейшими месторождениями являются Ярегское (Республика Коми), Чинейское, Кручининское (Читинская обл.), Медведевское (Челябинская обл.) и Центральное (Тамбовская обл.) и др. (рис. 7). Необходимо отметить, что, помимо разведанных балансовых запасов титансодержащего сырья, Россия располагает огромными прогнозными ресурсами.

Поскольку потребность в диоксиде титана в России очень велика и отнюдь не полностью покрывается за счет внутреннего производства, а существующие на территории РФ технологии производства данного продукта являются далеко не совершенными, производство диоксида титана является интереснейшей сферой для научно-технических разработок и внедрения инноваций.

Так, в Томском политехническом университете (ТПУ) была разработана экономичная и экологичная технология производства диоксида титана, которая подразумевает применение в качестве основного реагента фторида аммония, более безопасного, чем серная кислота. Кроме того, данный реагент может использоваться повторно, что приводит к минимизации стоков. Новая технология способствует снижению до небольших объемов (от 20 тыс. т) пределов рентабельности, позволяя создать сеть небольших производств и, таким образом, снижая логистические расходы. Минусом фторидной технологии является лишь то, что в данном случае получает более грубодисперсный порошок пигмента, чем хлорным методом. Запуск производства мощностью 100 тыс. т/год оценивается разработчиками из Томского политехнического университета в 1,5 млрд. руб., тогда как по оценкам специалистов компании Kronos Worldwide Inc. на создание производства мощностью 150 тыс. т/год с использованием хлоридной технологии требуется не менее 1 млрд. долл. Срок создания производства по новой технологии оценивается специалистами из ТПУ в один-два года.

В октябре 2015 г. государственная корпорация «Росатом» одобрила проект АО «Сибирский химический комбинат» (АО «СХК») по созданию производства диоксида титана по фторидной технологии мощностью 20 тыс. т/год. Было решено выделить на изготовление первой партии продукции и маркетинговые исследования 3,6 млн. руб. После того как качество первых образцов продукции, произведенной в ТПУ по заказу АО «СХК», было одобрено на нескольких заводах-потребителях, руководство АО «Сибирский химический комбинат» заявило, что в 2017 г. запустит опытно-промышленное производство объемом 5 тыс. т/год, а в 2019 г. - промышленное - на 20 тыс. т/год. Развернется производство на площадках АО «СХК».

Кроме планируемого создания нового производства в Томской области, новшества и вводы готовятся и в Крымском федеральном округе: в частности, ООО «Титановые инвестиции» к 2018 г. намечает расширение мощностей по производству диоксида титана на 19 тыс. т (до 120 тыс. т/год).

Таким образом, есть надежда, что к 2018-2019 гг. в России суммарные мощности по производству диоксида титана достигнут 140 тыс. т/год, однако будет ли на него спрос на российском рынке полностью удовлетворен за счет внутреннего производства, учитывая что ООО «Титановые инвестиции» является экспортоориентированным предприятием, остается серьезным вопросом.

 Производство титана в России
Титану приказано выжить за счет западных инвестиций
Титановая промышленность России, которая после распада Союза и реализации конверсионных программ осталась и без сырья, и без потребителей, пытается решить свои проблемы. Иногда самостоятельно, иногда с помощью правительства. Недавно Виктор Черномырдин подписал распоряжение #892-р о комплексе неотложных мер по сохранению и развитию титанового производства в России в рамках целевой федеральной программы (1993-2002 годы). В этом документе акцент делается на привлечение иностранных инвестиций под государственные гарантии правительства России. Ъ анализирует ситуацию в титановой промышленности России.

История развития отрасли
В 1960-1990 годах в СССР была создана крупнейшая в мире титановая индустрия. К началу 90-х годов объем производства титана и его сплавов в Союзе превышал общий уровень производства США, Японии, Англии, Германии, Франции и Китая. Титановая промышленность бывшего СССР проектировалась в масштабах всего союзного народно-хозяйственного комплекса. Добыча и обогащение титансодержащих руд сосредоточены на Украине, производство лигатур осуществляется на Украине и в Таджикистане. 40% производства титановой губки приходится на Россию (Березняковский титано-магниевый комбинат, ныне АО "АВИСМА"), 40% — на Казахстан (Усть-Каменогорский титано-магниевый комбинат) и 20% — на Украину (Запорожский комбинат). Титановые слитки и полуфабрикаты производились в основном в России на Верхнесалдинском металлургическом производственном объединении (ВСМПО), Белокалитвинском, Ступинском и других предприятиях. На базовом предприятии отрасли — ВСМПО — в 1989 году было произведено 105 тыс. тонн продукции. Основным потребителем металла в СССР была оборонная промышленность — авиа- и ракетостроение, космическое машиностроение и судостроение. Еще в начале 90-х годов до 75-78% продукции ВСМПО приходилось на нужды оборонного и авиакосмического комплекса.
После распада СССР Россия — основной потребитель титана и его сплавов (на ее долю приходилось 72,5% потребления СССР) — осталась практически без собственных источников титанового сырья. Сегодня титановая промышленность России представлена двумя основными предприятиями — АО "АВИСМА" (производство титановой губки) и ВСМПО (слитки, сплавы и полуфабрикаты). Сложная ситуация усугубилась тем, что в странах СНГ (на Украине и в Таджикистане) приступили к разработке собственных программ по развитию титановой промышленности. Поэтому поставки титансодержащего сырья, концентратов и титановой губки в Россию неуклонно сокращались. Единственный же производитель титановой губки в России Березняковский комбинат, который получает сырье с Украины, в состоянии "закрыть" лишь около 40% перспективных потребностей. В 1994 году выпуск титановой губки в России составил немногим более 30% от уровня 1989 года.
С началом конверсии потребление титана и его сплавов значительно сократилось. В 1994 году спрос на металл основных гражданских отраслей-потребителей по сравнению с 1989 годом только в авиакосмическом комплексе снизился на 50%. Авиационный сектор, некогда занимавший 55% в структуре продаж ВСМПО, сократился до 10-15%. Как следствие к концу 1994 года объемы производства упали до 18-20% от уровня 1989-1990 годов. ВСМПО произвело всего 17 тыс. тонн титановой продукции. Руководство предприятия выражает серьезную обеспокоенность сокращением сырьевой базы. К тому же отношения двух российских предприятий титановой промышленности, завязанных в одну технологическую цепочку, довольно сложные. АО "АВИСМА" поставляет на ВСМПО титановую губку для дальнейшей переработки, однако сегодня эта схема дает сбой — АВИСМА хочет продавать свою продукцию за деньги (желательно по предоплате), а ВСМПО не всегда может выполнить эти условия.
В последние год-два около 40% своей продукции АО "АВИСМА" поставляет на экспорт. ВСМПО приходится использовать другие возможности получения сырья, например нереализованные остатки. Дело в том, что титановая продукция имела стратегическое значение и поэтому запасы ее накапливались в госрезерве. В последние годы эти резервы распродавались, в том числе и на ВСМПО. Правда, запасы госрезерва небезграничны.

В России продукция есть — рынка нет
Проблемы титановой промышленности России довольно типичны для многих отраслей: нет сырья и нет рынка сбыта. Следует отметить, что предприятия самостоятельно занимаются маркетингом своей продукции и вполне в этом преуспели. АО "АВИСМА" экспортирует почти половину своей продукции. Сокращение внутреннего рынка заставило и ВСМПО сосредоточить усилия на развитии экспортных программ. Структура российского экспорта титановой продукции значительно отличается от структуры экспорта развитых стран. В США и Японии около 80% внешних поставок приходится на готовую продукцию (товары глубокой переработки), а в России 80% составляют полуфабрикаты (слитки, слябы и биллетсы) и только 20% — трубы, листы, плиты, прутки. Тем не менее в 1994 году ВСМПО удалось отправить на экспорт 3800 тонн титановой продукции (в два раза больше, чем в 1993 году) и занять третье место после США и Японии. Список потребителей расширился до 33 фирм из США, Японии и Европы. В 1992 году доля экспорта в общем объеме продаж ВСМПО составляла 12% ($2 млн), в 1994 году — 35% ($58 млн), а в 1995 году она должна возрасти до 60-65% ($100 млн).
ВСМПО уделяет огромное внимание сертификации изделий. Как образно выразился директор по качеству и сертификации ВСМПО Анатолий Строшков, сертификат на продукцию — это ключ к двери в помещение, где находится рынок. Еще в 1991 году на предприятии стали создавать систему обеспечения качества, отвечающую требованиям международных стандартов. К настоящему времени ВСМПО сертифицировало некоторые виды продукции. Например, продукция для судостроения сертифицирована фирмой Lloyds Register Surveyor (Великобритания). Главное назначение титана — аэрокосмическая индустрия, поэтому основная работа по сертификации ведется именно в производстве изделий для этой области. Здесь система сертификации несколько отличается от других — она проводится потребителем. ВСМПО работает сразу с тремя ведущими производителями авиадвигателей в мире — Rolls Royce, General Electric и Pratt & Whitney. Rolls Royce после длительной процедуры сертификации продукции ВСМПО сделала предварительный заказ на поставку двух тонн титанового прутка диаметром 30 мм под штамповку лопаток компрессоров авиадвигателей. По мнению менеджеров компании General Electric Aircraft Engines, которая уже завершила сертификацию и тоже сделала заказ на поставку прутков под штамповку лопаток, ВСМПО "отвечает тем жестким требованиям, которые компания предъявляет к сотрудничающим с нами фирмам, и мы рады причислить его к кругу наших международных поставщиков". Имеет ВСМПО договоренность о проведении такой работы и с американской фирмой Pratt & Whitney, благодаря которой ВСМПО сможет стать поставщиком для 90% рынка газотурбинных авиационных двигателей в мире.
Верхнесалдинское объединение через иностранных субпоставщиков продает Boeing титановые слитки. Переговоры о начале прямых поставок идут. Правда, Boeing очень долго рассматривает вопросы, связанные со сменой поставщиков. Поэтому в ближайшее время вряд ли будут приняты какие-нибудь решения. Намерение Boeing использовать больше титана в конструкциях своих самолетов позволит ВСМПО увеличить объемы поставок титановых слитков, слябов и заготовок через субпоставщиков американской корпорации. Кроме того, ожидается, что в ближайшее время Boeing проведет сертификацию титановых полуфабрикатов, полученных непосредственно от ВСМПО. Работает объединение и с европейскими производителями самолетов, прежде всего с фирмой Airbus Industrie, выпускающей аэробусы серии А-300. Наличие сертификатов дало основание ВСМПО требовать от заказчиков платить за продукцию по мировым расценкам. В большинстве случаев западные покупатели с этим соглашаются.

Титановые предприятия ищут выход из кризиса
Титановая промышленность России встала перед необходимостью создания собственной сырьевой базы, вовлечения в эксплуатацию новых месторождений. Сырьевая проблема весьма серьезна, и решить ее предприятия самостоятельно просто не в силах. С 1992 года руководство ВСМПО самостоятельно и через областную администрацию обращалось в федеральные органы власти с просьбой о помощи промышленности, имеющей стратегическое значение для народно-хозяйственного комплекса России. В 1992 году федеральное правительство приняло комплексную программу развития производства титана в России. Она направлена на решение вопросов обеспечения титановой промышленности России собственным сырьем, повышения качества проката и заготовок до уровня мировых стандартов, создания условий для более экономного использования металла на всех переделах, обеспечения всех отраслей народного хозяйства полуфабрикатами и заготовками в полном объеме.
Объем инвестиций для реализации предусмотренных программой мероприятий в ценах 1991 года оценивается в 3,7209 млрд руб. Мероприятия по реконструкции и техническому перевооружению производства слитков, заготовок и полуфабрикатов из титановых сплавов должны были быть реализованы за счет кредита, погашаемого ежегодными отчислениями из собственных средств (до 73% чистой прибыли) предприятий, участвующих в реализации программы. Часть кредита в виде валютных средств в размере $161 млн (с учетом 15% импортной пошлины от контрактной стоимости) намечалось направить на приобретение импортного металлургического оборудования для обеспечения производства высококачественного проката из титановых сплавов на уровне требований мировых стандартов. Однако программа не выполняется. Во многом это объясняется тем, что львиную долю средств предполагалось получить из государственного бюджета (2,9524 млрд руб. — 79,35%). Остальную часть (0,7685 млрд руб. — 20,65%) — за счет кредитов государственного банка.
Попытки реализации федеральной программы наглядно продемонстрировали, что на государственное финансирование надеяться бессмысленно. Государство пытается внедрить в сознание промышленников, что инвестиции они могут привлечь, размещая свои акции на открытом рынке. Однако на ВСМПО, как, впрочем, и на многих других предприятиях, директорат боится потерять контроль над управлением предприятием и не верит в серьезность намерений стратегических инвесторов. Во время приватизации дирекция ВСМПО не позволила скупить акции сторонними инвесторам (самый крупный из них имеет не более 6%), ни один из них не прошел в совет директоров. Во избежание скупки акций у работников предприятия на объединении было создано АОЗТ "Союз "Верхняя Салда"", куда трудовой коллектив вошел почти в полном составе. Однако АО "АВИСМА" ведет себя по-другому — крупным пакетом его акций владеет банк "Менатеп". По имеющимся сведениям, "Менатеп" вместе с предприятием разработал инвестиционную программу. Однако на сегодняшний день она практически не реализуется. По некоторым сведениям, это происходит из-за того, что "Менатеп" стремится получить дополнительные гарантии возврата вложенных средств.
На ВСМПО же с редким упорством ждут государственной поддержки в рамках целевой программы. Для расширения сортамента, повышения качества титановой продукции и ее конкурентоспособности на мировом рынке требуются инвестиции — $65 млн на реконструкцию и $108 млн на модернизацию, внедрение новых технологий. Скажем, доля контрольно-испытательного оборудования в стоимости активной части основных фондов составляет всего 0,6%, хотя в соответствии с мировым стандартом требуется 5-6%.
В результате регулярных командировок в столицу представители созданной в Верхней Салде ассоциации "Титан" добились от федерального правительства определенных решений. По распоряжению премьера Виктора Черномырдина правительство признало необходимым привлечь иностранный инвестиционный кредит в объеме $65 млн под свою гарантию для технического перевооружения Верхнесалдинского металлургического производственного объединения. Кроме того, Роскомметаллургии с участием Минфина РФ, Внешэкономбанка и ВСМПО поручено провести переговоры с иностранными кредиторами о привлечении в 1995-1996 годах кредита в объеме $100 млн. Он будет использован на условиях проектного финансирования для увеличения экспортных поставок титановой продукции более глубокой переработки. Одновременно Минэкономики РФ, Минфин РФ и Роскомметаллургии обязаны в 1995 году выделить ассигнования из федерального бюджета ВСМПО и АО "АВИСМА" на содержание мобилизационных мощностей. В 1995 году будут проведены переговоры с соответствующими организациями Казахстана и Украины о подготовке проектов долгосрочных межправительственных соглашений о сотрудничестве в области титановой промышленности, в том числе по созданию межгосударственных финансово-промышленных групп.

ВИКТОР Ъ-СМИРНОВ, ПЕТР Ъ-ИВАНОВ

Титан как элемент открыт в 1791 г. Его промышлен­ное производство началось в 50-х годах XX века и по­лучило быстрое развитие. Титановые сплавы имеют на­иболее высокую удельную прочность среди всех метал­лических материалов, а также высокую жаропрочность и коррозионную стойкость и находят все более широ­кое применение в авиационной технике, химическом машиностроении и других областях техники. Титан ис­пользуют для легирования сталей. Двуокись титана TiO 2 используют для производства титановых белил и эмалей; карбид титана TiC - для особо твердых инст­рументальных сплавов.

Титан по распространению в природе занимает чет­вертое место среди металлов и входит в состав более чем 70 минералов. К основным промышленным титаносодержащим минералам относятся рутил (более 90% ТiO 2) и ильменит TiO 2 -FeO (60%TiO 2). Ильменит вхо­дит в состав титаномагнетитов - его смеси с магнит­ным железняком; они содержат до 20% ТiO 2 . К пер­спективным рудам относятся сфен CaO-SiO 2 -TiO2 (32-42% TiO 2) и перовскит СаО- TiO (60% ТiO 2).

Сырьем для получения титана являются титаномагнетитовые руды, из которых выделяют ильменитовый концентрат, содержащий 40 ... 45 % ТiO 2 , -30 % FеО, 20 % Fе 2 О 3 и 5 ... 7 % пустой породы. Название этот концентрат получил по наличию в нем минерала ильменита FеО-ТiO 2 .

Ильменитовый концентрат плавят в смеси с древесным углем, антрацитом, где оксиды железа и титана восстанавливаются. Образующееся железо науглероживается, и получается чугун, а низшие оксиды титана переходят в шлак. Чугун и шлак - разливают отдельно в изложницы. Основной продукт этого процесса - титановый шлак - содержит 80 ... 90 % ТiO 2 , 2 ... 5 % FеО и примеси SiO 2 , А1 2 О 3 , СаО и др. Побочный продукт этого процесса - чугун - используют в металлургическом производстве.

Полученный титановый шлак подвергают хлорированию в специальных печах. В нижней части печи располагают угольную насадку, нагревающуюся при пропус-кании через нее электрического тока. В печь подают брикеты титанового шлака, а через фурмы внутрь печи - хлор. При температуре 800 ... 1250 °С в присутствии углерода образуется четыреххлористый титан, а также хлориды СаС1 2> МgС1 2 и др.:

ТiO 2 + 2С + 2С1 2 = ТiСl + 2СО.

Четыреххлористый титан отделяется и очищается от остальных хлоридов благодаря различию температуры кипения этих хлоридов методом ректификации в специальиых установках.

Титан из четыреххлористого титана восстанавливают в реакторах при температуре 950 ... 1000 °С. В реактор загружают чушковый магний; после откачки воздуха и заполнения полости реактора аргоном внутрь его подают парообразный четыреххлористый титан. Между жидким магнием и четыреххлористым титаном происходит реакция


ТiС1 2 = Тi + 2МgС1 2 .

Производство титана является технически сложным процессом. Двуокись титана TiO 2 - химически прочное соединение. Металлический титан (t ПЛ = 1725 °С), обла­дает большой активностью. Он бурно реагирует с азотом при температуре 500-600 °С и кислородом возду­ха при 1200-1300 °С, поглощает водород, взаимодейст­вует с углеродом и т. д. Наиболее широкое распростра­нение получил магниетермический способ, осуществля­емый по следующей технологической схеме: титановая руда ® обогащение ® плавка на титановый шлак ® получение четыреххлористого титана TiCl 4 ® восстановление титана магнием.

Обогащение титановых руд. Титаномагнетиты и другие бедные руды обогащают электромагнитным и другими способами, получая концентрат, содержащий до 50 % TiO 2 и около 35 % Fe 2 O 3 и FeO.

Плавку на титановый шлак проводят в электродуго­вой печи. Шихтой служат прессованные брикеты, со­стоящие из мелкоизмельченного концентрата, антрацита или угля и связующего (сульфитный щелок). В ре­зультате плавки получают богатый титановый шлак, со­держащий до 80 % TiO 2 . Побочным продуктом является чугун, содержащий до 0,5 % Ti. Измельченный шлак подвергают магнитной сепарации (для удаления желе­зосодержащих частиц), смешивают с мелким нефтяным коксом и связующим и спрессовывают в брикеты. После обжига при 700-800 °С брикеты направляют на хлори­рование.

Получение четыреххлористого титана TiCl 4 в гер­метизированных электрических печах представлено на рис. 2.9.

Нижнюю часть печи заполняют угольной (гра­фитовой) насадкой, которая служит электрическим со­противлением и нагревается при пропускании электри­ческого тока. В реакционной зоне печи выше уровня угольной насадки развивается температура 800…850 °С. При хлорировании образуется четыреххлористый титан по реакции TiO 2 +2C-T2Cl 2 =TiCl 4 +2CO. Пары четы­реххлористого титана находятся в паро-газовой смеси, содержащей SiCl 4 и другие хлориды; СО, С1 2 и другие газы.

Ее очищают от твердых частиц и охлаждают в кон­денсаторах, в результате чего получают жидкий четыреххлористый титан. Для более полной очистки от твердых частиц конденсат отстаивают и фильтруют.

Четыреххлористый титан отделя­ют от других хлоридов путем ректификации конденсата, основанной на различии температур кипения различных хлоридов. Жид­кий четыреххлористый титан направляют на восстановление.

В настоящее время для получения четыреххлористого титана начинают применять другие спо­собы хлорирования: в хлоратоpax непрерывного действия, в солевом расплаве; перспективным является хлорирование в кипя­щем слое.

Восстановление титана маг­нием из TiCl 4 проводят в герметичных реакторах (ретортах) из нержавеющей стали, установленных в электрических печах сопро­тивления. После установки в печь из реторты откачивают воздух и заполняют ее очищенным арго­ном; после нагрева до температу­ры 700° С заливают расплавлен­ный магний и начинают подачу жидкого TiCl 4 . Титан восстанав­ливается магнием по реакции TiCl 4 +2Mg=Ti+2MgCl 2 . Эта реакция сопровождается выделе­нием большого количества тепла и в реакторе поддерживается не­обходимая температура 800…900 °С без дополнительно­го нагрева за счет регулирования скорости подачи TiCl 4 . Частицы восстановленного титана спекаются в пористую массу (титановая губка), пропитанную магнием и хлористым магнием. Расплав хлористого магния периодиче­ски удаляют через патрубок в дне реактора. В промыш­ленных реакторах (емкостью до 2 т) получают титано­вую губку, содержащую до 60% Ti, 30 °/o Mg и 10 % MgCl 2.

Рафинирование титановой губки производят мето­дом вакуумной дистилляции. Крышку охладившейся ре­торты снимают и вместо нее устанавливают водоохлаждаемый конденсатор; затем реторту снова устанавли­вают в печь. Дистилляция проводится при 950…1000 °С и вакууме около 10 -3 мм рт. ст. Примеси титановой губ­ки Mg и MgCl 2 расплавляются, частично испаряются и затем выделяются в конденсаторах. Получаемый обо­ротный магний возвращается в производство, MgCl 2 используют для производства магния.

Получение титановых слитков . Титановые слитки получают переплавкой титановой губки в вакуумных электрических дуговых печах. Расходуемый электрод изготавливают прессованием из измельченной титано­вой губки. Электрическая дуга горит между расходуе­мым электродом и ванной расплавленного металла, по­степенно заполняющего изложницу, затвердевающего и образующего слиток.

Наличие вакуума предохраняет металл от окисле­ния и способствует его очистке от поглощенных газов и примесей.

Для получения слитков может быть использована дробленая титановая губка, загружаемая в печь доза­тором. В этом случае дуга горит между расплавленным металлом и графитовым электродом, поднимаемым по мере заполнения изложницы металлом.

Для обеспечения высокого качества слитков плавку повторяют два раза. При второй плавке расходуемым электродом служит слиток, полученный при первой плавке.

Титановые сплавы выплавляют в электрических ду­говых вакуумных печах, аналогичных применяемым для переплавки титановой губки. В качестве шихтовых ма­териалов используют титановую губку и легирующие элементы в соответствии с заданным химическим соста­вом сплава. Из шихты прессованием при 280….330 °С изготавливают переплавляемый (расходуемый) элек­трод. Плавку ведут в вакууме или в атмосфере аргона. Перед началом плавки на поддон в качестве затравки насыпают слой стружки из сплава такого же состава. Для более равномерного распределения легирующих элементов в сплаве полученный слиток переплавляют вторично.

Натриетермический способ получения титана отличается от магниетермического тем, что титан из TiCl 4 восстанавливают ме­таллическим натрием. Этот процесс проводят при относительно не­высокой температуре, и титан в меньшей степени загрязняется примесями. Вместе с тем натриетермический способ технически более сложен.

Кальциееидридный способ основан на том, что при взаимо­действии двуокиси титана TiO 2 с гидридом кальция СаН 2 образу­ется гидрид титана ТiH2, из которого затем выделяется металли­ческий титан. Недостаток этого способа состоит в том, что получа­емый титан сильно загрязнен примесями.

Иодидный способ применяют для получения неболь­ших количеств титана очень высокой чистоты, до 99,99%. Он основан на реакции Ti+2I 2 « TiI 4 , которая при 100 …200 °С идет слева направо (образование Til 4), при 1300…1400 °С -в обратном направлении (разло­жение ТiI 4).

Рафинируемую титановую губку помещают в ретор­ту и нагревают до 100…200 °С; внутрь реторты вводят и разбивают ампулу с йодом, взаимодействующим с ти­таном по реакции Ti+2I 2 ® TiI 4 . Разложение TiI 4 ® Ti+2I 2 и выделение титана происходит на титановых проволоках, натянутых в реторте, нагретых до 1300… 1400 °С пропусканием тока.