Существует несколько способов гибки листового металла, все они имеют определенные особенности. Автоматизированный способ позволяет придавать заготовкам нужную форму без использования сварочной техники. Основное преимущество методики гибки заключается в отсутствии швов, что способствует улучшению внешнего вида и повышению прочности изделий. Метод гибки способствует ускорению производственного процесса. В результате гибки значительно снижаются масса изделий, металлоемкость, уменьшаются трудозатраты, себестоимость, повышается рентабельность.

Гибка листового металла имеет следующие преимущества:

  • экономия – достигается за счет отсутствия отходов;
  • сохранение прочности изделия – сварные швы и другие соединения отсутствуют;
  • устойчивость к коррозии – достигается за счет отсутствия изменений структуры материала;
  • привлекательный внешний вид.

Цена гибки металлического листа

Cтоимость гибки листового металла зависит от толщины и длины изделия. Важную роль играет также форма детали, тип стали, особенности контуров сгибания и т. д.

Длина гиба, мм 100 200 500 1000 1500 2000 2500
Толщина листа, мм Цена за гиб листового металла (минимальный заказ от 100 гибов)
0,8 - 1 9 руб. 11 руб. 16 руб. 29 руб. 40 руб. 50 руб. 76 руб.
1,2-1,5 9 руб. 11 руб. 17 руб. 30 руб. 40 руб. 50 руб. 76 руб.
2 9 руб. 11 руб. 17 руб. 30 руб. 42 руб. 51 руб. 77 руб.
2,5 9 руб. 11 руб. 19 руб. 31 руб. 44 руб. 51 руб. 77 руб.
3 9 руб. 13 руб. 20 руб. 32 руб. 49 руб. 56 руб. 95 руб.
5 14 руб. 18 руб. 25 руб. 44 руб. 69 руб. 88 руб. 139 руб.
6 15 руб. 21 руб. 28 руб. 53 руб. 81 руб. 106 руб. 166 руб.
8 17 руб. 21 руб. 33 руб. 59 руб. 105 руб. - -
10 19 руб. 23 руб. 38 руб. 66 руб. - - -
12 23 руб. 28 руб. 45 руб. - - - -

Где применяется гибка листового металла

Эта технология обработки металлических листов широко используется в разных сферах благодаря ее приемуществам. Гнутые элементы при одинаковой прочности с цельнокатаным трубопрокатом и профилями отличаются легким весом. Сферы применения гибки:

  • строительная сфера (кровля, комплектующие, вентилируемые фасады);
  • машиностроение;
  • транспортная промышленность (обшивка);
  • металлопрофили;
  • изготовление раздвижной мебели;
  • детали корпусов оборудования, бытовой техники.

Основные методы гибки листового металла

Гибка листового металла возможна различными методами в горячем и холодном виде. Самыми распространенными способами является трансформация холодных изделий на гибочных машинах, вальцах. Ручной способ используется достаточно редко, применяется для гибки тонколистового металла толщиной до 0,6 мм. Автоматические методы гибки:

  • На гидравлическом прессе (воздушная универсальная). Металлическая полоса (толщиной до 10 мм, длиной до 6 м) устанавливается на нижний стол с матрицей. Изделие нужной формы получается из-за направленного сверху действия пуансона на необходимую глубину.
  • На вальцах. Металл проходит через вальцы, эффект сгибания достигается за счет их постепенного смещения, такой подход применяется для получения формы в виде конуса, цилиндра, сферы и др.
  • По матрице. Технология отличается повышенной точностью, применяется при обработке листового металла до 5 мм, деформируя заготовку на угол менее 90 градусов.
  • С применением поворотной балки. Применяется для гибки листа до 1 мм, чтобы гнуть изделия в разные стороны.
  • Обработка скольжением. При проведении процедуры используется отдельный инструмент для заготовки каждой толщины.

Перечисленные методы гибки листового металла обеспечивают неизменную структуру металлической пластины на участках сгиба. Толщина листового металла может достигать 12 мм. Технология позволяет сформировать из листа изделия требующихся размеров и формы. Путем гибки наиболее просто можно придать материалу нужную форму. Способ является более легкой в исполнении и недорогой альтернативой сварке. Выбор технологии зависит от использующегося материала и требований к получаемой продукции. Перед проведением процедуры производятся расчеты с применением специальной формулы.

Дефекты и трудности при гибке

В ходе деформации металлов могут появляться дефекты. Самые распространенные это косые изгибы, механические повреждениях поверхности. Это явление происходит вследствие ошибок при проведении разметки или закреплении заготовок выше/ниже разметочной линии. Распространенной ошибкой при гибке считается также разрыв (трещина) металла. Она возникает по причине недостаточной пластичности материала. Гибка тонколистового металла наиболее часто подвержена данному типу дефекта, из-за чего ее зачастую приходится делать ручным способом. Еще однойим частым дефектом гибки является нарушения размеров. Оно проявляется при нехватке или излишке листа на концах детали, что происходит при нарушениях расчета длины заготовок.

Видео: Листогибочный станок

Для трансформации металлического листа используется листогибочный пресс, что значительно повышает технологичность производственного процесса. Такой подход предполагает снижение себестоимости продукции. Программируемые упоры значительно ускоряют изготовление без потери точности, все возможные дефекты легко корректируются.

Преимущества обращения к нам

  • доступная стоимость;
  • соблюдение всех норм, правил и стандартов;
  • высокое качество проведения работ;
  • использование современной техники;
  • комплексный подход, возможность изготовления деталей разной сложности.

Компания предоставляет услуги по гибке листового металла в Москве. При проведении гибки металла используется современное оборудование, применение которого позволяет проводить все с максимальной точностью. Гибка листового металла полностью автоматизирована, что значительно ускоряет и упрощает дело.

Тонколистовой металлопрокат нечасто используется в своем первоначальном виде. Для его дальнейшего применения необходима соответствующая обработка исходного сырья. Компания «Рушар» предлагает услуги гибки и расчета металла на современном оборудовании согласно требованиям заказчика. Такая технологическая операция позволяет сформировать из плоского проката изделия требуемой формы и размера. В отличие от сварки гибка листового металла является менее затратной и требует меньше времени.

Применяемое оборудование

Для гибки металла используются гидравлические листогибочные прессы. Их параметры, размеры, нормы точности соответствуют требованиям ГОСТ 10560-88. Данное оборудование обеспечивает регулировку усилий при гибке листового металла. Прессы оснащены средством механизации выгрузки готовых изделий.

На оборудовании, предназначенном для многопереходной гибки, установлено устройство программного управления. Тип последнего определяется особенностями конкретного заказа и видом проката.

Все прессы оснащены устройствами для выдержки готового изделия под нагрузкой, когда гибка металла завершается. Конструкция оборудования позволяет встраивать его в автоматические линии по обработке тонколистового проката.

В процессе гибки листового металла изделие получает заданную форму. При этом наружные слои растягиваются, внутренние сжимаются, средние сохраняют исходную структуру. Механическая и автоматическая гибка металла осуществляется на соответствующем оборудовании. Суть данного технологического процесса заключается в перегибании тонколистовой полосы на заданный угол. Минимальные радиусы сгиба рассчитываются согласно ОСТ 1 00286-78.

Современные виды гибки листового металла

  • Воздушная (Air bending ) . Такая листовая гибка осуществляется опусканием пуансона в матрицу на заданную глубину. Их размеры и угол те же, что и в готовой детали. Радиус гибки металла зависит от свойств материала и раскрытия матрицы. Метод является универсальным, позволяет получать углы различной величины.
  • Гибка металла по матрице (Bottoming ) . Такая технология несколько точнее, чем предыдущая. Она используется для тонколистового проката до 5 мм. Однако матричная листовая гибка не позволяет согнуть исходную заготовку на угол более 90 о.
  • Обработка с использованием поворотной балки (Folding ) . Используется для гибки тонколистового металла (до 1 мм для конструкционной стали). Метод позволяет гнуть заготовку в обоих направлениях, как вверх, так и вниз.
  • Обработка скольжением (Wiping ) . Схожа с предыдущим способом. При такой листовой гибке требуется отдельный инструмент для каждой толщины проката.

Прайс-лист с ценами гибки листового металла

толщина,мм. до 100 мм. до 1250 мм. до 3000 мм. до 8 000 мм.
0,5 - 0,8 5,00 руб. 12,00 руб. 25,00 руб. 70,00 руб.
1,0 - 1,2 6,00 руб. 14,00 руб. 25,00 руб. -
1,5 6,50 руб. 15,00 руб. 26,00 руб. -
2,0 - 2,5 7,00 руб. 16,00 руб. 26,00 руб. -
3,0 7,50 руб. 17,00 руб. 33,00 руб. -
4,0 9,00 руб. 23,00 руб. - -
5,0 10,00 руб. 25,00 руб. - -
6,0 12,00 руб. 28,00 руб. - -
8,0 14,00 руб. - - -
10,0 15,00 руб. - - -

Преимущества наших услуг

Компания «Рушар» предоставляет услуги по гибке листового металла толщиной 0,5–6,0 мм. К нашим основным преимуществам относятся:

  • разумная стоимость . Наличие собственного производства позволяет нам поддерживать доступные цены на гибку листового металла;
  • высокое качество работ . Для гибки листового металла под заказ используется современное оборудование. Гидравлические прессы обеспечивают необходимую точность размеров готовой детали;
  • комплексный подход . Помимо услуг гибки листового металла мы осуществляем гидроабразивную резку, холодную штамповку и другие виды обработки под заказ.
Высокое качество производимой продукции в сочетании с разумными ценами Удобное местоположение Максимально короткие сроки исполнения заказов Все виды работ по обработке листового металла в одном месте

Гибка листового металла – неэнергоёмкая операция листовой штамповки. Поэтому во многих случаях, когда не требуется высокая производительность, её выполняют на оборудовании с ручным приводом. Это снижает затраты на подготовку и организацию производственных площадей, упрощает управление станками, удешевляет производимые изделия.

При этом, ввиду высокого качества листогибочных агрегатов, точность гибки остаётся на прежнем уровне.

Особенности ручной гибки плоских листовых заготовок

Любой изгибаемый металл обладает упругими свойствами. Поэтому в процессе приложения к заготовке кратковременного деформирующего усилия пластические характеристики материала заготовки не успевают реализоваться должным образом. В результате имеет место пружинение – частичное восстановление формы согнутой заготовки после отвода рабочего инструмента в исходное положение. К сожалению, обработка листового металла гибкой с использованием механических прессов не предоставляет возможности увеличить время контакта пуансона с заготовкой.

Гибка листового металла

Виды различных конструктивных и технологических приёмов, при помощи которых можно компенсировать пружинение металла, следующие:

Станки для гибки, оснащённые ручным приводом, таких проблем не создают, ибо время выдержки металла под давлением задаётся самим оператором.


Вальцовочный станок

В практике выполнения гибочных операций на подобном листогибочном оборудовании чаще встречаются такие его разновидности, как гибочный и вальцовочный агрегат. Технологическое отличие между ними заключается в том, что гибочный станок производит последовательное деформирование по всей поверхности контакта инструмента с заготовкой, а вальцовочный – лишь по части такой поверхности. Вальцовка требует для своей реализации меньшего усилия, чем гибка, зато её рабочий цикл – длиннее.

Разновидности технологических операций при ручной гибке

Поскольку крутящий момент с применением мускульной силы ограничен физическими возможностями оператора, то чаще всего применяется гибка листового металла по следующим схемам процесса:



Обработка листового металла с использованием операций гибки выбирается в зависимости от следующих факторов:

Оборудование для выполнения ручной гибки листового металла

Гибочный станок с ручным приводом чаще встречается в условиях мелкосерийного производства, где часто требуется оперативная переналадка оборудования с одного типоразмера выпускаемой продукции на другой. Обработка листового металла на ручных листогибочных установках экономит производственные площади, и в большинстве случаев не требует использования дорогого специализированного инструмента – штампов.

Как сделать листогибочный станок своими руками

Ввиду резкого увеличения прилагаемого усилия и момента, толщина листовых заготовок для гибки и последующей резки стали не должна превышать 1,2…1,5 мм, а для более пластичных сплавов, например, алюминия – 2…3 мм. Этих ограничения вполне допускают, чтобы такая технология использовалась при производстве стальных строительных элементов – скосов, жёлобов, распределительных коробок, а также при производстве доборных элементов кровли зданий. При производстве данных элементов из полосы станки должны иметь боковые ножи для резки дефектных краёв изделия.

Преимуществом ручных листогибочных установок является то, что при низких скоростях деформирования не происходит отслаивания предварительного защитного покрытия заготовок. Поэтому технология ручной гибки вполне допускает наличие на исходном металле цинкового покрытия, либо слоя краски.

Виды станков для холодной гибки классифицируются по следующим признакам:


Следует отметить, что ведущие производители ручных листогибов часто оснащают их и дополнительными опциями.

Одним из наиболее авторитетным производителем данного оборудования считается американская фирма Tapco (Тапко). Станки данной компании позиционируются производителем как агрегаты, которые должны заниматься выпуском наружных кровельных элементов конструкций зданий, а потому обязаны работать преимущественно вне помещений. Поэтому узлы такого оборудования выполняются исключительно из сталей с антикоррозионным покрытием.

Технология гибки на станке Tapco предусматривает возможность выполнения следующих переходов:

  • Резки исходной заготовки в размер (все данные станки – проходного типа, при котором перемещение заготовки производится только в одном направлении).
  • Последующей профилированной или сегментной гибки (определяется видом инструмента, который установлен на гибочный ползун).
  • Обрезки кромок с одновременной калибровкой готовой детали.

Станки легко разбираются и обслуживаются, поскольку производитель собирает их по методу модульной сборки. По этой же причине станки от «Тапко» отличаются лёгкостью при своей транспортировке на новое место использования. Вместе с тем применение высококачественного металла для изготовления инструмента и деталей таких станков соответствующим образом сказывается на их цене.

Видео: Ручной станок листогибочный

Гибка металла является технологической операцией, без которой практически не может обойтись ни одна работа с металлом. При этом виде обработки получаются надежные и прочные детали, которые отличаются солидным внешним видом и высокой точностью.

Процесс сгибания металла

Волокна металла при сгибании одновременно испытывают растяжение и сжатие. Для того чтобы деформация пластическая не перешла в разрывную, необходимо тщательно находить усилия и радиусы загибов. Например, на металле появятся трещины или он изогнется на внутренней стороне загиба, если радиус загиба выбрать меньше толщины заготовки.

При сгибании металлов плоской формы получается объемное изделие без различных швов и соединений. Наша компания предлагает в Москве изготовление самых непростых изделий, которым необходимо автоматическое сгибание листового железа.

Нынешние листогибочные прессы, которые управляются электроникой, могут обеспечить изготовление сложнейших деталей из листа всяких сплавов, владеющих достаточными пластическими качествами, для осуществления холодной деформации без порчи материла.

Детали, изготовленные методом сгибания металла, обладают:

  • высокой степенью надежности;
  • долговечностью.

Стоимость гибки металла недорогая. Если стальной пруток имеет диаметр больше 10 миллиметров, заготовки из него гнуть не стоит. Для этой операции лучше брать стальные листы толщиной до 5 миллиметров, полосовую сталь – до 7. Гнуть листовой металл легче при его предварительном подогреве. Если нет такой возможности, то в зоне сгиба на внешнюю поверхность необходимо нанести поперечные риски.

Наша компания предоставляет услуги на выполнение работы по гибки металла. Обработка листового металла на листогибочном прессе давлением дает возможность получать достаточно развитые конструкции, которые отличаются:

  • прочностью;
  • стабильностью;
  • хорошим внешним видом.

Гибка металла в слесарных тисках

Сталь полосовая наиболее удобно гнется в слесарных тисках. Для этого надо заготовку установить так, чтобы та сторона, на которой риска нанесена в месте загиба, была направлена к недвижимой губке тисков. Над губкой риска должна выступать приблизительно на 0,5 миллиметров.

При необходимости загнуть полосу стальную под острым углом, надо использовать оправку, соответствующую нужному углу загиба. Зажимают ее вместе с заготовкой в тисках, полосу располагают к ней высокой стороной, и загибают ударами молотка.

Чтобы произвести скобу из полосовой стали, необходимо воспользоваться бруском-оправкой, толщина которого равна проему скобы. Его вместе с полосой зажимают в тисках, нанося молотком легкие удары, загибают одну сторону скобы. Потом внутрь скобы вложить брусок, зажать в тисках, тоже проделать со второй стороной.

Для крепления металлических стержней и труб всевозможного назначения нередко применяется хомут из полосовой стали. Его изготавливают в тисках. Для этого зажимают в тисках круглую оправку требуемого диаметра, с помощью двух плоскогубцев на ней загибают полоску стали желательной длины и ширины.

Дальше в тисках зажимают отогнутые концы хомута, придавая ему конечную форму. Для того, чтобы не оставлять на хомуте царапин, вмятин, надо молотком бить не по нему, а через медную пластину незначительной толщины.

Полосовая гибка нередко используется при объединении элементов из металла, которые называются гибочными соединениями. Оно может:

  • усиливать резьбовое соединение;
  • быть стопорной шайбой либо шплинтом в соединении гайка-болт.

Наша компания производит на заказ различные операции по обрабатыванию металла, которые позволяют изготавливать всевозможные объемные детали из листового железа, так нужные в наше время для производства и строительства. Цена на услуги предоставляемые нами вполне доступная.

"Гибка" звучит как простой процесс, но в действительности, он очень сложен.
"Лист" и "гибка" не очень ассоциируются с высокой технологией. Однако, для того, чтобы гнуть "непослушный" лист необходимы специальные знания и большой опыт. Объясните техническому специалисту, который не знаком с листовым металлом, что в нашем высокотехничном мире невозможно постоянно получать при гибке угол 90°, не меняя параметров настройки. То получается, а то - нет!

Без изменения программы угол будет меняться, если, например, лист толщиной 2 мм сделан из нержавеющей стали или алюминия, если его длина - 500 мм, 1000 мм или 2000 мм, если гибка производится вдоль или поперек волокон, если линия гибки находится в окружении пробитых или прорезанных лазером отверстий, если лист имеет различную упругую деформацию, если поверхностное упрочнение, вследствие пластической деформации, сильнее или слабее, если... если...

КАКОЙ МЕТОД ГИБКИ ВЫБРАТЬ?

Различается 2 основных метода:
Мы говорим о "воздушной гибке" или "свободной гибке", если между листом стенками V-образной матрицы существует воздушный зазор. В настоящее время это наиболее распространенный метод.
Если лист прижат полностью к стенкам V-образной матрицы, мы называем этот метод "калибровкой". Несмотря на то, что этот метод является достаточно старым, он используется и даже должен использоваться в определенных случаях, которые мы рассмотрим далее.

Свободная гибка

Обеспечивает гибкость, но имеет некоторые ограничения по точности.

Основные черты:

  • Траверса с помощью пуансона вдавливает лист на выбранную глубину по оси Y в канавку матрицы.
  • Лист остается "в воздухе" и не соприкасается со стенками матрицы.
  • Это означает, что угол гибки определяется положением оси Y, а не геометрией гибочного инструмента.

Точность настройки оси Y на современных прессах - 0,01 мм. Какой угол гибки соответствует определенному положению оси Y? Трудно сказать, потому что нужно найти правильное положение оси Y для каждого угла. Разница в положении оси Y может быть вызвана настройкой хода опускания траверсы, свойствами материала (толщина, предел прочности, деформационное упрочнение) или состоянием гибочного инструмента.

Приведенная ниже таблица показывает отклонение угла гибки от 90° при различных отклонениях оси Y.

а° /V mm 1,5° 2,5° 3,5° 4,5°
4 0,022 0,033 0,044 0,055 0,066 0,077 0,088 0,099 0,11
6 0,033 0,049 0,065 0,081 0,097 0,113 0,129 0,145 0,161
8 0,044 0,066 0,088 0,110 0,132 0,154 0,176 0,198 0,220
10 0,055 0,082 0,110 0,137 0,165 0,192 0,220 0,247 0,275
12 0,066 0,099 0,132 0,165 0,198 0,231 0,264 0,297 0,330
16 0,088 0,132 0,176 0,220 0,264 0,308 0,352 0,396 0,440
20 0,111 0,166 0,222 0,277 0,333 0,388 0,444 0,499 0,555
25 0,138 0,207 0,276 0,345 0,414 0,483 0,552 0,621 0,690
30 0,166 0,249 0,332 0,415 0,498 0,581 0,664 0,747 0,830
45 0,250 0,375 0,500 0,625 0,750 0,875 1,000 1,125 1,250
55 0,305 0,457 0,610 0,762 0,915 1,067 1,220 1,372 1,525
80 0,444 0,666 0,888 1,110 1,332 1,554 1,776 1,998 2,220
100 0,555 0,832 1,110 1,387 1,665 1,942 2,220 2,497 2,775

Преимущества свободной гибки:

  • Высокая гибкость: без смены гибочных инструментов вы можете получить любой угол гибки, находящийся в промежутке между углом раскрытия V-образной матрицы (например, 86° или 28°) и 180°.
  • Меньшие затраты на инструмент.
  • По сравнению с калибровкой требуется меньшее усилие гибки.
  • Можно "играть" усилием: большее раскрытие матрицы означает - меньшее усилие гибки. Если вы удваиваете ширину канавки, вам необходимо только половинное усилие. Это означает, что можно гнуть более толстый материал при большем раскрытии с тем же усилием.
  • Меньшие инвестиции, так как нужен пресс с меньшим усилием.

Все это, однако, теоретически. На практике вы можете потратить деньги, сэкономленные на приобретении пресса с меньшим усилием, позволяющего использовать все преимущества воздушной гибки, на дополнительное оснащение, такое как, дополнительные оси заднего упора или манипуляторы.

Недостатки воздушной гибки:

  • Менее точные углы гибки для тонкого материала.
  • Различия в качестве материала влияют на точность повторения.
  • Не применима для специфических гибочных операций.

Совет:

  • Воздушную гибку желательно применять для листов толщиной свыше 1,25 мм; для толщины листа 1 мм и менее рекомендуется использовать калибровку.
  • Наименьший внутренний радиус гибки должен быть больше толщины листа. Если внутренний радиус должен быть равен толщине листа -рекомендуется использовать метод калибровки. Внутренний радиус меньше толщины листа допустим только на мягком легко деформируемым материале, например меди.
  • Большой радиус может быть получен воздушной гибкой путем использования пошагового перемещения заднего упора. Если большой радиус должен быть высокого качества, рекомендуется только метод калибровки специальным инструментом.

Какое усилие?
По причине различных свойств материала и последствий пластической деформации в зоне гибки, определить требуемое усилие можно только примерно.
Предлагаем вам 3 практических способа:

1. Таблица

В каждом каталоге и на каждом прессе вы можете найти таблицу, показывающую требуемое усилие (Р) в кН на 1000 мм длины гиба (L) в зависимости от:

  • толщины листа (S) в мм
  • предела прочности (Rm) в Н/мм2
  • V - ширины раскрытия матрицы (V) в мм
  • внутреннего радиуса согнутого листа (Ri) в мм
  • минимальной высоты отогнутой полки (B) в мм

Пример подобной таблицы
Необходимое усилие для гибки 1 метра листа в тоннах. Предел прочности 42-45 кг/мм2.
Рекомендуемое соотношение параметров и усилия

2. Формула


1,42 - это эмпирический коэффициент, который учитывает трение между кромками матрицы и обрабатываемым материалом.
Другая формула дает похожие результаты:

3. "Правило 8"

При гибке низкоуглеродистой стали ширина раскрытия матрицы должна в 8 раз превосходить толщину листа (V=8*S), тогда Р=8хS, где Р выражается в тоннах (например: для толщины 2 мм раскрытие матрицы \/=2х8=16 мм означает, что вам необходимо 16 тонн/м)

Усилие и длина гиба
Длина гиба пропорциональна усилию, т.е. усилие достигает 100% только при длине гиба 100%.
Например:

Cовет:
Если материал ржавый или не смазан, следует добавлять 10-15% к усилию гиба.

Толщина листа (S)
DIN допускает значительное отклонение от номинальной толщины листа (например, для толщины листа 5 мм норма колеблется между 4,7 и 6,5 мм). Следовательно, вам нужно рассчитывать усилие только для реальной толщины, которую вы измерили, или для максимального нормативного значения.

Предел прочности на растяжение (Rm)
Здесь также допуски являются значительными и могут оказывать серьезное влияние при расчете требуемого усилия гиба.
Например:
St 37-2: 340-510 Н/мм2
St 52-3: 510-680 Н/мм2

Совет:
Не экономьте на усилии гиба! Предел прочности на растяжение пропорционален усилию гиба и не может быть подогнан, когда вам это нужно! Реальные значения толщины и предела прочности являются важным факторами при выборе нужного станка с нужным номинальным усилием.

V - раскрытие матрицы
По эмпирическому правилу, раскрытие V-образной матрицы должно восьмикратно превосходить толщину листа S до S=6 мм:
V=8xS
Для большей толщины листа необходимо:
V=10xS или
V=12xS

Раскрытие V-образной матрицы обратно пропорционально требуемому усилию:
большее раскрытие означает меньшее усилие гиба, но больший внутренний радиус;
меньшее раскрытие означает большее усилие, но меньший внутренний радиус.

Внутренний радиус гиба (Ri)
При применении метода воздушной гибки большая часть материала подвергается упругой деформации. После гибки материал возвращается в свое первоначальное состояние без остаточной деформации ("обратное пружинение"). В узкой области вокруг точки приложения усилия материал подвергается пластической деформации и навсегда остается в таком состоянии после гибки. Материал становится тем прочнее, чем больше пластическая деформация. Мы называем это "деформационным упрочнением".

Так называемый "естественный внутренний радиус гибки" зависит от толщины листа и раскрытия матрицы. Он всегда больше чем толщина листа и не зависит от радиуса пуансона.

Чтобы определить естественный внутренний радиус, мы можем использовать следующую формулу: Ri = 5 x V /32
В случае V=8хS, мы можем сказать Ri=Sх1,25

Мягкий и легкодеформируемый металл допускает меньший внутренний радиус. Если радиус слишком маленький, материал может быть смят на внутренней стороне и растрескаться на внешней стороне гиба.

Совет:
Если вам нужен маленький внутренний радиус, гните на медленной скорости и поперек волокон.

Минимальная полка (В):
Во избежание проваливания полки в канавку матрицы, необходимо соблюдать следующую минимальную ширину полки:

Упругая деформация
Часть упруго деформированного материала "спружинит" обратно после того, как усилие гиба будет снято. На сколько градусов? Это уместный вопрос, потому что важен только реально полученный угол гиба, а не рассчитанный теоретически. Большинство материалов имеют достаточно постоянную упругую деформацию. Это означает, что материал той же толщины и с тем же пределом прочности спружинит на одинаковую величину при одинаковом угле гибки.

Упругая деформация зависит от:

  • угла гибки: чем меньше угол гибки, тем больше упругая деформация;
  • толщины материала: чем толще материал, тем меньше упругая деформация;
  • предела прочности на растяжение: чем выше предел прочности, тем, больше упругая деформация;
  • направления волокон: упругая деформация различна при гибке вдоль или поперек волокон.

Продемонстрируем сказанное выше для предела прочности, измеряемой при условии V=8хS:

Все производители гибочного инструмента учитывают упругую деформацию, когда предлагают инструмент для свободной гибки (например угол раскрытия 85° или 86 ° для свободных гибов от 90° до 180°).

Калибровка

Точный - но негибкий способ

При этом методе угол гиба определен усилием гиба и гибочным инструментом: материал зажат полностью между пуансоном и стенками V образной матрицы. Упругая деформация равняется нулю и различные свойства материала практически не влияют на угол гиба.

Грубо говоря, усилие калибровки в 3 -10 раз выше усилия свободной гибки.

Преимущества калибровки:

  • точность углов гиба, несмотря на разницу в толщине и свойствах материала
  • возможно выполнение всех специальных форм с помощью металлического инструмента
  • маленький внутренний радиус
  • большой внешний радиус
  • Z-образные профили
  • глубокие U-образные каналы
  • возможно выполнение всех специальных форм для толщины до 2 мм с помощью стальных пуансонов и матриц из полиуретана.
  • превосходные результаты на гибочных прессах, не имеющих точности, достаточной для свободной гибки.

Недостатки калибровки:

  • требуемое усилие гиба в 3 - 10 раз больше, чем при свободной гибке;
  • нет гибкости: специальный инструмент для каждой формы;
  • частая смена инструмента (кроме больших серий).